Embryogenic callus, cell suspension and protoplast cultures of cereals

  • Indra K. Vasil
  • Vimla Vasil


Cereals constitute the most important source of calories and protein for man since more than 52% of our food is derived from grains such as wheat, rice, maize, barley, millets, etc. Cereals, therefore, are an obvious and important target for genetic manipulation by modern biotechnological methods which require efficient regeneration of plants from cultured tissues and cells, and genetic transformation, two important and interacting components of plant biotechnology. In addition, owing to the serious problems still being faced in Agrobacterium-mediated transformation of cereals, the development of a reliable protoplast regeneration system for direct DNA delivery is also a necessity.


Somatic Embryo Somatic Embryogenesis Suspension Culture Plant Regeneration Embryogenic Callus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vasil IK (1987) Developing cell and tissue culture systems for the improvement of cereal and grass crops. J Pl Physiol 128: 193–218.CrossRefGoogle Scholar
  2. 2.
    Bright SWJ, Jones MGK, eds (1985) Cereal Tissue and Cell Culture. Amsterdam: Martinus Nijhoff/Dr W Junk.Google Scholar
  3. 3.
    Vasil IK, Vasil V (1986) Regeneration in cereal and other grass species. In: Vasil IK (ed) Cell Culture and Somatic Cell Genetics of Plants, Vol 3, Plant Regeneration and Genetic Variability, pp 121–150. Orlando: Academic Press.CrossRefGoogle Scholar
  4. 4.
    Morrish, F, Vasil V, Vasil IK (1987) Developmental morphogenesis and genetic manipulation in tissue and cell cultures of the Gramineae. Adv Genet 24: 431–499.CrossRefGoogle Scholar
  5. 5.
    Vasil IK (1988) Progress in the regeneration and genetic manipulation of cereal crops. Bio/Technology 6: 397–402.CrossRefGoogle Scholar
  6. 6.
    Potrykus, I (1990) Gene transfer to cereals: an assessment. Bio/Technology 8: 535–542.CrossRefGoogle Scholar
  7. 7.
    Shimamoto K, Terada R, Izawa T, Fujimoto H (1989) Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338: 274–277.CrossRefGoogle Scholar
  8. 8.
    Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O’Brien JV, Chambers SA, Adams Jr WR, Willetts NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. The PI Cell 2: 603–618.Google Scholar
  9. 9.
    Datta SK, Peterhans A, Datta K, Potrykus I (1990) Genetically engineered fertile indica-rice recovered from protoplasts. Bio/Technology 8: 736–740.CrossRefGoogle Scholar
  10. 10.
    Vasil V, Vasil IK (1981) Somatic embryogenesis and plant regeneration from tissue cultures of Pennisetum americanum and P. americanum x P. purpureum hybrid. Amer J Bot 68: 864–872.CrossRefGoogle Scholar
  11. 11.
    Vasil V, Vasil IK (1984) Induction and maintenance of embryogenic callus cultures of Gramineae. In: Vasil IK (ed) Cell Culture and Somatic Cell Genetics of Plants, Vol 1, Laboratory Procedures and Their Applications, pp 36–42. Orlando: Academic Press.Google Scholar
  12. 12.
    Wernicke W, Brettell R (1980) Somatic embryogenesis from Sorghum bicolor leaves. Nature 287: 138–139.CrossRefGoogle Scholar
  13. 13.
    Armstrong CL, Green CE (1985) Establishment and maintenance of friable, embryogenic maize callus and the involvement of proline. Planta 164: 207–214.CrossRefGoogle Scholar
  14. 14.
    Vasil V, Vasil IK (1986) Plant regeneration from friable embryogenic callus and cell suspension cultures of Zea mays. J Pl Physiol 124: 399–408.CrossRefGoogle Scholar
  15. 15.
    Swedlund B, Vasil IK (1985) Cytogenetic characterization of embryogenic callus and regenerated plants of Pennisetum americanum ( L) K Schum. Theoret Appl Genet 69: 575–581.Google Scholar
  16. 16.
    Vasil V, Vasil IK (1981) Somatic embryogenesis and plant regeneration from suspension cultures of pearl millet (Pennisetum americanum). Ann Bot 47: 669–678.Google Scholar
  17. 17.
    Vasil V, Vasil IK (1984) Isolation and maintenance of embryogenic cell suspension cultures of Gramineae. In: Vasil IK (ed) Cell Culture and Somatic Cell Genetics of Plants, Vol 1, Laboratory Procedures and Their Applications, pp 152–158. Orlando: Academic Press.Google Scholar
  18. 18.
    Redway, F, Vasil V, Vasil IK (1990) Characterization and regeneration of wheat (Triticum aestivum) embryogenic cell suspension cultures. Pl Cell Rep 8: 714–717.CrossRefGoogle Scholar
  19. 19.
    Shillito RD, Carswell, GK, Johnson CM, DiMaio JJ, Harms CT (1989) Regeneration of fertile plants from protoplasts of elite inbred maize. Bio/Technology 7: 581–587.CrossRefGoogle Scholar
  20. 20.
    Gnanaprasagam S, Vasil IK (1990) Plant regeneration from cryopreserved embryogenic suspension cultures of a commercial sugarcane hybrid (Saccharum spp). Pl Cell Rep 9: 419–423.Google Scholar
  21. 21.
    Vasil IK (1983) Isolation and culture of protoplasts of grasses. Int Rev Cytol Supp 16: 79–88.Google Scholar
  22. 22.
    Yamada Y, Yang Z, Tang D (1986) Plant regeneration from protoplast derived callus of rice (Oryza sativa L). Pl Cell Rep 5: 85–88.CrossRefGoogle Scholar
  23. 23.
    Vasil V, Redway F, Vasil IK (1990) Regeneration of plants from embryogenic suspension culture protoplasts of wheat (Triticum aestivum L). Bio/Technology 8: 429–434.Google Scholar
  24. 24.
    Tabaeizadeh, Z, Ferl RJ, Vasil IK (1986) Somatic hybridization in the Gramineae: Saccharum officinarum L (sugarcane) + Pennisetum americanum ( L) K Schum (pearl millet ). Proc Nat Acad Sci USA 83: 5616–5619.Google Scholar
  25. 25.
    Kyozuka J, Kaneda T, Shimamoto K (1989) Production of cytoplasmic male sterile rice (Oryza sativa L) by cell fusion. Bio/Technology 7: 1171–1174.Google Scholar
  26. 26.
    Fromm ME, Taylor LP, Walbot V (1986) Stable transformation of maize after electroporation. Nature 319: 791–793.PubMedCrossRefGoogle Scholar
  27. 27.
    Hauptmann RM, Vasil V, Ozias-Akins P, Tabaeizadeh Z, Rogers SG, Fraley RT, Horsch RB, Vasil IK (1988) Evaluation of selectable markers for obtaining stable transformants in the Gramineae. PI Physiol 86: 602–606.CrossRefGoogle Scholar
  28. 28.
    Vasil V, Hauptmann RM, Morrish FM, Vasil IK (1988) Comparative analysis of free DNA delivery and expression into protoplasts of Panicum maximum Jacq ( Guinea grass) by electroporation and polyethylene glycol. Pl Cell Rep 7: 499–503.Google Scholar
  29. 29.
    Callis, J, Fromm M, Walbot V (1987) Introns increase gene expression in cultured maize cells. Genes Develop 1: 1183–1200.PubMedCrossRefGoogle Scholar
  30. 30.
    Vasil V, Clancy M, Ferl RJ, Vasil IK, Hannah LC (1989) Increased gene expression by the first intron of maize shrunken-1 locus in grass species. Pl Physiol 91: 1575–1579.CrossRefGoogle Scholar
  31. 31.
    Klein TM, Kornstein L, Sanford JC, Fromm ME (1989) Genetic transformation of maize cells by particle bombardment. Pl Physiol 91: 440–444.CrossRefGoogle Scholar
  32. 32.
    Fromm ME, Morrish F, Armstrong C, Williams R, Thomas J, Klein TM (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8: 833–839.PubMedCrossRefGoogle Scholar
  33. 33.
    Redway FA, Vasil V, Lu D, Vasil IK (1990) Identification of callus types for long-term maintenance and regeneration from commercial cultivars of wheat (Triticum aestivum L). Theoret Appl Genet 79: 609–617.CrossRefGoogle Scholar
  34. 34.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497.CrossRefGoogle Scholar
  35. 35.
    Haydu Z,Vasil IK (1981) Somatic embryogenesis and plant regeneration from leaf tissues and anthers of Pennisetum purpureum. Theoret Appl Genet 59: 269–273.Google Scholar
  36. 36.
    Lu C, Vasil IK (1981) Somatic embryogenesis and plant regeneration from leaf tissues of Panicum maximum Jacq. Theoret Appl Genet 59: 275–280.CrossRefGoogle Scholar
  37. 37.
    Ho W, Vasil IK (1983) Somatic embryogenesis in sugarcane (Saccharum officinarum L). I. The morphology and physiology of callus formation and the ontogeny of somatic embryos. Protoplasma 118: 169–180.Google Scholar
  38. 38.
    Botti C, Vasil IK (1984) The ontogeny of somatic embryos of Pennisetum americanum (L) K Schum. II. In immature inflorescences. Canad J Bot 62: 1629–1635.Google Scholar
  39. 39.
    Vasil V, Vasil IK (1982) Characterization of an embryogenic cell suspension culture derived from inflorescences of Pennisetum americanum (pearl millet; Gramineae ). Amer J Bot 69: 1441–1449.Google Scholar
  40. 40.
    Green CE, Armstrong CL, Anderson PC (1983) Somatic cell genetic systems in corn. In: Downey K, Voellmy RW, Ahmad F, Schulz J (eds), Advances in Gene Technology: Molecular Genetics of Plants and Animals, pp 147–157. New York: Academic Press.Google Scholar
  41. 41.
    Vasil V, Vasil IK (1980) Isolation and culture of cereal protoplasts. II. Embryogenesis and plantlet formation from protoplasts of Pennisetum americanum. Theoret Appl Genet 56: 97–99.CrossRefGoogle Scholar
  42. 42.
    Srinivasan C, Vasil IK (1986) Plant regeneration from protoplasts of sugarcane. J PI Physiol 126: 4–48.Google Scholar
  43. 43.
    Rhodes CA, Lowe KS, Ruby KL (1988) Plant regeneration from protoplasts isolated from embryogenic maize cell cultures. Bio/Technology 6: 56–60.CrossRefGoogle Scholar
  44. 44.
    Kao, KN, Michayluk MR (1975) Nutritional requirements for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid media. Planta 126: 105–110.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Indra K. Vasil
    • 1
  • Vimla Vasil
    • 1
  1. 1.Laboratory of Plant Cell and Molecular Biology, Department of Vegetable CropsUniversity of FloridaGainesvilleUSA

Personalised recommendations