Plasma-Enhanced Chemical Vapor Deposition (PECVD)

  • Stevenx R. Droes
  • Toivo T. Kodas
  • Mark J. Hampden-Smith

Abstract

This chapter presents a short review of plasma-enhanced chemical vapor deposition (PECVD) of non-oxide ceramics. A brief discussion of glow discharge plasmas as used in PECVD is presented first. This discussion provides a practical understanding of the processes and characteristic chemistry involved in PECVD. Next, the deposition of specific ceramic films is discussed in terms of precursors, types of plasmas and film properties. Although PECVD has been used extensively in microelectronics, these applications are not reviewed here. The focus of this chapter is on non-oxide ceramics used mainly as hard coatings, with the discussion confined to nitrides and carbides. Although TiB2, MoB, TaB2 and other borides are used as hard ceramic coatings, their deposition via plasma-enhanced CVD has not been reported. This chapter concludes with a discussion of the advantages and limitations of PECVD-prepared coatings.

Keywords

Chemical Vapor Deposition Boron Nitride Aluminum Nitride Glow Discharge Plasma Plasma Chemical Vapor Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arai, T., Fujita, H. and Oguri, K. (1988) Plasma assisted chemical vapor deposition of TiN and TiC on steel: properties of coatings. Thin Solid Films, 165, 148–49.CrossRefGoogle Scholar
  2. Archer, N.J. (1981) The plasma assisted chemical vapor deposition of TiC, TiN and TiCxN1_x. Thin Solid Films, 80, 221–25.CrossRefGoogle Scholar
  3. Azema, N., Durand, J., Berjoan, R., Balladore. J.L. and Cot, L. (1991) Influence of excitation frequency on oriented (100) growth of aluminum nitride thin films by PECVD. J. Phys. IV, 1, c2405–12.Google Scholar
  4. Bayne, M.A., Kurokawa, Z., Okorie, N.U., Roe, B.D., Johnson, L. and Moss, R.W. (1983) Microhardness and other properties of hydrogenated amorphous silicon carbide thin films formed by plasma enhanced chemical vapor deposition. Thin Solid Films, 107, 201–06.CrossRefGoogle Scholar
  5. Bielan, S. and Arendt, R. (1992) Plasma-enhanced chemical vapour deposition of SiC layers using a liquid source. Mater. Sci. Eng., B11, 289–93.CrossRefGoogle Scholar
  6. Boenig, H.V. (1988) Fundamentals of Plasma Chemistry and Technology, Technomic Publishing Company, Lancaster, PA.Google Scholar
  7. Bull, S.J., Chalker, P.R., Ayres, C.F. and Rickerby, D.S. (1991) The influence of titanium interlayers on the adhesion of titanium nitride coatings obtained by plasma assisted chemical vapour deposition. Mater. Sci. Eng., A140, 71–78.Google Scholar
  8. Chayahara, A., Masuda, A., Takeshi, I. and Osaka, Y. (1986) Formation of polycrystalline SiC in ECR plasma. Jap. J. Appl. Phys., 25(7), L564–66.CrossRefGoogle Scholar
  9. David, M., Babu, S.V. and Rasmussen, D.H. (1990) RF plasma synthesis of amorphous AlN powder and films. AIChE J., 36(6), 871–76.CrossRefGoogle Scholar
  10. Derst, G., Kalbitzer, S., Krötz, G. and Müller, G. (1992) Preparation of crystalline SiC thin films by plasma-enhanced chemical vapour deposition and by ion beam modification of silicon. Mater. Sci. Eng., B11, 79–82.CrossRefGoogle Scholar
  11. Endler, I., Leonhardt, A., Schönherr, M. and Wolf, E. (1991) Plasma-enhanced chemical vapour deposition of silicon nitride from SiCl4, nitrogen and hydrogen on hard metals. J. Mater. Sci., 26, 782–86.CrossRefGoogle Scholar
  12. Fix, R., Gordon, R.G. and Hoffmann, D.M. (1991) Chemical vapor deposition of titanium, zirconium and hafnium nitride thin films. Chem. Mater., 3, 1138–48.CrossRefGoogle Scholar
  13. Galasso, F.F. (1991) Chemical Vapor Deposited Materials, CRC Press, Boca Raton, FL.Google Scholar
  14. Ganguly, G., De, S.C., Ray, S. and Barua, A.K. (1991) Polycrystallìne silicon carbide films deposited by low-power radio-frequency plasma decomposition of SiF4-CF4-H2 gas mixtures. J. Appl. Phys., 69 (7), 3915–23.CrossRefGoogle Scholar
  15. Gupta, M., Rathi, V.K., Thangaraj, R., Agnihotri, P. and Chari, K.S. (1991) The preparation, properties and applications of silicon nitride thin films deposited by plasma enhanced chemical vapor deposition. Thin Solid Films, 204, 77–106.CrossRefGoogle Scholar
  16. Hasegawa, F., Takahashi, T., Kubo, K. and Nannichi, Y. (1987) Plasma CVD of amorphous AIN from metalorganic Al source and properties of the deposited films. Jap. J. Appl. Phys., 26(9), 1555–60.CrossRefGoogle Scholar
  17. Hess, D. and Graves, D. (1989) Plasma-enhanced etching and deposition, in Microelectronics Processing, Chemical Engineering Aspects. Advances in Chemistry Series 221 (eds D.W. Hess and K.F. Jensen), American Chemical Society, Washington, DC, pp. 377–440.CrossRefGoogle Scholar
  18. Hilton, M.R., Salmeron, M. and Somorjai, G.A. (1988) The effect of argon during the plasma assisted chemical vapor deposition of TiN. Thin Solid Films, 167, L31–34.CrossRefGoogle Scholar
  19. Hilton, M.R., Narasimhan, L.R., Nakamura, S., Salmeron, M. and Somorjai, G.A. (1986) Composition, morphology, and mechanical properties of plasma assisted chemically vapor deposited TiN films on M2 tool steel. Thin Solid Films, 139, 247–60.CrossRefGoogle Scholar
  20. Hilton, M.R., Vandentop, G.J., Salmeron, M. and Somorjai, G.A. (1987) TiN coatings on M2 steel produced by plasma assisted chemical vapor deposition. Thin Solid Films, 154, 377–86.CrossRefGoogle Scholar
  21. Ikeda, T., Kawate, Y. and Hirai, Y. (1990) Formation of cubic boron nitride films by arc-like plasma-enhanced ion plating method. J. Vac. Sci. Technol, A8(4), 3168–74.Google Scholar
  22. Itoh, H., Kato, M. and Sugiyama, K. (1987) Plasma-enhanced chemical vapour deposition of AlN coatings on graphite substrates. Thin Solid Films, 146, 255–64.CrossRefGoogle Scholar
  23. Jang, D.H., Chun, J. and Kim, J.G. (1989) The deposition rate and properties of the deposit in plasma enhanced chemical vapor deposition of TiN. J. Vac. Sci. Technol, A7(1), 31–35.Google Scholar
  24. Kamata, K., Aizawa, N. and Moriyama, M. (1986) Microhardness and internal stress of Si3N4-SiC films prepared by plasma CVD. J. Mater. Sci. Lett., 5, 1055–57.CrossRefGoogle Scholar
  25. Kamata, K., Maeda, Y. and Moriyama, M. (1986) Hybridization between Si3N4 and SiC films by plasma CVD. J. Mater. Sci. Lett., 5, 1051–54.CrossRefGoogle Scholar
  26. Keski-Kuhan, R.A.M., Osantowski, J.F., Toft, A.R. and Partlow, W.D. (1988) Grazing incidence reflectance of SiC films produced by plasma assisted chemical vapor deposition. Appl. Optics, 27(8), 1499–502.CrossRefGoogle Scholar
  27. Kingon, A.I., Lutz, L.J. and Davis, R.F. (1983) Thermodynamic calculations for the chemical vapor deposition of Si3N4. J. Am. Ceram. Soc., 66(1), 551–56.CrossRefGoogle Scholar
  28. Kodas, T.T. and Hampden-Smith, M.J. (1994) Overview of metal CVD, in The Chemistry of Metal CVD (eds T.T. Kodas and M.J. Hampden-Smith), VCH, New York, pp. 429–90.CrossRefGoogle Scholar
  29. Komatsu, S. and Moriyoshi, Y. (1988a) Influence of atomic hydrogen on the growth reactions of amorphous boron films in a low pressure B2H6 + He + H2 plasma. J. Appl. Phys., 64(4), 1878–84.CrossRefGoogle Scholar
  30. Komatsu, S. and Moriyoshi, Y. (1988b) Simultaneous growth of rhombohedral and amorphous boron films in a low pressure B2H6 + He + H2 plasma. J. Cryst. Growth, 89, 560–70.CrossRefGoogle Scholar
  31. Komatsu, S. and Moriyoshi, Y. (1989a) Transition from thermal to electron impact decomposition of diborane in plasma enhanced chemical vapor deposition of boron films from B2H6 + He. J. Appl. Phys., 66(3), 1180–84.CrossRefGoogle Scholar
  32. Komatsu, S. and Moriyoshi, Y. (1989b) Transition from amorphous to crystal growth of boron films in plasma enhanced chemical vapor deposition with B2H6 + He. J. Appl. Phys., 66(1), 466–69.CrossRefGoogle Scholar
  33. Komatsu, S. and Moriyoshi, Y. (1990) Transition of the apparent activation energy for the growth of boron films as a function of substrate temperature in plasma enhanced chemical vapor deposition from B2H6 + He. J. Phys. D: Appl. Phys., 23, 1244–51.CrossRefGoogle Scholar
  34. Komatsu, S., Moriyoshi, Y., Kasamatsu, M. and Yamada, K. (1991a) High pressure phases of boron nitride grown by laser assisted plasma chemical vapor deposition from BCl3 + NH3 + H2 + Ar. J. Appl. Phys., 70(11), 7078–84.CrossRefGoogle Scholar
  35. Komatsu, S., Moriyoshi, Y., Kasamatsu, M. and Yamada, K. (1991b) Cubic boron nitride crystallites grown by laser enhanced plasma chemical vapour deposition. J. Phys. D, 24, 1687–90.CrossRefGoogle Scholar
  36. Konuma, M., Kanzaki, Y. and Matsumoto, O. (1980) Titanium nitride deposition in an r.f. discharge. J. Less Common Metals, 75, 1–5.CrossRefGoogle Scholar
  37. Koskinen, J., Soave, R.J. and Johnson, H.H. (1990) Small-scale high strength silicon carbide fibers fabricated from thin films produced by plasma-enhanced chemical vapor deposition. J. Vac. Sci. Technol., A8(3), 1422–26.Google Scholar
  38. Laimer, J. (1990) Developments in the deposition of hard coatings by plasma based techniques. Vacuum, 40(1–2), 27–32.CrossRefGoogle Scholar
  39. Laimer, J., Störi, H. and Rödhammer, P. (1989) Plasma assisted chemical vapor deposition of titanium nitride in a capacitively coupled radio frequency discharge. J. Vac. Sci. Technol., A7(5), 2953–59.Google Scholar
  40. Laimer, J., Störi, H. and Rödhammer, P. (1990) Titanium nitride deposited by plasma assisted chemical vapour deposition. Thin Solid Films, 191, 77–89.CrossRefGoogle Scholar
  41. Landheer, D., Skinner, N.G., Jackman, T.E. et al. (1991) Growth and characterization of silicon nitride films produced by remote microwave plasma chemical vapor deposition. J. Vac. Sci. Technol, A9(5), 2594–601.Google Scholar
  42. Lee, J.Y., Sooriakumar, K. and Dange, M. (1991) The preparation, characterization, and application of plasma-enhanced chemically vapour deposited silicon nitride films deposited at low temperatures. Thin Solid Films, 203, 275–87.CrossRefGoogle Scholar
  43. Lee, W.Y., Lackey, W.J. and Agrawal, P.K. (1991) Kinetic and thermodynamic analyses of chemical vapor deposition of aluminum nitride. J. Am. Ceram. Soc., 74(8), 1821–27.CrossRefGoogle Scholar
  44. Lee, W.Y., Strife, J.R. and Veltri, R.D. (1992) Low pressure chemical vapor deposition of a-Si3N4 from SiF4 and NH3: kinetic characteristics. J. Am. Ceram. Soc., 75(8), 2200–06.CrossRefGoogle Scholar
  45. Matsumoto, K., Meikle, S., Nakanishi, Y. and Hatanaka, Y. (1992) Deposition of aluminum nitride by remote plasma enhanced chemical vapor deposition using triisobutyl aluminum. Jap. J. Appl. Phys., 31, 1423–25.CrossRefGoogle Scholar
  46. Maya, L. (1992) Plasma-enhanced chemical vapor deposition of boron nitride using polymeric cyanoborane as source. J. Am. Ceram. Soc., 75(7), 1985–87.CrossRefGoogle Scholar
  47. Mayr, P. and Stock, H.R. (1986) Deposition of TiN and Ti(O,C,N) hard coatings by a plasma assisted chemical vapor deposition process. J. Vac. Sci. Technol, A4(6), 2726–30.Google Scholar
  48. Meikle, S., Nomura, H., Nakanishi, Y. and Hatanaka, Y. (1990) Reactions of atomic nitrogen and trimethyl aluminum downstream from a nitrogen microwave plasma. J. Appl. Phys., 67(1), 483–86.CrossRefGoogle Scholar
  49. Michalski, J. and Wierzchon, T. (1991) Formation of TiN layers by plasma assisted chemical vapour deposition at temperatures greater than 823 K. Mater. Sci. Eng., A140, 499–504.Google Scholar
  50. Mohammed, A.A. and Corbett, S.J. (1985) Thick film metalizations and performance of a power hybrid module on aluminum nitride substances, in Proceedings of the International Symposium on Microelectronics (ed. R.L. Brown), International Society for Hybrid Microelectronics, Reston, VA, pp. 218–24.Google Scholar
  51. Moriyama, M., Kamata, K. and Tanabe, I. (1991) Mechanical properties of SiNxCy ceramic films prepared by plasma CVD. J. Mater. Sci., 26, 1287–94.CrossRefGoogle Scholar
  52. Nakano, M., Takan, A., Kawasaki, M. and Koinuma, H. (1992) Hydrogenated amorphous silicon/ hydrogenated amorphous silicon carbide superlattice prepared continuously by pulsed plasma and photo chemical vapor deposition. J. Appl. Phys., 71(10), 5257–59.CrossRefGoogle Scholar
  53. Nomura, H., Meikle, S., Nakanishi, Y. and Hatanaka, Y. (1991) Remote plasma deposition of aluminum nitride. J. Appl. Phys., 69(2), 990–93.CrossRefGoogle Scholar
  54. Petrich, M. (1989) Creating amorphous films. Chemtech, 12, 740–45.Google Scholar
  55. Rhee, S. and Szekely, J. (1986) The analysis of plasma enhanced chemical vapor deposition of silicon films. J. Electrochem. Soc., 134, 2194–201.CrossRefGoogle Scholar
  56. Rie, K.T., Wöhle, J. and Gebauer, A. (1991) Plasma assisted CVD using metallo-organic compounds as precursors. J. Physique IV, 1, 397–407.Google Scholar
  57. Saitoh, H. and Yarbrough, W.A. (1991) Preparation and characterization of nanocrystalline cubic boron nitride by microwave plasma-enhanced chemical vapor deposition. Appl. Phys. Lett., 58(20), 2228–30.CrossRefGoogle Scholar
  58. Sanders, F.H.M. and Verspui, G. (1988) Influence of temperature on the growth of TiN films by plasma assisted chemical vapor deposition. Thin Solid Films, 161, 187–90.CrossRefGoogle Scholar
  59. Sato, K., Uchiyama, A., Iwabuchi, S., Hirano, T. and Koinuma, H. (1992) Control of vinylsilane plasma by changing the pressure: correspondence with quantum chemical prediction. J. Appl. Phys., 71(9), 4572–76.CrossRefGoogle Scholar
  60. Shirai, K. and Gonda, S. (1990) Study of the substrate bias in plasma depositions using an electron cyclotron resonance plasma. J. Appl. Phys., 68(8), 4258–67.CrossRefGoogle Scholar
  61. Shizhi, L., Yulong, S. and Hongrui, P. (1992) Ti-Si-N films prepared by plasma enhanced chemical vapor deposition. Plasma Chem. Plasma Process., 12(3), 287–97.CrossRefGoogle Scholar
  62. Shizhi, L., Wu, H., Hongshun, Y. and Zhongshu, W. (1984) Plasma chemical vapor deposition of TiN. Plasma Chem. Plasma Process., 4(3), 147–61.CrossRefGoogle Scholar
  63. Slack, G.A., Tanzilli, R.A., Pohl, R.O. and Vander-sande, J.W. (1987) The intrinsic thermal conductivity of AlN. J. Phys. Chem. Solids, 48(7), 641–47.CrossRefGoogle Scholar
  64. Sokolowski, M. (1979) Deposition of wurtzite type boron nitride layers by reactive pulse plasma crystallization. J. Cryst. Growth, 46, 136–38.CrossRefGoogle Scholar
  65. Someno, Y., Makoto, S. and Hirai, T. (1990) Low temperature growth of polycrystalline AlN films by microwave plasma CVD. Jap. J. Appl. Phys., 29(2), 1358–60.CrossRefGoogle Scholar
  66. Takeshita, T., Ichige, K., Kurata, Y. and Hasegawa, S. (1991) Crystal structure of Si1-xCx films by plasma enhanced chemical vapor deposition at 700 °C. J. Appl. Phys., 69(11), 7945–47.CrossRefGoogle Scholar
  67. Taylor, J.A. (1991) The mechanical properties and microstructure of plasma enhanced chemical vapor deposited silicon nitride films. J. Vac. Sci. Technol, A9(4), 2464–68.Google Scholar
  68. Veprek, S. (1992) Large-area boron carbide protective coatings for controlled thermonuclear research prepared by in situ plasma CVD. Plasma Chem. Plasma Process., 12(3), 219–35.CrossRefGoogle Scholar
  69. Yoo, C. and Dixon, A. (1989) Plasma deposition of silicon nitride films in a radial flow reactor. AIChE J., 35(6), 995–1002.CrossRefGoogle Scholar
  70. Yuzuriha, T.H., Mlynko, W.E. and Hess, D.W. (1985) Magnetic field effects in the plasma enhanced chemical vapor deposition of boron nitride. J. Vac. Sci. Technol, A3(6), 2135–40.Google Scholar

Copyright information

© Chapman & Hall 1997

Authors and Affiliations

  • Stevenx R. Droes
    • 1
  • Toivo T. Kodas
    • 2
  • Mark J. Hampden-Smith
    • 2
  1. 1.Department of Chemical EngineeringUniversity of New MexicoAlbuquerqueUSA
  2. 2.Department of Chemical Engineering and Center for Micro-engineered MaterialsUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations