Molecular biology of adrenergic receptors

  • Ruth H. Strasser
  • Renate Ihl-Vahl
  • Rainer Marquetant

Abstract

G protein-coupled receptors respond to many neuro- and autocrine transmitters. Among these receptors, adrenergic receptors are particularly important in the regulation of cardiovascular function. The primary physiological agonists for these receptors are epinephrine and norepinephrine, which have been used to differentiate α- and ß-receptor families [1]. Pharmacological properties can distinguish the subtypes α1-, α2-, ß1- and ß2-receptors [2,3]. Further subdivisions have been made possible by radioligand binding techniques (e.g. α2A-, α2B-, α2C-receptors). Additional subtypes have been characterized by molecular biology techniques, which have also revealed common features in quite different G protein-coupled receptors, suggesting that these receptors might be members of a large receptor superfamily.

Keywords

Adrenergic Receptor Adrenergic Receptor Gene Adrenergic Receptor Subtype Radioligand Binding Technique Adrenergic Receptor Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlquist RP: A study of the adrenotropic receptors. Am J Physiol1948, 153: 586 – 600.PubMedGoogle Scholar
  2. Lands AM, Arnold A, McAuliff JB, Luduena AP, Brown TG: Differentiation of receptor systems activated by sympathomimetic amines. Nature1967, 214: 597 – 598.PubMedCrossRefGoogle Scholar
  3. Ablad B, Carlsson B, Dahlof C, Ek L, Hultberg E: Cardiac effects of P-adrenergic receptor antagonists. Adv Cardiol1974, 12: 290 – 302.PubMedGoogle Scholar
  4. Berridge MJ: Inositol triphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem1987, 56: 159 – 163.PubMedCrossRefGoogle Scholar
  5. Farago A, Nishizuka Y: Protein kinase C in transmembrane signalling. FEBS Lett1990, 268: 350 – 354.PubMedCrossRefGoogle Scholar
  6. Nishizuka Y: The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature1984, 308: 693 – 698.PubMedCrossRefGoogle Scholar
  7. O’Dowd BF, Hnatowich M, Regan JW, Leader WM, Caron MG, Lefkowitz RJ: Site-directed mutagenesis of the cytoplasmic domains of the human (ß2-adrenergic receptor. Localization of the regions involved in G protein-receptor coupling. J Biol Chem1988, 263: 15985 – 15992.PubMedGoogle Scholar
  8. de Vente J, Bast A, van Bree L, Zaagsma J: ß-Adrenoceptor studies: 6 further investigations on the hybrid nature of the rat adiposite ß-adrenoceptor. Eur J Pharmacol1980, 63: 73 – 83.PubMedCrossRefGoogle Scholar
  9. Cheung AH, Sigal IS, Dixon RAF, Strader CD: Agonist-promoted sequestration of the ß2-adrenergic receptor requires regions involved in functional coupling with Gs. Mol Pharmacol1989, 34: 132 – 138.Google Scholar
  10. Gilman AG: G proteins and regulation of adenylyl cyclase. JAMA1989, 262: 1819 – 1825.PubMedCrossRefGoogle Scholar
  11. Gilman AG: G proteins: transducers of receptor-generated signals. Annu Rev Biochem1987, 57: 615 – 649.CrossRefGoogle Scholar
  12. Stiles GL, Taylor S, Lefkowitz RJ: Human cardiac beta-adren- ergic receptors: subtype heterogeneity delineated by direct radioligand binding. Life Sci1983, 33: 467 – 473.PubMedCrossRefGoogle Scholar
  13. Brodde OE, Karad K, Zerkowski HR, Rohm N, Raidemeister JC: Coexistence of ß1 and ß2-adrenoceptors in human right atrium. Direct identification by (±)-[125l]lodocyanopindolol binding. Circ Res1983, 53: 752 – 758.PubMedGoogle Scholar
  14. Heitz A, Schwartz J, Velly J:ß-adrenoceptors of the human myocardium: determination of ß1 and ß2-subtypes by radioligand. Br J Pharmacol1983, 80: 711 – 717.PubMedGoogle Scholar
  15. Strader C, Candelore MR, Rands E, Dixon RAF: ß-adrenergic receptor subtype is an intrinsic property of the receptor gene product. Mol Pharmacol1987, 32: 179 – 183.PubMedGoogle Scholar
  16. Brodde O-E: ß1 and ß2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev1991, 43: 203 – 242.PubMedGoogle Scholar
  17. Brodde O-E, O’Hara N, Zerkowski H-R, Rohm N: Human cardiac ß-adrenoceptors: both ß1 and ß2-adrenoceptors are functionally coupled to the adenylate cyclase in right atrium. J Cardiovasc Pharmacol1984, 6: 1184 – 1191.PubMedGoogle Scholar
  18. Arch JRS, Ainsworth AT, Cawthorne MA, Piercy V, Sennitt MV, Thody VE: Atypical ß-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature1984, 309: 163 – 165.PubMedCrossRefGoogle Scholar
  19. Wilson C, Wilson S, Piercy V, Sennitt MV, Arch JRS: The rat lipolytic ß-adrenoceptor: studies using novel ß-adrenoceptor agonists. Eur J Pharmacol1984, 100: 309 – 319.PubMedCrossRefGoogle Scholar
  20. Bahouth SW, Hadcock JR, Malbon CC: Expression of mRNA of beta1 and beta2-adrenergic receptors in Xenopusoocytes results from structurally distinct receptor mRNAs. J Biol Chem1988, 263: 8822 – 8826.PubMedGoogle Scholar
  21. Hollenga C, Zaagsma J: Direct evidence for the atypical nature of functional beta-adrenoceptors in rat adipocytes. Br J Pharmacol1989, 98: 1420 – 1424.PubMedGoogle Scholar
  22. Hollenga C, Haas M, Deinum JT, Zaagsma J: Discrepancies in lipolytic activities induced by beta-adrenoceptor agonists in human and rat adipocytes. Horm Metab Res1990, 22: 17 – 21.PubMedCrossRefGoogle Scholar
  23. Emorine LJ, Marullo S, Briend-Sutren M-M, Patey G, Tate K, Delavier-Klutchko C: Molecular characterization of the human ß3-adrenergic receptor. Science1989, 245: 1118 – 1121.PubMedCrossRefGoogle Scholar
  24. Nahmias C, Blin N, Elalouf J-M, Mattei MG, Strosberg AD, Emorine LJ: Molecular characterization of the mouse ß3-adren- ergic receptor: relationship with the atypical receptor of adipocytes. EMBO J1991, 10: 3721 – 3727.PubMedGoogle Scholar
  25. Granneman JG, Lahners KN, Chaudhry A: Molecular cloning and expression of the rat ß3-adrenergic receptor. Mol Pharmacol1991, 40: 895 – 899.PubMedGoogle Scholar
  26. Muzzin P, Revelli J-P, Kuhne F, Gocayne JD, McCombie WR, Venter JC: An adipose tissue-specific ß-adrenergic receptor. Molecular cloning and down-regulation in obesity. J Biol Chem1991, 266: 24053 – 24058.PubMedGoogle Scholar
  27. Frielle T, Collins S, Daniel KW, Caron MG, Lefkowitz RJ: Cloning of the cDNA for the human ß1-adrenergic receptor. Proc Natl Acad Sci USA1987, 84: 7920 – 7924.PubMedCrossRefGoogle Scholar
  28. Kobilka BK, Dixon RAF, Frielle T, Dohlamn HG, Bolanowski MA, Sigal IS: cDNA for the human ß2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc Natl Acad Sci USA1987, 84: 46 – 50.PubMedCrossRefGoogle Scholar
  29. Emorine L, Marullo S, Delavier-Klutchko C, Kaveri SV, Durieu- Trautmann O, Strosberg AD: Structure of the gene for human ß2-adrenergic receptor: expression and promoter characterization. Proc Natl Acad Sci USA1987, 84: 6995 – 6999.PubMedCrossRefGoogle Scholar
  30. Lefkowitz RJ, Benovic JL, Kobilka B, Caron MG: ß-adrenergic receptors and rhodopsin: shedding new light on an old subject. Trends Pharm Sci1986: 444 – 448.Google Scholar
  31. Rands E, Candelore MR, Cheung AH, Hill WS, Strader CD, Dixon RAF: Mutational analysis of ß-adrenergic receptor glycosylation. J Biol Chem1990, 265: 10759 – 10764.PubMedGoogle Scholar
  32. Stiles GL, Benovic JL, Caron MG, Lefkowitz RJ: Mammalian ß-adrenergic receptors: distinct glycoprotein populations containing high mannose or complex type carbohydrate chains. J Biol Chem1984, 259: 8655 – 8663.PubMedGoogle Scholar
  33. George ST, Ruoho AE, Malbon CC: N-glycosylation in expression and function of ß-adrenergic receptors. J Biol Chem1986, 261: 16599 – 16564.Google Scholar
  34. Benovic JL, Strasser RH, Caron MG, Lefkowitz RJ: Beta-adrenergic receptor kinase: identification of a novel protein kinase which phosphorylates the agonist-occupied form of the receptor. Proc Natl Acad Sci USA1986, 73: 2797 – 2801.CrossRefGoogle Scholar
  35. Strasser RH, Benovic JL, Caron MG, Lefkowitz RJ: Beta-agonist and prostaglandine E1-induced translocation of the beta-adren-56. ergic receptor kinase: evidence that the kinase may act on multiple adenylate cyclase coupled receptors. Proc Natl Acad Sci USA1986, 83: 6362 – 6366.PubMedCrossRefGoogle Scholar
  36. Benovic JL, deBlasi A, Stone WC, Caron MG, Lefkowitz RJ: ß-adrenergic receptor kinase: primary structure delineates a multigene family. Science1989, 246: 235 – 240.PubMedCrossRefGoogle Scholar
  37. Benovic JL, Onorato JJ, Arriza JL, Stone WC, Lohse M, Jenkins 58. NA: Cloning, expression, and chromosomal localization of - adrenergic receptor kinase 2. A new member of the receptorGoogle Scholar
  38. 38.
    Bouvier M, Hausdorff WP, deBlasi A, O’Dowd BF, Kobilka BK, Caron MG: Removal of phosphorylation sites from the ß2-adrenergic receptors delays onset of agonist-promoted desensitization. Nature1988, 333: 370 – 373.PubMedCrossRefGoogle Scholar
  39. 39.
    Benovic JL, Bouvier M, Carson MG, Lefkowitz RJ: Regulation of adenylyl cyclase-coupled p-adrenergic receptors. Annu Rev Cell Biol1988, 4: 405 – 428.PubMedCrossRefGoogle Scholar
  40. 40.
    Hausdorff WP, Bouvier M, O’Dowd BF, Irons GP, Caron MG, Lefkowitz Rj: Phosphorylation sites on two domains of the ß2-adrenergic receptor are involved in distinct pathways of receptor desensitization. J Biol Chem1989, 264: 12657 – 12665.PubMedGoogle Scholar
  41. 41.
    Hausdorff WP, Campbell PT, Ostrowski J, Yu SS, Caron MG, Lefkowitz RJ: A small region of the ß-adrenergic receptor is selectively involved in its rapid regulation. Proc Natl Acad Sci USA1991, 88: 2979 – 2983.PubMedCrossRefGoogle Scholar
  42. 42.
    Liggett SB, Bouvier M, Hausdorff WP, O’Dowd B, Caron MG, Lefkowitz RJ: Altered patterns of agonist-stimulated cAMP accumulation in cells expressing mutant ß2-adrenergic receptors lacking phosphorylation sites. Mol Pharmacol1989, 36: 641 – 646.PubMedGoogle Scholar
  43. 43.
    Campbell PT, Hnatowich M, O’Dowd BF, Caron MG, Lefkowitz RJ, Hausdorff WP: Mutations of the human ß2-adrenergic receptor that impair coupling to GS interfere with receptor down-regulation but not sequestration. Mol Pharmacol1991, 39: 192 – 198.PubMedGoogle Scholar
  44. 44.
    Tota MR, Candelore MR, Dixon RAF, Strader CD: Biophysical and genetic analysis of the ligandbinding site of the ß-adrenoceptor. TIPS1991, 12: 4 – 6.PubMedGoogle Scholar
  45. 45.
    Kobilka BK, Kobilka TS, Daniel K, Regan JW, Caron MG, Lefkowitz JR: Chimeric a2-, ß2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science1988, 240: 1310 – 1316.PubMedCrossRefGoogle Scholar
  46. 46.
    Frielle T, Daniel KW, Caron MG, Lefkowitz RJ: Structural basis of ß-adrenergic receptor subtype specificity studied with chimeric ß1/ß2-adrenergic receptors. Proc Natl Acad Sci USA1988, 85: 9494 – 9498.PubMedCrossRefGoogle Scholar
  47. 47.
    Strader CD, Candelore MR, Hill WS, Dixon RAF, Sigal IS: A single amino acid substitution in the ß-adrenergic receptor promotes partial agonist activity from antagonists. J Biol Chem1989, 264: 16470 – 16477.PubMedGoogle Scholar
  48. 48.
    Strader CD, Dixon RAF, Cheung AH, Candelore MR, Blake AD, Sigal IS: Mutations that uncouple the ß-adrenergic receptor from Gs and increase agonist affinity. J Biol Chem1987, 262: 16439 – 16443.PubMedGoogle Scholar
  49. 49.
    Collins S, Caron MG, Lefkowitz RJ: Regulation of adrenergic receptor responsiveness through modulation of receptor gene expression. Annu Rev Physiol1991, 53: 497 – 508.PubMedCrossRefGoogle Scholar
  50. 50.
    Collins S, Bolanowski MA, Caron MG, Lefkowitz RJ: Genetic regulation of ß-adrenergic receptors. Annu Rev Physiol1989, 51: 203 – 215.PubMedCrossRefGoogle Scholar
  51. 51.
    Collins S, Caron MG, Lefkowitz RJ: ß2-adrenergic receptors in hamster smooth muscle cells are transcriptionally regulated by glucocorticoids. J Biol Chem1988, 263: 9067 – 9070.PubMedGoogle Scholar
  52. 52.
    Collins B, Bouvier M, Bolanowski MA, Caron MG, Lefkowitz RJ: cAMP stimulates transcription of the ß2-adrenergic receptor gene in response to short-term agonist exposure. Proc Natl Acad Sci USA1989, 86: 4853 – 4857.PubMedCrossRefGoogle Scholar
  53. 53.
    Collins S, Altschmied J, Herbsman O, Caron MG, Mellon PL, Lefkowitz RJ: A cAMP response element in the ß2-adrenergic receptor gene confers transcriptional autoregulation by cAMP. J Biol Chem1990, 265: 19330–19335. 76.Google Scholar
  54. 54.
    Malbon CC, Hadcock JR: Evidence that glucocorticoid response elements in the 5’-noncoding region of the hamster ß-adrenergic receptor gene are obligate for glucocorticoid regulation of receptor mRNA levels. Biochem Biophys Res Commun1988, 154: 676 – 681.PubMedCrossRefGoogle Scholar
  55. 55.
    Bahouth SW: Thyroid hormones transcriptionally regulate the pj-adrenergic receptor gene in cultured ventricular myocytes. J Biol Chem1991, 266: 15863 – 15869.PubMedGoogle Scholar
  56. 56.
    Morrow AL, Creese I: Characterization of ß1-adrenergic receptor subtypes in rat brain: a reevaluation of [3H]WB 4104 and [3H]Prazosin binding. Mol Pharmacol1985, 29: 321 – 330.Google Scholar
  57. 57.
    Michel AD, Loury DN, Whiting RL: Differences between the alpha2-adrenoceptor in rat submaxillary gland and the alpha2A- and alpha2B-adrenoceptor subtypes. Br J Pharmacol1989, 98: 890 – 897.PubMedGoogle Scholar
  58. 58.
    Michel AD, Loury DN, Whiting RL: Identification of a single alpha1-adrenoceptor corresponding to the alpha 1A-subtype in rat submaxillary gland. Br J Pharmacol1989, 98: 883 – 889.PubMedGoogle Scholar
  59. 59.
    Minneman KP, Han C, Abel PW: Comparison of α1-adrenergic receptor subtypes distinguished by chlorethylclonidine and WB 4101. Mol Pharmacol1988, 33: 509 – 514.PubMedGoogle Scholar
  60. Minneman KP: a1-adrenergic receptor subtypes, inositol phosphates, and sources of cell Ca2+Pharmacol Rev 1988, 40:87–119.Google Scholar
  61. 61.
    Wilson KM, Minneman KP: Regional variations in alpha1-adrenergic receptor subtypes in rat brain. J Neurochem1989, 53: 1782 – 1786.PubMedCrossRefGoogle Scholar
  62. 62.
    Cotecchia S, Schwinn DA, Randall RR, Lefkowitz RJ, Caron MG, Kobilka BK: Molecular cloning and expression of the cDNA for the hamster α1-adrenergic receptor. Proc Natl Acad Sci USA1988, 85: 7159 – 7163.PubMedCrossRefGoogle Scholar
  63. 63.
    Lomasney JW, Cotecchia S, Lorenz W, Leung W-Y, Schwinn DA, Yang-Feng TL: Molecular cloning and expression of the cDNA for the α1A-adrenergic receptor, the gene for which is located on human chromosome 5. J Biol Chem1991, 266: 6365 – 6369.PubMedGoogle Scholar
  64. 64.
    Bruno JF, Whittaker J, Song J, Berelowitz M: Molecular cloning and sequencing of a cDNA encoding a human α1A- adrenergic receptor. Biochem Biophys Res Commun1991, 179: 1485 – 1490.PubMedCrossRefGoogle Scholar
  65. 65.
    Schwinn DA, Lomasney JW, Lorenz W, Szklut PJ, Fremeau RT, Yang-Feng T: Molecular cloning and expression of the cDNA for a novel α1-adrenergic receptor subtype. J Biol Chem1990, 265: 8183 – 8189.PubMedGoogle Scholar
  66. 66.
    Schwinn DA, Page SO, Middleton JP, Lorenz W, Liggett SB, Yamamoto K: The alpha 1 C-adrenergic receptor: characterization of signal transduction pathways and mammalian tissue heterogeneity. Mol Pharmacol1991, 40: 619 – 626.PubMedGoogle Scholar
  67. 67.
    Lomasney JW, Leeb-Lundberg LMF, Cotecchia S, Regan JW, de- Bernardis JF, Caron MG: Mammalian α1-adrenergic receptor. Purification and characterization of the native receptor ligand binding subunit. J Biol Chem1986, 261: 7710 – 7716.PubMedGoogle Scholar
  68. 68.
    Leeb-Lundberg LMF, Dickinson KEJ, Heald SL, Wikberg JES, Hager PO, deBernardis JF: Photoaffinity labeling of the mammalian α1-adrenergic receptors. Identification of the ligand binding subunit with a high affinity radioiodinated probe. J Biol Chem1984, 259: 2579 – 2587.PubMedGoogle Scholar
  69. 69.
    Voigt MM, Kispert J, Chin H: Sequence of a rat brain cDNA encoding an alpha1B adrenergic receptor. Nucleic Acids Res1990, 18: 1053.PubMedCrossRefGoogle Scholar
  70. 70.
    Lomasney JW, Cotecchia S, Lefkowitz RJ, Caron MG: Molecular biology of α-adrenergic receptors: implications for receptor classification and for structure-function relationships. Biochim Biophys Acta Mol Cell Res1991, 1095: 127 – 139.CrossRefGoogle Scholar
  71. 71.
    Yang-Feng TL, Xue F, Zhong W, Cotecchia S, Frielle T, Caron MG: Chromosomal organization of adrenergic receptor genes. Proc Natl Acad Sci USA1990, 87: 1516 – 1520.PubMedCrossRefGoogle Scholar
  72. 73.
    Sawutz DG, Lanier SM, Warren CD, Graham RM: Glycosylation of the mammalian α1-adrenergic receptor by complex type N- linked oligosaccharides. Mol Pharmacol1987, 32: 565 – 571.PubMedGoogle Scholar
  73. 73.
    Bylund DB, Ray-Prenger C: Alpha2A and alpha2B adrenergic receptor subtypes: attenuation of cyclic AMP production in cell lines containing only one receptor subtype. J Pharmacol Exp Ther1989, 251: 640 – 644.PubMedGoogle Scholar
  74. 74.
    Bylund DB: Heterogeneity of alpha2 adrenergic receptors. Pharmacol Biochem Behav1985, 22: 835 – 843.PubMedCrossRefGoogle Scholar
  75. 75.
    Bylund DB: Subtypes of α2-adrenoceptors pharmacological and molecular biological evidence converge. TIPS1988, 9: 356 – 361.PubMedGoogle Scholar
  76. 76.
    Bylund DB, Ray-Prenger C, Murphy TJ: Alpha2A and alpha2B adrenergic receptor subtypes: antagonist binding in tissues and cell lines containing only one subtype. J Pharmacol Exp Ther1988, 245: 600 – 607.PubMedGoogle Scholar
  77. 77.
    Cheung Y-D, Barnett DB, Nahorski SR: [3H]Rauwolscine and [3H]yohimbine binding to rat cerebral and human platelet membranes: possible heterogeneity of α2-adrenoceptors. Eur J Pharmacol1982, 84: 79 – 85.PubMedCrossRefGoogle Scholar
  78. 78.
    Chalber SC, Duda T, Rhine JA, Sharma RK: Molecular cloning, sequence and expression of an α2-adrenergic receptor complementary DNA from rat brain. Mol Cell Biochem1990, 97: 161 – 172.Google Scholar
  79. 79.
    Flordellia CS, Handy DE, Bresnahan MR, Zannis VI, Gavras H: Cloning and expression of a rat brain α2B-adrenergic receptor. Proc Natl Acad Sci USA1991, 88: 1019 – 1023.CrossRefGoogle Scholar
  80. 80.
    Voigt MM, McCune SK, Kanterman RY, Felder CC: The rat α2 C4 adrenergic receptor gene encodes a novel pharmacological subtype. FEBS Lett1991, 278: 45 – 50.PubMedCrossRefGoogle Scholar
  81. 81.
    Murphy TJ, Bylund DB: Characterization of alpha2 adrenergic receptors in the OK cell, an opossum kidney cell line. J Pharmacol Exp Ther1987, 244: 571 – 578.Google Scholar
  82. 82.
    Langer SZ: Presynaptic regulation of catecholamine release. Biochem Pharmacol1974, 23: 1793 – 1800.PubMedCrossRefGoogle Scholar
  83. 83.
    Kobilka BK, Matsui H, Kobilka TS, Yang-Feng TL, Francke U, Caron MG: Cloning, sequencing, and expression of the gene coding for the human platelet α2-adrenergic receptor. Science1987, 238: 650 – 656.PubMedCrossRefGoogle Scholar
  84. 84.
    Regan JW, Kobilka TS, Yang-Feng TL, Caron MG, Lefkowitz RJ, Kobilka BK: Cloning and expression of a human kidney cDNA for an α2-adrenergic receptor subtype. Proc Natl Acad Sci USA1988, 85: 6301 – 6305.PubMedCrossRefGoogle Scholar
  85. 85.
    Lomasney JW, Lorenz W, Allen LF, King K, Regan JW, Yang- Feng TL: Expansion of the α2-adrenergic receptor family: cloning and characterization of the human α2-adrenergic receptor subtype, the gene for which is located on chromosome 2. Proc Natl Acad Sci USA1990, 87: 5094 – 5098.PubMedCrossRefGoogle Scholar
  86. 86.
    Benovic JL, Regan JW, Matsui H, Mayor F, Cotecchia S, Leeb- Lundberg LMF: Agonist-dependent phosphorylation of the α2- adrenergic receptor by the ß-adrenergic receptor kinase. J Biol Chem1987, 262: 17251–1 7253.Google Scholar
  87. 87.
    Dohlman HG, Thorner J, Caron MG, Lefkowitz RJ: Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem1991, 60: 653 – 688.PubMedCrossRefGoogle Scholar
  88. 88.
    Bouvier M, Leeb-Lundberg LMF, Benovic JL, Caron MG, Lefkowitz RJ: Regulation of adrenergic receptor function by phosphorylation. II. Effects of agonist occupancy on phosphorylation of α1- and ß2-adrenergic receptors by protein kinase C and the cyclic AMP-dependent protein kinase. J Biol Chem1987, 262: 3106 – 3113.PubMedGoogle Scholar
  89. 89.
    Benovic JL, Mayor FJ, Somers RL, Caron MG, Lefkowitz RJ: Light-dependent phosphorylation of rhodopsin by beta-adrenergic receptor kinase. Nature1986, 321: 869 – 872.PubMedCrossRefGoogle Scholar
  90. 90.
    Regan JW, Kobilka TS, Yang-Feng TL, Caron MG, Lefkowitz RJ: Cloning and expression of a human kidney cDNA for an α2- adrenergic receptor subtype. Proc Natl Acad Sci USA1988, 85: 6301 – 6305.PubMedCrossRefGoogle Scholar
  91. 91.
    Lorenz W, Lomasney JW, Collins S, Regan JW, Caron MG, Lefkowitz RJ: Expression of three α2-adrenergic receptor subtypes in rat tissues: implications for α2-receptor classification. Mol Pharmacol1990, 38: 599 – 603.PubMedGoogle Scholar
  92. 92.
    Weinshank RL, Zgombick JM, Macchi M, Adham N, Licht- blau H, Branchek TA: Cloning, expression and pharmacological characterization of a human a2B-adrenergic receptor. Mol Pharmacol 1990, 38: 681 – 688.PubMedGoogle Scholar
  93. 93.
    Fraser CM, Arakawa S, McCombie WR, Venter JC: Cloning, sequence analysis, and permanent expression of a human α2- adrenergic receptor in Chinese hamster ovary cells. J Biol Chem1989, 264: 11754–11 761.Google Scholar
  94. 94.
    Dohlman HG, Bouvier M, Benovic JL, Caron MG, Lefkowitz RJ: The multiple membrane spanning topography of the ß2- adrenergic receptor. J Biol Chem1987, 262: 14282 – 14288.PubMedGoogle Scholar
  95. 95.
    Dohlman HG, CAron MG, Lefkowitz RJ: A family of receptors coupled to guanine nucleotide regulatory proteins. Biochemistry USA1987, 26: 2657 – 2664.CrossRefGoogle Scholar
  96. 96.
    Machida CA, Bunzow JR, Searles RP, van Tol H, Tester B, Neve KA: Molecular cloning and expression of the rat p-adrenergic receptor gene. J Biol Chem1990, 265: 12960 – 12965.PubMedGoogle Scholar
  97. 97.
    Dixon RAF, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG, Frielle T: Cloning of the gene and cDNA for mammalian beta- adrenergic receptor and the homology with rhodopsin. Nature1986, 321: 75 – 79.PubMedCrossRefGoogle Scholar
  98. 98.
    Kobilka BK, Firelle T, Dohlman HG, Bolanowski MA, Dixon RAF, Keller P: Delineation of the intronless nature of the genes for the human and hamster ß-adrenergic receptor and their putative promoter regions. J Biol Chem1987, 262: 7321 – 7327.PubMedGoogle Scholar
  99. 99.
    Guyer CA, Horstman DA, Wilson AL, Clark JD, Cragoe EJ, Lim- bird LE: Cloning, sequencing, and expression of the gene encoding the porcine α2-adrenergic receptor. J Biol Chem1990, 265: 17307–1 7317.Google Scholar
  100. 100.
    Zeng D, Harrison JK, d’Angelo DD, Barber CM, Tucker AL, Lu Z: Molecular characterization of a rat α2B-adrenergic receptor. Proc Natl Acad Sci USA1990, 87: 3102 – 3106.PubMedCrossRefGoogle Scholar
  101. 101.
    Simonneaux V, Ebadi M, Bylund DB: Identification and characterization of α2D-adrenergic receptors in bovine pineal gland. Mol Pharmacol1991, 40: 235 – 241.PubMedGoogle Scholar

Copyright information

© Rapid Science Publishers 1996

Authors and Affiliations

  • Ruth H. Strasser
  • Renate Ihl-Vahl
  • Rainer Marquetant

There are no affiliations available

Personalised recommendations