Advertisement

Development of a Fourier-Transform Ion Cyclotron Resonance (FTICR) Mass Spectrometry Method for Studies of Metal Ion Excited States

  • David H. Russell
  • J. V. B. Oriedo
  • Touradj Solouki
Part of the Understanding Chemical Reactivity book series (UCRE, volume 15)

Abstract

Studies of ion-molecule reaction chemistry of gas-phase transition metal ions have rapidly expanded and the field of gas phase organometallic chemistry has emerged [1]. Eller and Schwarz have compiled an amazingly comprehensive review of this entire field that covers the period 1973 to 1992 [2]. The pioneering gas-phase ion chemistry studies emphasized the type of reactions, product ion distribution, and speculation on reaction mechanisms; however, the most important contribution of much of this work is to the understanding of reaction energetics and bond energies to metal centers [3]. In the last few years, several groups have placed considerable attention on the specific electronic state(s) of the reacting metal ion (M+) and how the reactivity of M+ might change if different excited states are formed by the ionizing process.

Keywords

Electron Impact Ionization Appearance Energy Collisional Relaxation Polar Organic Molecule Ionic Cluster Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Allison,Prog. Inorg. Chem. 34, 627 (1986)CrossRefGoogle Scholar
  2. (b).
    S. W. Buckner and B. S. Freiser,Polyhedron 74, 1583 (1988)CrossRefGoogle Scholar
  3. (c).
    D. H. Russell (Ed.),Gas Phase Inorganic Chemistry( Plenum Press, New York, 1989 ).Google Scholar
  4. 2.
    K. Eller and H. Schwarz,Chem. Rev.91, 1121 (1991).CrossRefGoogle Scholar
  5. 3.
    J. A. Simoes and J. L. Beauchamp,Chem. Rev. 90, 629 (1990).CrossRefGoogle Scholar
  6. 4.
    R. B. Freas and D. P. Ridge,J. Am. Chem. Soc. 102, 7129 (1980).CrossRefGoogle Scholar
  7. 5.
    L. F. Halle, P. B. Armentrout, and J. L. Beauchamp,J. Am. Chem. Soc. 103, 962 (1981).CrossRefGoogle Scholar
  8. 6.
    W. D. Reents, Jr., F. Strobel, R. B. Freas, J. Wronka, and D. P. Ridge,J. Phys. Chem. 89, 5666 (1985).CrossRefGoogle Scholar
  9. 7.
    S. K. Huang and M. L. Gross,J. Phys. Chem. 89, 4422 (1985).CrossRefGoogle Scholar
  10. 8.
    F. Strobel and D. P. Ridge,J. Phys. Chem. 93, 3635 (1989).CrossRefGoogle Scholar
  11. 9.
    R. B. Cody, R. C. Burnier, W. D. Reents, T. J. Carlin, R. K. McCrery, R. K. Lengal, and B. S. Freiser,Int. J. Mass Spectrom. Ion Phys.,33, 37 (1980).CrossRefGoogle Scholar
  12. 10.
    P. B. Armentrout and J. L. Beauchamp,J. Chem. Phys.48, 315 (1980)CrossRefGoogle Scholar
  13. (b).
    R. Georgiadis and P. B. Armentrout, J. Am. Chem. Soc. 108, 2119 (1986).CrossRefGoogle Scholar
  14. 11.
    P. B. Armentrout,Annu. Rev. Phys. Chem. 41, 313 (1990)CrossRefGoogle Scholar
  15. (b).
    P. B. Armentrout, inGas Phase Inorganic Chemistry, edited by D. H. Russell (Plenum Publ. Co., New York, 1989 ), pp. 1 - 42.Google Scholar
  16. 12.
    R. Georgiadis and P. B. Armentrout,J. Phys. Chem. 92, 7067 (1988).CrossRefGoogle Scholar
  17. 13.
    S. D. Hanton, R. J. Noll, and J. C. Weisshaar,J. Phys. Chem. 94, 5655 (1990).CrossRefGoogle Scholar
  18. 14.
    S. K. Loh, D. A. Hales, L. Lian, and P. B. Armentrout,J. Chem. Phys. 90, 5466 (1989)CrossRefGoogle Scholar
  19. (b).
    P. B. Armentrout,Comments At. Mol. Phys. 22, 1336 (1988)Google Scholar
  20. (c).
    K. Ervin and P. B. Armentrout,J. Chem. Phys. 83, 166 (1985).CrossRefGoogle Scholar
  21. 15.
    P. R. Kemper, G. von Helden, and M. T. Bowers,J. Phys. Chem. 95, 5134 (1991)CrossRefGoogle Scholar
  22. (b).
    P. R. Kemper, P. van Koppen, and M. T. Bowers,Science 260, 1446 (1993).CrossRefGoogle Scholar
  23. 16.
    P. R. Kemper, M. Hsu, and M. T. Bowers,J. Phys. Chem. 95, 10600 (1991)CrossRefGoogle Scholar
  24. (b).
    G. V. Helden, P. R. Kemper, M. Hsu, and M. T. Bowers,J. Chem. Phys. 96, 6591 (1992).CrossRefGoogle Scholar
  25. 17.
    E. L. Kerley and D. H. Russell,J. Am. Chem. Soc. 112, 5959 (1990).CrossRefGoogle Scholar
  26. 18.
    M. S. Foster; J. L. Beauchamp,J. Am. Chem. Soc.93, 4924-4926 (1971)CrossRefGoogle Scholar
  27. (b).
    M. S. Foster; J. L. Beauchamp,J. Am. Chem. Soc. 97, 4808 - 4814 (1975)CrossRefGoogle Scholar
  28. (c).
    M. S. Foster and J. L. Beauchamp,J. Am. Chem. Soc. 75, 4814 - 4817 (1975)CrossRefGoogle Scholar
  29. (d).
    W. K. Mechstroth and D. P. Ridge,Int. J. Mass Spectrom. Ion Proc. 61, 149 - 152 (1984)CrossRefGoogle Scholar
  30. (e).
    W. K. Meckstroth, R. B. Freas, W. D. Reents, Jr., and D. P. Ridge,Inorg. Chem. 24, 3139 - 3146 (1985)CrossRefGoogle Scholar
  31. (f).
    D. A. Freden and D. H. Russell,J. Am. Chem. Soc.107, 3762-3768 (1985)CrossRefGoogle Scholar
  32. (g).
    D. A. Fredeen and D. H. Russell,J. Am. Chem. Soc. 108, 1860 (1986)CrossRefGoogle Scholar
  33. (h).
    D. A. Fredeen and D. H. Russell,J. Am. Chem. Soc. 109, 3903 (1987).CrossRefGoogle Scholar
  34. 19.
    See also, D. P. Ridge and W. K. Mechstroth inGas Phase Inorganic Chemistry, edited by D. H. Russell (Plenum Publ. Co., New York, 1989 ), pp. 93 - 116Google Scholar
  35. (b).
    D. H. Russell, D. A. Fredeen, and R. E. Tecklenburg, inGas Phase Inorganic Chemistry, edited by D. H. Russell (Plenum Publ. Co., New York, 1989 ), pp. 117 - 136.Google Scholar
  36. 20.
    Data taken from C. E. Moore,Atomic Energy Levels, (National Bureau of Standards, Washington, DC, 1952 )Google Scholar
  37. (b).
    J. Sugar and C. J. Corlis,J. Phys. Chem. Ref. Data6,317(1977)CrossRefGoogle Scholar
  38. (c).
    R. H. Garstang,Mon. Not. R. Astrom. Soc. 124, 321 (1962).Google Scholar
  39. 21.
    G. J. Distefano,Res. Natl. Bur. Stands., A, Phys. Chem.74, 233 (1970)Google Scholar
  40. (b).
    H. M. Rosenstock, K. Draxl, B. W. Steiner, and J. T.Herron,J. Phys. Chem. Ref. Data 6, 1157 (1977).CrossRefGoogle Scholar
  41. 22.
    K. Norwood, K. Ali, G. D. Flesch, and C. Y. Ng,J. Am. Chem. Soc. 112, 7502 (1990).CrossRefGoogle Scholar
  42. 23.
    R. H. Schultz, K. C. Crellin, and P. B. Armentrout,J. Am. Chem. Soc. 113, 8590 (1991).CrossRefGoogle Scholar
  43. 24.
    J. V. B. Oriedo and D. H. Russell,J. Phys. Chem. 96, 5314 (1992).CrossRefGoogle Scholar
  44. 25.
    J. V. B. Oriedo and D. H. Russell,J. Am. Chem. Soc. 115, 8376 (1993).CrossRefGoogle Scholar
  45. 26.
    R. E. Tecklenberg, Jr., D. L. Bricker, and D. H. Russell,Organomet.7, 2506 (1988).CrossRefGoogle Scholar
  46. 27.
    C. J. Cassady and B. S. Freiser,J. Am. Chem. Soc. 106, 6176 (1984).CrossRefGoogle Scholar
  47. 28.
    J. L. Elkind and P. B. Armentrout,J. Phys. Chem. 90, 5736 (1986).CrossRefGoogle Scholar
  48. 29.
    D. B. Jacobson and B. S. Freiser,J. Am. Chem. Soc. 106, 4623 (1984)CrossRefGoogle Scholar
  49. (b).
    L. Sallans, K. R. Lane, R. R. Squires, and B. S. Freiser,J. Am. Chem. Soc. 107, 4379 (1985)CrossRefGoogle Scholar
  50. (c).
    D. B. Jacobson and B. S. Freiser,J. Am. Chem. Soc. 108, 27 (1986)CrossRefGoogle Scholar
  51. (d).
    R. H. Forbes, L. M. Lech, and B. S. Freiser,Int. J. Mass Spectrom. Ion Proc. 77, 107 (1987).CrossRefGoogle Scholar
  52. 30.
    J. W. Gauthier, T. R. Trautman, and D. B. Jacobson,Anal. Chim. Acta. 246, 211 (1991).CrossRefGoogle Scholar
  53. 31.
    E. L. Kerley, C. D. Hanson, M. E. Castro, and D. H. Russell,Anal. Chem. 61, 2528 (1989).CrossRefGoogle Scholar
  54. 32.
    G. D. Byrd and B. S. Freiser,J. Am. Chem. Soc. 104, 594 (1982)Google Scholar
  55. (b).
    R. C. Burnier, G. D. Byrd, and B. S. Freiser,J. Am. Chem. Soc. 103, 4360 (1981).CrossRefGoogle Scholar
  56. 33.
    S. K. Loh, E. R. Fisher, L. Lian, R. H. Schultz, and P. B. Armentrout,J. Phys. Chem. 93, 3159 (1989)CrossRefGoogle Scholar
  57. (b).
    G. von Helden, P. R. Kemper, M.-T. Hsu, and M. T. Bowers,J. Chem. Phys. 96, 6591 (1992).CrossRefGoogle Scholar
  58. 34.
    P. B. Armentrout (privatecommunication).Google Scholar
  59. 35.
    L. M. Mallis and D. H. Russell,Anal. Chem. 58, 1076 (1986)CrossRefGoogle Scholar
  60. (b).
    D. H. Russell, E. S. McGlohon, and L. M. Mallis,Anal. Chem. 60, 1818 (1988).CrossRefGoogle Scholar
  61. 36.
    L. M. Mallis and D. H. Russell,Int. J. Mass Spectrom. Ion Proc. 78, 147 (1987).CrossRefGoogle Scholar
  62. 37.
    F. Jensen,J. Am. Chem. Soc.114, 9533 (1992).CrossRefGoogle Scholar
  63. 38.
    D. Renner and G. Spiteller,Biol. Mass Spectrom. 15, 75 (1988)CrossRefGoogle Scholar
  64. (b).
    R. P. Grese, R. L. Cerny, and M. L. Gross,J. Am. Chem. Soc. 111, 2835 (1989)CrossRefGoogle Scholar
  65. (c).
    R. P. Grese and M. L. Gross,J. Am. Chem. Soc. 112, 5098 (1990)CrossRefGoogle Scholar
  66. (d).
    J. A. Leary, T. D. Williams, and G. Bott,Rapid Commun. Mass Spectrom. 3, 192 (1989)CrossRefGoogle Scholar
  67. (e).
    L. M. Teesch, R. C. Orlando, and J. Adams,J. Am. Chem. Soc. 113, 3668 (1991).CrossRefGoogle Scholar
  68. 39.
    For reviews on the subject of gas-phase ion chemistry of organoaikali metal ion complexes see: J. Adams,Org. Mass Spectrom. 27, 913 (1993)Google Scholar
  69. (b).
    J. Adams, inExperimental Mass Spectrometry, edited by D. H. Russell (Plenum Publ. Co., New York, 1994 ), pp. 39 - 70.Google Scholar
  70. 40.
    S. Karrass, K. Eller, and H. Schwarz,Chem. Ber. 123, 939 (1990).CrossRefGoogle Scholar
  71. 41.
    R. C. Burnier, G. D. Byrd, and B. S. Freiser,J. Am. Chem. Soc. 103, 4360 (1981)CrossRefGoogle Scholar
  72. (b).
    J. Allison and D. P. Ridge,J. Am. Chem. Soc. 101, 4998 (1979).CrossRefGoogle Scholar
  73. 42.
    D. M. Sonnenfroh and J. M. Farrar,J. Am. Chem. Soc. 108, 3521 (1986).CrossRefGoogle Scholar
  74. 43.
    A. Bjarnason, J. W. Taylor, J. A. Kinsinger, R. B. Cody, and D. A. Weil,Anal. Chem. 61, 1889 (1989)CrossRefGoogle Scholar
  75. (b).
    A. Bjarnason and J. W. Taylor,Organomet.8, 2020 (1989).CrossRefGoogle Scholar
  76. 44.
    P. A. M. van Koppen, P. R. Kemper, and M. T. Bowers,J. Am. Chem. Soc. 114, 10941 (1992)CrossRefGoogle Scholar
  77. 45.
    P. A. M. van Koppen, P. R. Kemper, and M. T. Bowers,J. Am. Chem. Soc. 115, 5616 (1993)CrossRefGoogle Scholar
  78. 46.
    R. Tonkyn and J. C. Weisshaar,J. Phys. Chem. 90, 2305 (1986).CrossRefGoogle Scholar
  79. 47.
    R. C. Burnier, G. D. Boyd, and B. S. Freiser,J. Am. Chem. Soc. 103, 4360 (1981)CrossRefGoogle Scholar
  80. (b).
    B. S. Larsen and D. P. Ridge,J. Am. Chem. Soc. 106, 1912 (1984)CrossRefGoogle Scholar
  81. (c).
    L. F. Halle, W. E. Crowe, P. B. Armentrout, and J. L. Beauchamp,Organomet.3, 1694 (1984)CrossRefGoogle Scholar
  82. (d).
    C. J. Cassidy and B. S. Freiser,J. Am. Chem. Soc. 107, 1566 (1985)CrossRefGoogle Scholar
  83. (e).
    M. A. Tolbert and J. L. Beauchamp,J. Phys. Chem. 90, 5015 (1986)CrossRefGoogle Scholar
  84. (f).
    M. Sonnenfroh and J. M. Farrar,J. Am. Chem. Soc. 108, 3521 (1986)CrossRefGoogle Scholar
  85. (g).
    M. A. Hanratty, J. L. Beauchamp, A. J. Illies, P. van Koppen, and M. T. Bowers,J. Am. Chem. Soc. 110, 1 (1988).CrossRefGoogle Scholar
  86. 48.
    B. D. Radecki and J. Allison,Am. Chem. Soc. 106, 946 (1984)CrossRefGoogle Scholar
  87. (b).
    W. L. Grady and M. M. Bursey,Int. J. Mass Spectrom. Ion Proc. 52, 247 (1983).CrossRefGoogle Scholar
  88. 49.
    Details of these reactions will be presented in T. Solouki, J. V. B. Oriedo, and D. H. Russell (manuscript in preparation forJ. Am. Chem. Soc.). Google Scholar
  89. 50.
    J. P. Speir, G. S. Gorman, and I. J. Amster,J. Am. Soc. Mass Spectrom. 4, 106 (1993).CrossRefGoogle Scholar
  90. 51.
    P. C. Staire,J. Am. Chem. Soc. 104, 4044 (1982)CrossRefGoogle Scholar
  91. (b).
    K. Eller and H. Schwarz,Chimia 43, 371 (1989).Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • David H. Russell
    • 1
  • J. V. B. Oriedo
    • 1
  • Touradj Solouki
    • 1
  1. 1.Department of ChemistryTexas A&M UniversityTexasUSA

Personalised recommendations