Advertisement

Solvent Effects in the Reactions of Neutral Free Radicals

  • James M. Tanko
  • N. Kamrudin Suleman
Chapter
Part of the Structure Energetics and Reactivity in Chemistry Series (SEARCH series) book series (SEARCH, volume 4)

Abstract

It is a commonly held misconception that reactions of neutral free radicals are insensitive to the effect of solvent. Indeed, while it is true that in general the rate and selectivity of radical reactions are only nominally influenced by solvent in comparison to reactions of polar species (i.e., nucleophiles and electrophiles), there are several examples in the free radical literature where solvent profoundly affects the outcome of a process. Moreover, because of the extraordinary reactivity of many free radicals, solvent can influence the outcome of radical reactions in ways not typically observed in reactions of nucleophiles and electrophiles.

Keywords

Solvent Polarity Solvent Effect Chlorine Atom Hydrogen Abstraction Solvent Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kirkwood, J. G. (1954) J. Chem. Phys. 2, 351.CrossRefGoogle Scholar
  2. 2.
    Reichardt, C. (1988) Solvents and Solvent Effects in Organic Chemistry, 2nd ed., VCH: New York, pp 190 - 203.Google Scholar
  3. 3.
    ɛ - 1)/(2s + 1) = 1/2 - 3/(4ɛ) + 3/(8ɛ2) - 3/(l6ɛ3) + ..., see: Espenson, J. H. (1981) Chemical Kinetics and Reaction Mechanisms, McGraw Hill, New York.Google Scholar
  4. 4.
    C. Reichardt (1964) Angew. Chem. Int. Ed, 3, 30.Google Scholar
  5. 5.
    Bentley, T. W. and Llewellyn, G. (1990) In Progress in Physical Organic Chemistry, Taft, R. W., Ed., Wiley, New York, pp. 121 - 158.Google Scholar
  6. 6.
    (a) Knauer, B. R. and napier, J. J. (1976) J. Am. Chem. Soc. 98, 4395. (b) Reddoch, A. H. and Konishi, S. (1979) J. Chem. Phys. 70, 2121.Google Scholar
  7. 7.
    Barton, A. F. M. (1975) J. Chem. Educ. 48, 156.CrossRefGoogle Scholar
  8. 8.
    (a) Barton, A. F. M. (1975) Chem. Revs., 75, 731. (b) Barton, A. F. M. ( 1983 ) CRC Handbook of Solubility Parameters and Other Cohesion Parameters; CRC Press, Boca Raton.Google Scholar
  9. 9.
    Allen, G., Gee, G. and Wilson, G. J. (1960) Polymer 1, 456.CrossRefGoogle Scholar
  10. 10.
    Dack, M. R. J. (1974) J. Chem. Educ. 51, 231.CrossRefGoogle Scholar
  11. 11.
    Hildebrand, J. H. and Scott, R. L. (1964) The Solubility of Nonelectrolytes, Dover Publications, New York, pp 62-105, pp 419–434.Google Scholar
  12. 12.
    Moore, J. W. and Pearson, R. G. (1981) Kinetics and Mechanism, 3rd ed., Wiley, New York, pp. 46–250.Google Scholar
  13. 13.
    Amis, E. S. and Hinton, J. F. (1973) Solvent Effects on Chemical Phenomena, Academic Press, New York, pp 306–310.Google Scholar
  14. 14.
    Asano and T. Lenoble, W. J. (1978) Chem. Rev. 78, 407.CrossRefGoogle Scholar
  15. 15.
    Poutsma, M. L. (1969) In Methods in Free Radical Chemistry, Vol. 1, E. S. Huyser, ed., Marcel Dekker: New York, pp 79-193. POUTSMA, M. L. (1973) In Free Radicals, Vol. 2, Kochi, J. K., ed., Wiley, New York, pp 159–229.Google Scholar
  16. 16.
    Walling, C. and Wagner, P. J. (1964) J. Am. Chem. Soc. 86, 3368.CrossRefGoogle Scholar
  17. 17.
    Avila, D. V., Brown, C. E., Ingold, K. U. and Lusztyk, J. (1993) J. Am. Chem. Soc. 115, 466.Google Scholar
  18. 18.
    Kim, S. S., Kim, H. R., Kim, H. B., Youn, S. J. and Kim, C. J. (1994), J. Am. Chem. Soc. 116, 2754.CrossRefGoogle Scholar
  19. 19.
    Isaacs, N. S. (1987) Physical Organic Chemistry, Wiley: New York, pp 791–793.Google Scholar
  20. 20.
    See for example: Boger, D. L. and Mathvink, R. J. (1992) J. Org. Chem. 57, 1429 and references therein.Google Scholar
  21. 21.
    Tsentalovich, Y. P. and Fischer, H. J. (1994) J. Chem. Soc. Perkin Trans 2 4, 729.Google Scholar
  22. 22.
    A similar effect is observed in the analagous decarboxylation of the 4-methoxybenzoyloxyl radical (p-CH3OC6H4CO2 → p-CH3OC6H4+ CO2) where the rate constant for this process decreases by over an order of magnitude when the solvent is changed from CC14 to CH3CN. See: Chateauneuf, J., Lusztyk, J. and Ingold, K. U. (1988) J. Am. Chem. Soc. 110, 2877.Google Scholar
  23. 23.
    Beckwith, A. L. J., Bowry, V. W. and Ingold, K. U. (1992) J. Am. Chem. Soc. 114, 4983.CrossRefGoogle Scholar
  24. 24.
    Griller, D. and Ingold, K. U. (1980) Acc. Chem. Res. 13, 317.CrossRefGoogle Scholar
  25. 25.
    Abell, P. I. (1973) In Free Radicals, Vol. 2, Kochi, J. K., ed., Wiley, New York, pp. 63–112.Google Scholar
  26. 26.
    Ito, O. and Matsuda, M. (1982) J. Am. Chem. Soc. 104, 568.Google Scholar
  27. 27.
    Neuman, R. C., JR. and Gunderson, H. J. (1992) J. Org. Chem. 57, 1641.CrossRefGoogle Scholar
  28. 28.
    Neuman, R. C., JR. and Binegar, G. A. (1983) J. Am. Chem. Soc. 105, 134. Neuman, R. C., JR., Berge, C. T., Binegar, G. A., Adam, W. and Nishizawa, Y. (1990) J. Org. Chem. 55, 4564.Google Scholar
  29. 29.
    Tanko, J. M., Mas, R. H. and Suleman, N. K. (1990) J. Am. Chem. Soc. 1990, 112, 5557 and references therein.CrossRefGoogle Scholar
  30. 30.
    Roberts, J. D. and Dirstine, P. H. (1945) J. Am. Chem. Soc. 67, 1281.CrossRefGoogle Scholar
  31. 31.
    Walling, C. and Fredricks, P. S. (1962) J. Am. Chem. Soc. 84, 3326.Google Scholar
  32. 32.
    Tanko, J. M., Suleman, N. KV Hulvey, G. A., PARK, A. and POWERS, J. E. (1993) J. Am. Chem. Soc. 115, 4520.Google Scholar
  33. 33.
    Tanko, J. M. and Suleman, N. K. (1994) J. Am. Chem. Soc. 116, 5162.CrossRefGoogle Scholar
  34. 34.
    Bunce, N. J., Ingold, K. U., Landers, J. P., Lusztyk, J. and Scaiano, J. C. (1985) J. Am. Chem. Soc. 107, 5464.Google Scholar
  35. 35.
    Russell, G. A. (1973) In Free Radicals, Vol. 1, Kochi, J. K., ed., Wiley, New York, pp. 275–331.Google Scholar
  36. 36.
    Luning, U. and Skell, P. S. (1985) Tetrahedron 41, 4289.CrossRefGoogle Scholar
  37. 37.
    Russell, G. A. (1957) J. Am. Chem. Soc. 79, 2977.Google Scholar
  38. 38.
    Russell, G. A. (1958) J. Am. Chem. Soc. 80, 4987.Google Scholar
  39. 39.
    Russell, G. A. (1958) J. Am. Chem. Soc. 80, 4997.CrossRefGoogle Scholar
  40. 40.
    Russell, G. A. (1958) J. Am. Chem. Soc. 80, 5002.Google Scholar
  41. 41.
    These observations regarding the effect of arene structure on selectivity have been confirmed and extended. See: Bunce, N. J., Joy, R. B., Landers, J. P. and Nakai, J. S. (1987) J. Org. Chem. 52, 1155. Raner, K. D., Lusztyk, J. and Ingold, K. U. (1989) J. Am. Chem. Soc. Ill, 3652.Google Scholar
  42. 42.
    Walling, C. and Mayahi, M. F. (1959) J. Am. Chem. Soc. 81, 1845.Google Scholar
  43. 43.
    Skell, P. S., Baxter, H. N., Ill and Taylor, C. K. (1983) J. Am. Chem. Soc. 105, 120.Google Scholar
  44. 44.
    Skell, P. S., Baxter, H. N., Ill, tanko, J. M. and Chebolu, V. (1986) J. Am. Chem. Soc. 108, 6300.Google Scholar
  45. 45.
    bühler, R. E. and Ebert, M. (1972) Nature 214,1220. Bühler, R. E. (1972) Radiation Res. Rev. 4, 233.Google Scholar
  46. 46.
    Walling, C. (1988) J. Org. Chem. 53, 305.Google Scholar
  47. 47.
    Raner, k. D., Lusztyk, J. and Ingold, K. U. (1989) J. Phys. Chem. 93, 564.Google Scholar
  48. 48.
    A common criteria for assignment of charge transfer complexes is linearity in the plot of the charge transfer energy of several complexes with the same acceptor against the vertical ionization potential of the donor, see reference 45.Google Scholar
  49. 49.
    Hassel, O. and Stromme, K. O. (1958) Acta Chem. Scand. 12,1146. Hassel, O. and Stromme, K. O. (1959) Acta Chem. Scand. 13, 1781.Google Scholar
  50. 50.
    Sergeev, G. B., Pukhovskii, A. V. and Smirnov, V. V. (1983) Russ. J. Phys. Chem. 57, 589 (translated from Zhurnal Fizicheskoi Khimii, 57, 977).Google Scholar
  51. 51.
    Edwards, J., Hills, D. J., Mishra, S. and Symons, M. C. R. (1974) J. Chem. Soc. Chem. Commun. 1974, 556. Mishra, S. P. and Symons, M. C. R. (1981) J. Chem. Soc. Perkin Trans 2, 185Google Scholar
  52. 52.
    Benson, S. W. (1993) J. Am. Chem. Soc. 115, 6969.CrossRefGoogle Scholar
  53. 53.
    Cochran, E. L.; Adrian, F. J. and BOWERS, V. A. (1970) J. Phys. Chem. 74,2083. Yim, M. B. and Wood, D. E. (1975) J. Am. Chem. Soc. 97, 1004.Google Scholar
  54. 54.
    Jacox, M. E. (1982) J. Phys. Chem. 86, 670.CrossRefGoogle Scholar
  55. 55.
    Chateauneuf, J. E. (1993) J. Am. Chem. Soc. 115, 1915.Google Scholar
  56. 56.
    Breslow, R., Brandl, M., Hunger, J. and ADAMS, A. D. (1987) J. Am. Chem. Soc. 109, 3799.Google Scholar
  57. 57.
    Breslow, R., Brandl, M., Hunger, J., Turro, N., Cassidy, K., Krogh-Jespersen, K. and Westbrook, J. D. (1989) J. Am. Chem. Soc. 109, 7204.CrossRefGoogle Scholar
  58. 58.
    Khanna, R. K., Armstrong, B., CUI, H. and Tanko, J. M. (1992) J. Am. Chem. Soc. 114, 6003.Google Scholar
  59. 59.
    Leffler, J. E. (1993) An Introduction to Free Radicals, Wiley, New York, pp 56–76.Google Scholar
  60. 60.
    Schuch, H.-H. and Fischer, H. (1978) Helv. Chim. Acta 61, 2463.Google Scholar
  61. 61.
    Neuman was able to definitively exclude a possible correlation of this data to solvent internal pressure by examining the effect of externally applied pressure on kdisp/kdim for f-butyl radical. See: Neuman, R. C. and Frink, M. E. (1983) J. Org. Chem. 48, 2430.Google Scholar
  62. 62.
    Schuh, H. and Fischer, H. (1976) Int. J. Chem. Kinet. 8, 341. Shuch, H.-H. and Fischer, H. (1978) Helv. Chim. Acta 61, 2130.Google Scholar
  63. 63.
    Walling, C. (1985) Tetrahedron 41, 3887.CrossRefGoogle Scholar
  64. 64.
    Ruegge, D. and Fischer, H. (1988) J. Chem. Soc., Faraday Trans. 1 84, 3187.CrossRefGoogle Scholar
  65. 65.
    See also Feti, M., Ingold, K. U. and Lusztyk, J. (1994) J. Am. Chem. Soc. 116, 9440.Google Scholar
  66. 66.
    Herkes, F., Friedman, J. and Bartlett, P. D. (1969) Int. J. Chem. Kinet. 1, 193.Google Scholar
  67. 67.
    Noyes, R. M. (1961) Progr. React. Kinet. 1,129. See also: Koenig, T. and Fischer, H. (1973) In Free Radicals, Vol 1, Kochi, J. K., ed., Wiley: New York, pp. 157–189.Google Scholar
  68. 68.
    Koenig, T. and Deinzer, M. (1968) J. Am. Chem. Soc. 90, 7014. Koenig, T. (1969) J. Am. Chem. Soc. 91, 2558.Google Scholar
  69. 69.
    Koenig, T., Beinzer, M. and Hoobler, J. A. (1971) J. Am. Chem. Soc. 93, 938.CrossRefGoogle Scholar
  70. 70.
    Kodama, S. (1962) Bull. Chem. Soc. Jpn. 35, 827. See also: Nodelman, N. and Martin, J. C. (1976) J. Am. Chem. Soc. 98, 6597.Google Scholar
  71. 71.
    Pryor, W. A. and Smith, K. (1970) J. Am. Chem. Soc. 92, 5403.Google Scholar
  72. 72.
    The viscosity of a solvent can be written in the form of the Arrhenius equation: rj = Av exp( - EV/RT), where Ev is the energy barrier that must be surmounted before flow can occur, see reference 71 and references therein.Google Scholar
  73. 73.
    Neumann, W. P. (1987) Synthesis 665. Curran, D. P. (1988) Synthesis 417.Google Scholar
  74. 74.
    Altman, L. J. and Erdman, T. R. (1970) Tetrahedron Letters 4891.Google Scholar
  75. 75.
    Altman, L. J. and Nelson, B. W. (1969) J. Am. Chem. Soc., 91, 5163.CrossRefGoogle Scholar
  76. 76.
    Skell, P. S. and Baxter, H. N., Ill (1985) J. Am. Chem. Soc. 107, 2823.Google Scholar
  77. 77.
    Raner, K. D., Lusztyk, J. and Ingold, K. U. (1988) J. Am. Chem. Soc. 110, 3519.CrossRefGoogle Scholar
  78. 78.
    Tanner, D. D., Oumar-Mahamat, H., Meintzer, C. P., Tsai, E. C., Lu, T. T. and Yang, D. (1991) J. Am. Chem. Soc. 113, 5397.Google Scholar
  79. 79.
    Tanko, J. M. and Anderson, F. E., Ill (1988) J. Am. Chem. Soc. 110, 3525.Google Scholar
  80. 80.
    Suppes, G. J., Occhiogrosso, R. N. and Mchugh, M. A. (1989) Ind. Eng. Chem. Res. 28, 1152.CrossRefGoogle Scholar
  81. 81.
    Desimone, J. M., Guan, Z. and Elsbernd, C. S. (1992) Science 257, 945.CrossRefGoogle Scholar
  82. 82.
    Tanko, J. M. and Blackert, J. F. (1994) Science 263, 203.CrossRefGoogle Scholar
  83. 83.
    Paulaitis, M. E. and Alexander, G. C. (1987) Pure & Appl. Chem. 59, 61.CrossRefGoogle Scholar
  84. 84.
    Roberts, C. B., Chateauneuf, J. E. and Brennecke, J. F. (1992) J. Am. Chem. Soc. 114, 8455.Google Scholar
  85. 85.
    Roberts, C. B., Zhang, J., Brennecke, J. F. and Chateauneuf, J. E. (1993) J. Phys. Chem. 97, 5618. Roberts, C. B., Zhang, J., Chateauneuf, J. E. and Brennecke, J. F. (1993) J. Am. Chem. Soc. 115, 9576.Google Scholar
  86. 86.
    O’Shea, K. E., Combes, J. R., Fox, M. A. and Johnston, K. P. (1991) Photochemistry and Photobiology 54, 571.CrossRefGoogle Scholar
  87. 87.
    Guan, Z., Combes, J. R., Menceloglu, Y. Z. and Desimone, J. M. (1993) Macromolecules 26, 2663.CrossRefGoogle Scholar
  88. 88.
    YOTs = 5.29 and - 4.99 for 60% H2SO4/H2O and CH3CON(CH3)2, respectively (reference 5), meaning that solvolysis of 2-adamantyl tosylate is more than 1010 times faster in the former solvent at 25°C.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • James M. Tanko
  • N. Kamrudin Suleman

There are no affiliations available

Personalised recommendations