Skip to main content

Abstract

Chemical vapor deposition (CVD) takes advantage of gas phase reactants to form desired phases in situ. CVD reactions are not unlike those described in Part Four, where ceramic materials are prepared from vapor phase precursors. The significant difference is that in CVD the resultant material is in the form of a coating deposited on a substrate. Thus, the CVD process takes advantage of the lowered energies for phase formation afforded by nucleation and growth on existing surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, T. (1988) High performance ceramic coatings. J. Metals, 40(7), 8.

    Google Scholar 

  • von Arkel, A.E. and de Boer, J.H. (1925) Darstellung von reinem Titanium-, Zirkonium-, Hafnium- und Thoriummetall. Z. anorg. allg. Chem., 148, 345–50.

    Article  Google Scholar 

  • Aylett, B.J. (1994) The production of thin films of metals, metal silicides, and metal borides by chemical vapor deposition using single organo-metallic precursors. Trans. Inst. Met. Finish., 72(4), 127–29.

    CAS  Google Scholar 

  • Beatty, R.L. and Kiplinger, D.V. (1970) Gas pulse impregnation of graphite with carbon. Nuc. Appl. Tech., 8, 488–95.

    CAS  Google Scholar 

  • Bernard, C. and Madar, R. (1990) Benefits and limits to the thermodynamic approach to C.V.D. processes, in Chemical Vapor Deposition of Metals and Ceramics, Vol. 168 (eds T.M. Besmann and B.M. Gallois), Materials Research Society, Pittsburgh, PA, pp. 3–18.

    Google Scholar 

  • Bernard, C. and Madar, R. (1992) Thermochemistry in C.V.D. — on the choice of halide gas species, in Chemical Vapor Deposition of Metals and Ceramics II, Vol. 250 (eds T.M. Besmann, B.M. Gallois and J. Warren), Materials Research Society, Pittsburgh, PA, pp. 3–16.

    Google Scholar 

  • Besmann, T.M. (1988) Application of thermo-chemical modeling to chemical vapor deposition processes, in Surface Modification Technologies (eds T.S. Sudarshan and D.G. Bhat), The Metallurgical Society, Warrendale, PA, pp. 311–25.

    Google Scholar 

  • Besmann, T.M., Stinton, D.P. and Lowden, R.A. (1988) Chemical vapor deposition techniques. MRS Bull., XIII(11), 45–50.

    Google Scholar 

  • Besmann, T.M., Sheldon, B.W., Lowden, R.A. and Stinton, D.P. (1991) Vapor-phase fabrication and properties of continuous-filament ceramic composites. Science, 253, 1104–09.

    Article  CAS  Google Scholar 

  • Besmann, T.M., Sheldon, B.W., Moss III, T.S. and Kaster, M.D. (1992) Depletion effects of silicon carbide deposition from methyltrichlorosilane. J. Am. Ceram. Soc., 75(10), 2899–903.

    Article  CAS  Google Scholar 

  • Bickerdike, R.L., Brown, A.R.G., Hughes, G. and Ranson, H. (1962) The deposition of pyrolytic carbon in the pores of bonded and unbonded carbon powders, in Proceedings Fifth Conference on Carbon, Vol. I (eds S. Mrosowski, M.C. Studebaker and P.L. Walker), Pergamon Press, New York, pp. 575–83.

    Google Scholar 

  • van den Brekel, C.H.J., Fonville, R.M.M., Van der Straten, P.J.M. and Verspui, G. (1981) CVD of Ni, TiN and TiC on complex shapes, in Chemical Vapor Deposition 1981 (eds J.M. Blocher, Jr, G.E. Vuillard and G. Wahl), The Electrochemical Society, Pennington, NJ, pp. 142–56.

    Google Scholar 

  • Bunsell, A.R., Simon, G., Abe, Y. and Akiyama, M. (1988) Ceramic fibres, in Fibre Reinforcement for Composite Materials (ed. A.R. Bunsell), Elsevier, Amsterdam, pp. 427–78.

    Google Scholar 

  • Carlsson, J.-O. (1985) Processes in interfacial zones during chemical vapor deposition: Aspects of kinetics, mechanisms, adhesion, and substrate atom transport. Thin Solid Films, 130, 261–82.

    Article  CAS  Google Scholar 

  • Chang, H.-C, Morse, T.F. and Sheldon, B.W. (1994) Minimizing infiltration times during the initial stage of isothermal chemical vapor infiltration. J. Mat. Proc. Manuf. Sci., 2, 437–54.

    CAS  Google Scholar 

  • Chung, G.Y., McCoy, B.J., Smith, J.M. and Cagliostro, D.E. (1992) Chemical vapor infiltration: Modelling solid matrix deposition for ceramic composites reinforced with layered woven fabrics. Chem. Eng. Sci., 47(2), 311–23.

    Article  CAS  Google Scholar 

  • Clark, W.R. and Sullivan, J.J. (1982) Comparison of pump speed control techniques for pressure control in plasma/LPCVD systems. Solid State Tech., 253(5024), 105–07.

    Google Scholar 

  • Currier, R.P. (1990) A stochastic model for chemical vapor infiltration, in Chemical Vapor Deposition 1990 (eds K.E. Spear and G.W. Cullen), The Electrochemical Society, Pennington, NJ, pp. 492–98.

    Google Scholar 

  • Dapkus, P.D. (1982) Metalorganic chemical vapor deposition. Annu. Rev. Mater. Sci., 12, 243–69.

    Article  CAS  Google Scholar 

  • Day, P.S., Spotz, M.S., Skamser, D.J., Jennings, H.J. and Johnson, D.J. (1994) Microwave-assisted chemical vapor infiltration. Silicon-Based Structural Ceramics, Ceram. Trans., 42, 95–102.

    CAS  Google Scholar 

  • Devlin, D.J., Barbero, R.S. and Currier, R.P. (1990) Chemical vapor infiltration in single fiber bundles, in Chemical Vapor Deposition 1990 (eds K.E. Spear and G.W. Cullen), The Electrochemical Society, Pennington, NJ, pp. 499–505.

    Google Scholar 

  • Devlin, D.J., Currier, R.P., Barbero, R.S., Espinoza, B.F. and Elliott, N. (1992) Microwave assisted chemical vapor infiltration, in Chemical Vapor Deposition of Metals and Ceramics II, Vol. 250 (eds T.M. Besmann, B.M. Gallois and J. Warren), Materials Research Society, Pittsburgh, PA, pp. 245–50.

    Google Scholar 

  • Devlin, D.J., Currier, R.P., Barbero, R.S. and Espinoza, B.F. (1993) Chemical vapor infiltration with microwave heating. Ceram. Eng. Sci. Proc., 14(9–10), 761–67.

    Article  CAS  Google Scholar 

  • Fedou, R., Langlais, F. and Naslain, R. (1990) On the modeling of the chemical vapor infiltration of SiC-based ceramics in a straight cylindrical pore, in Proceedings of the 11th International Conference on CVD (eds K.E. Spear and G.W. Cullen), The Electrochemical Society, Pennington, NJ, pp. 513–24.

    Google Scholar 

  • Fitzer, E. and Gadow, R. (1986) Fiber-reinforced silicon carbide. Am. Ceram. Soc. Bull., 65(2), 326–35.

    CAS  Google Scholar 

  • Fitzer, E., Fritz, W. and Schoch, G. (1991) The chemical vapor impregnation of porous solids. J. Physique, 1(C2), 143–52.

    Google Scholar 

  • Fitzer, E., Hegen, D. and Strohmeier, H. (1980) Possibility of gas phase impregnation with silicon carbide. Rev. int. hautes Temper. Refract., Fr., 17, 23–32.

    CAS  Google Scholar 

  • Fitzer, E., Kehr, D. and Sahebkar, M. (1973) Besicht- ung von Kohlentstoff-Faden. Chem.-Ing.-Technik., 45, 1244–50.

    Article  CAS  Google Scholar 

  • Girolami, G.S. and Gozum, J.E. (1990) Low temperature MOCVD routes to Th in films from transition metal precursors, in Chemical Vapor Deposition of Refractory Metals and Ceramics (eds T.M. Besmann and B.M. Gallois), Materials Research Society, Pittsburgh, PA, pp. 319–29.

    Google Scholar 

  • Gokoglu, S.A. (1992) Chemical vapor deposition modeling for high temperature materials, in Chemical Vapor Deposition of Refractory Metals and Ceramics II (eds T.M. Besmann, B.M. Gallois and J. Warren), Materials Research Society, Pittsburgh, PA, pp. 17–28.

    Google Scholar 

  • Gupta, D. and Evans, J.W. (1991) A mathematical model of chemical vapor infiltration with microwave heating and external cooling. J. Mater. Res., 6(4), 810–18.

    Article  CAS  Google Scholar 

  • Harding, D.R. and Sutter, J.K. (1993) Oxidation barrier coatings for high temperature PMCs, in Proceedings of the 6th Annual HITEMP Review (ed. D.C. Cranmer), Vol. 1, National Aeronautics and Space Administration, Cleveland, OH, pp. 17/1–8.

    Google Scholar 

  • Haug, T., Knabe, H. and Ehrmann, U. (1994) Processing, properties, and structural development of polymer-derived fiber-reinforced SiC, in Organosilicon Chemistry (eds N. Auner and J. Weiss), VCH, Weinheim, Germany, pp. 303–17.

    Google Scholar 

  • Holstein, W.L. (1992) Design and modeling of chemical vapor deposition reactors. Prog. Cryst. Growth Charact., 24, 111–211.

    Article  CAS  Google Scholar 

  • Hong, W.S., Rigdon, M.A. and Fortenberry, N.L. (1990) Reinforcement options for high temperature composites and comparison of high temperature tensile testing results for ceramic fibers. IDA Document D-566. Institute for Defense Analysis, Alexandria, VA.

    Google Scholar 

  • Itoh, K., Imuta, M., Sakai, A., Gotoh, J. and Sugiyama, K. (1992) J. Mater. Sci., 27, 6022–28.

    Article  CAS  Google Scholar 

  • Jenkin, W.C. (1964) Method of depositing metals and metallic compounds throughout the pores of a porous body. US Patent 3,160,517.

    Google Scholar 

  • Jensen, K.F., Einset, E.O. and Fotiadis, D.I. (1991) Flow phenomena in chemical vapor deposition of thin films. Annu. Rev. Fluid Mech., 23, 197–232.

    Article  Google Scholar 

  • Jones, A.C., Rushworth, S.A. and Ault, J. (1995) Recent development in metalorganic precursors for metalorganic chemical vapor deposition. J. Cryst. Growth, 146(1–4), 503–10.

    Article  CAS  Google Scholar 

  • Kaloyeros, A.E. and Fury, M.A. (1993) Chemical vapor deposition of copper for multilevel metallization. MRS Bull., 18(6), 22–29.

    CAS  Google Scholar 

  • Kawase, M., Ikuta, Y., Tago, T., Masuda, T. and Hashimoto, K. (1994) Modeling of a thermal gradient chemical vapor infiltration process for production of silicon carbide whisker/alumina composite. Chem. Eng. Sci., 49(24A), 4861–70.

    CAS  Google Scholar 

  • Kim, Y.-W., Park, S.-W. and Lee, J.-G. (1995) Composition and hardness of chemically vapor-deposited silicon carbide with various micro-structures. J. Mater. Sci. Lett., 14, 1201–03.

    Article  CAS  Google Scholar 

  • Kowbel, W., Bruce, C. and Withers, J.C. (1995) Functionally gradient SiC coatings produced by chemical vapor reaction, in Chemical Vapor Deposition of Refractory Metals and Ceramics III (eds B. Gallois, W. Lee and M. Pickering), Materials Research Society, Pittsburgh, PA, pp. 251–56.

    Google Scholar 

  • Lackey, W.J., Hanigofsky, J.A., Shapiro, M.J. et al. (1990) Preparation of superconducting wire by deposition of YBa2Cu3Ox onto fibers, in Proceedings of the 11th International Conference on CVD (eds K.E. Spear and G.W. Cullen), The Electrochemical Society, Pennington, NJ, pp. 195–210.

    Google Scholar 

  • Lamicq, P.J., Bernhart, G.A., Dauchier, M.M. and Mace, J.G. (1986) SiC/SiC composite ceramics. Am. Ceram. Soc. Bull., 65 (2), 336–38.

    CAS  Google Scholar 

  • Levy, R.A., Green, M.L. and Gallagher, P.K. (1984) Characterization of LPCVD aluminum for VLSI processing. J. Electrochem. Soc., 131(9), 2175–81.

    Article  CAS  Google Scholar 

  • Lin, Y.S. (1990) Analysis of CVI process for porous material densification using a continuous model, in Proceedings of the 11th International Conference on CVD (eds K.E. Spear and G.W. Cullen), The Electrochemical Society, Pennington, NJ, pp. 532–38.

    Google Scholar 

  • Lo, G.Q., Kwong, D.-L., Fazan, P.C., Mathews, V.K. and Sandler, N. (1993) Highly reliable, high-C DRAM storage capacitors with CVD Ta205 films on rugged polysilicon. IEEE Electron Dev. Lett., 14(5), 216–18.

    Article  CAS  Google Scholar 

  • de Lodyguine, J.S. (1893) Illuminant for incandescent lamps. US Patent 575,002.

    Google Scholar 

  • Lowden, R.A. and More, K.L. (1989) The effect of fiber coatings on interfacial shear strength and the mechanical behavior of ceramic composites, in Interfaces in Composites, Vol. 170 (eds C.G. Pantano and E.J.H. Chen), The Materials Research Society, Pittsburgh, PA, pp. 205–14.

    Google Scholar 

  • Lowden, R.A., Riester, L. and Akerman, M.A. (1992) Modification of optical surfaces employing CVD boron carbide coatings, in Chemical Vapor Deposition of Metals and Ceramics II, Vol. 250 (eds T.M. Besmann, B.M. Gallois and J. Warren), Materials Research Society, Pittsburgh, PA, pp. 173–78.

    Google Scholar 

  • Lowden, R.A., More, K.L., Schwarz, O.J., Vaughn, N.L. (1993) Improved fiber-matrix interlayers for Nicalon/SiC composites, in High Temperature Ceramic Matrix Composites (eds R. Naslain, J. Lamon and D. Doumeingts), Woodhead, Cambridge, UK, pp. 345–51.

    Google Scholar 

  • Luss, D. (1968) On the pseudo steady state approximation for gas solid reactions. Can. J. Chem. Eng., 46, 154–56.

    Article  CAS  Google Scholar 

  • Melkote, R.R. and Jensen, K.F. (1990) Models of chemical vapor infiltration of fibrous substrates, in Proceedings of the 11th International Conference on CVD (eds K.E. Spear and G.W. Cullen), The Electrochemical Society, Pennington, NJ, pp. 506–12.

    Google Scholar 

  • Middleman, S. (1989) The interaction of chemical kinetics and diffusion in the dynamics of chemical vapor infiltration. J. Mater. Res., 4(6), 1515–23.

    Article  CAS  Google Scholar 

  • Miller, J.H., Lowden, R.A. and Liaw, P.K. (1995) Fiber coatings and the fracture behavior of a continuous fiber ceramic composite. Mater. Res. Soc. Symp. Proc., 365, 403–10.

    Article  CAS  Google Scholar 

  • Miller, L.M. and Gulino, D.A. (1993) Multilayer coatings for polyimide composite thermo-oxidative stability, in Proceedings of the 6th Annual HITEMP Review, Vol. 1, National Aeronautics and Space Administration, Cleveland, OH, pp. 16/1–12.

    Google Scholar 

  • Morell, J.I., Economou, D.J. and Amundson, N.R. (1992a) Pulsed-power volume-heating chemical vapor infiltration. J. Mater. Res., 7(9), 2447–57.

    Article  CAS  Google Scholar 

  • Morell, J.I., Economou, D.J. and Amundson, N.R. (1992b) A mathematical model for chemical vapor infiltration with volume heating. J. Electrochem. Soc., 139(1), 328–36.

    Article  CAS  Google Scholar 

  • Morell, J.I., Economou, D.J. and Amundson, N.R. (1993) Chemical vapor infiltration of SiC with microwave heating. J. Mater. Res., 8(5), 1057–67.

    Article  CAS  Google Scholar 

  • Morton International, Inc. (1992) CVD Metalorganics for Vapor Phase Epitaxy; Product Guide and Literature Review II, Morton International, Danvers, MA.

    Google Scholar 

  • Moss, T.S., Lackey, W.J. and Freeman, G.B. (1995) The chemical vapor deposition of dispersed phase composites in the B-Si-C-H-Cl-Ar system, in Chemical Vapor Deposition of Refractory Metals and Ceramics III (eds B. Gallois, W. Lee and M. Pickering), Materials Research Society, Pittsburgh, PA, pp. 239–44.

    Google Scholar 

  • Naslain, R. (1992a) CVI composites, in Ceramic-Matrix Composites (ed. R. Warren), Chapman & Hall, New York, pp. 199–244.

    Google Scholar 

  • Naslain, R. (1992b) Two-dimensional SiC/SiC composites processed according to the isobaric-isothermal chemical vapor infiltration gas phase route. J. Alloys Compounds, 188, 42–48.

    Article  CAS  Google Scholar 

  • Naslain, R. and Langlais, F. (1986) CVD-processing of ceramic-ceramic composite materials, in Tailoring Multiphase and Composite Ceramics (eds R.E. Tressler, G.L. Messing, C.G. Pantano and R.E. Newnham), Plenum, New York, pp. 145–64.

    Google Scholar 

  • Naslain, R. and Langlais, F. (1990) Fundamental and practical aspects of the chemical vapor infiltration of porous substrates. High Temp. Sci., 27, 221–35.

    Google Scholar 

  • Oguri, K., Fujita, H. and Arai, T. (1991) Effect of N2-to-TiCl4 flow rate ratio on the properties of TiN coatings formed by D.C. discharge plasma-assisted chemical vapor deposition. Thin Solid Films, 195, 77–88.

    Article  CAS  Google Scholar 

  • Prybyla, J.A., Chiang, C.-M. and Dubois, L.H. (1993) Investigations of the growth of TiN thin films from Ti(NMe2)4 and ammonia. J. Electrochem. Soc., 140(9), 2695–702.

    Article  CAS  Google Scholar 

  • Reyes, S. and Jensen, K.F. (1987) Percolation concepts in modelling of gas-solid reactions — III. Application to sulphation of calcined limestone. Ceram. Eng. Sci., 42(3), 565–74.

    Article  CAS  Google Scholar 

  • Roman, Y.G. and Stinton, D.P. (1995) The preparation and economics of silicon carbide matrix composites by chemical vapor infiltration. Mater. Res. Soc. Symp. Proc., 365, 343–50.

    Article  CAS  Google Scholar 

  • Roman, Y.G., Steijsiger, C., Gerretsen, J. and Metselaar, R. (1993) The preparation of carbon-reinforced silicon carbide composites using the isothermal forced flow chemical vapour infiltration technique. Ceram. Eng. Sci. Proc., 14(9–10), 1190–98.

    CAS  Google Scholar 

  • Rossignol, J.Y., Langlais, F. and Naslain, R. (1984) A tentative modelization of titanium carbide C.V.I, within the pore network of two-dimensional carbon-carbon composite preforms, in Proceedings of the 9th International Conference on CVD (eds McD. Robinson et al.), The Electrochemical Society, Pennington, NJ, pp. 596–614.

    Google Scholar 

  • Sahimi, M., Gavalas, G.R. and Tsotsis, T.T. (1990) Statistical and continuum models of fluid-solid reactions in porous media. Chem. Eng. Sci., 45(6), 1443–502.

    Article  CAS  Google Scholar 

  • Sasaki, M. and Hirai, T. (1991) Fabrication and evaluation of SiC/C functionally gradient material. J. Physique, 1(C2), 649–56.

    Google Scholar 

  • Sheldon, B.W. (1990) The control of gas phase kinetics to maximize densification during chemical vapor infiltration. J. Mater. Res., 5(11), 2729–36.

    Article  CAS  Google Scholar 

  • Sheldon, B.W. and Besmann, T.M. (1991) Reaction and diffusion kinetics during the initial stages of isothermal chemical vapor infiltration. J. Am. Ceram. Soc., 74(12), 3046–53.

    Article  CAS  Google Scholar 

  • Simon, G. and Bunsell, A.R. (1984) Creep behavior and structural characterization at high temperatures of Nicalon SiC fibres. J. Mater. Sci., 19, 3658–70.

    Article  CAS  Google Scholar 

  • Sotirchos, S.V. (1993) Chemical vapor infiltration under pulsing conditions, in High Temperature Ceramic Matrix Composites (eds R. Naslain, J. Lamon and D. Doumeingts), Woodhead, Cambridge, UK, pp. 241–46.

    Google Scholar 

  • Spear, K.E. (1979) Applications of phase diagrams and thermodynamics to CVD, in Chemical Vapor Deposition 1979 (eds T.O. Sedgwick and H. Lydtin), The Electrochemical Society, Princeton, NJ, pp. 6–16.

    Google Scholar 

  • Spear, K.E. and Dirkx, R.R. (1990) Prediction of the chemistry in CVD systems, in Chemical Vapor Deposition of Metals and Ceramics (eds T.M. Besmann and B.M. Gallois), The Materials Research Society, Pittsburgh, PA, pp. 19–30.

    Google Scholar 

  • Spotz, M.S., Skamser, D.J., Day, P.S., Jennings, H.M. and Johnson, D.L. (1993) Microwave-assisted chemical vapor infiltration. Cer. Eng. Sci. Proc., 14(9–10), 753–60.

    Article  CAS  Google Scholar 

  • Starr, T.L. (1988) Modeling of forced flow/thermal gradient CVI, in Whisker- and Fiber-Toughened Ceramics, Proc. Intl. Conf., ASM International, Metals Park, OH, pp. 243–52.

    Google Scholar 

  • Starr, T.L. (1992) Advances in modeling of the chemical vapor infiltration process, in Chemical Vapor Deposition of Metals and Ceramics II, Vol. 250 (eds T.M. Besmann, B.M. Gallois and J. Warren), Materials Research Society, Pittsburgh, PA, pp. 207–14.

    Google Scholar 

  • Starr, T.L., Smith, A.W., Besmann, T.M., McLaughlin, J.C. and Sheldon, B.W. (1993) Modeling of chemical vapor infiltration for composite fabrication, in High Temperature Ceramic Matrix Composites (eds R. Naslain, J. Lamon and D. Doumeingts), Woodhead, Cambridge, UK, pp. 231–40.

    Google Scholar 

  • Stinton, D.P., Besmann, T.M. and Lowden, R.A. (1988) Advanced ceramics by chemical vapor deposition techniques. Am. Ceram. Soc. Bull., 67(2), 350–55.

    CAS  Google Scholar 

  • Stinton, D.P., Lackey, W.J., Lauf, R.J. and Besmann, T.M. (1984) Fabrication of ceramic-ceramic composites by chemical vapor deposition. Ceram. Eng. Sci. Proc., 5(7–8), 668–76.

    Article  CAS  Google Scholar 

  • Stinton, D.P., Hembree, D.M., More, K.L. et al. (1995) Matrix characterization of fiber-reinforced SiC matrix composites fabricated by chemical vapor infiltration. J. Mater. Sci., 30(17), 4279–85.

    Article  CAS  Google Scholar 

  • Sugiyama, K. and Yamamoto, E. (1989) Reinforcement and antioxidizing or porous carbon by pulse CVI of SiC. J. Mater. Sci., 24, 3756–62.

    Article  CAS  Google Scholar 

  • Sugiyama, K. and Yoshida, K. (1993) Pressure-pulsed CVI of silicon carbide into 2D-Tyranno/ carbon preforms, in Proceedings of the 12th International Conference on CVD (eds K.F. Jensen and G.W. Cullen), The Electrochemical Society, Pennington, NJ, pp. 371–77.

    Google Scholar 

  • Tai, N.-H. and Chou, T.-W. (1989) Effects of manufacturing parameters on the chemical vapor infiltration of ceramic/ceramic composites. Proc. Am. Soc. Compos., Technomic, Lancaster, PA, pp. 317–22.

    Google Scholar 

  • Tai, N.-H. and Chou, T.-W. (1990) Analytical simulation of an improved CVI process for forming highly densified ceramic composites, in Chemical Vapor Deposition of Refractory Metals and Ceramics (eds T.M. Besmann and B.M. Gallois), Materials Research Society, Pittsburgh, PA, pp. 61–66.

    Google Scholar 

  • Thornton, J.A. (1977) High rate thick film growth. Annu. Rev. Mater. Sci., 7, 239–60.

    Article  CAS  Google Scholar 

  • Werner, C. (1991) Numerical modelling of CVD processes and equipment. J. Physique, 1(C2), 3–18.

    Google Scholar 

  • Yortsos, Y.C. and Sharma, M. (1986) Application of percolation theory to noncatalytic gas-solid reactions. AIChE J., 32(1), 46–55.

    Article  CAS  Google Scholar 

  • Yu, H.-C. and Sotirchos, S.V. (1987) A generalized pore model for gas-solid reactions exhibiting pore closure. AIChE J., 33(3), 382–93.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Besmann, T.M., Stinton, D.P., Lowden, R.A., Lee, W.Y. (1997). Chemical Vapor Deposition (CVD) and Infiltration (CVI). In: Weimer, A.W. (eds) Carbide, Nitride and Boride Materials Synthesis and Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0071-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0071-4_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6521-4

  • Online ISBN: 978-94-009-0071-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics