Abstract

The synthesis of powders in the gas phase using hot wall thermal processes suffers from a number of disadvantages. In thermally driven processes, reactant gases must be heated in a reactor under conditions that often lead to particle agglomeration, powder accumulation on reactor surfaces or impurity incorporation from the reactor materials themselves. These effects are a result of reactors which involve relatively slow heating associated with convection or radiation. As a means of achieving cold wall reactions with rapid heating and cooling rates, Haggerty and co-workers (Cannon et al., 1982a, b; Marra and Haggerty, 1982) first demonstrated the use of infrared lasers in the synthesis of non-oxide ceramic powders.

Keywords

Silicon Nitride Laser Process Ceramic Powder American Ceramic Society Titanium Diboride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrescu, R.I., Morjian, I., Borsella, E., Botti, S. and Fantoni, R. (1991) Composite ceramic powders obtained by laser induced reactions of silane and amines. J. Mater. Sci., 6(11), 2442–51.Google Scholar
  2. Aoki, M., Flint, J.H. and Haggerty, J.S. (1988) Synthesis of non-agglomerated Si3Ň4 powder. Ceram. Trans., 1, 253–60.Google Scholar
  3. Baraton, M.I., Boulanger, L., Cauchetier, M., Lorenzelli, V., Luce, M., Merle, T., Quintard, P. and Zhou, Y.-H. (1994) Nanometric boron nitride powders: laser synthesis, characterization and FT-IR surface study. J. Eur. Ceram. Soc., 13(4), 371–78.CrossRefGoogle Scholar
  4. Bauer, R.A., Smulders, R., Becht, J.G.M., van der Pat, P.J. and Schoonman, J. (1989) Laser-chemical vapor precipitation of submicrometer silicon and silicon nitride powders from chlorinated silanes. J. Am. Ceram. Soc., 72(7), 1301–04.CrossRefGoogle Scholar
  5. Borsella, E., Botti, S., Cesile, M.C., Martelli, S., Nesterenko, A., Giorgi, R., Turtu, S., Alexandrescu, R. and Morjian, I. (1995) Production of ceramic powders from laser driven reactions. Proc. SPIE Int. Soc. Opt. Eng., 2461, 124–32.Google Scholar
  6. Cannon, W.R., Danforth, S.C., Flint, J.H., Haggerty, J.S. and Marra, R.A. (1982a) Sinterable ceramic powders from laser-driven reactions: I, process description and modeling. J. Am. Ceram. Soc., 65(7), 324–30.CrossRefGoogle Scholar
  7. Cannon, W.R., Danforth, S.C., Haggerty, J.S. and Marra, R.A. (1982b) Sinterable ceramic powders from laser-driven reactions: II, powder characteristics and process variables. J. Am. Ceram. Soc., 65(7), 330–35.CrossRefGoogle Scholar
  8. Casey, J.D. and Haggerty, J.S. (1987) Laser-induced vapor-phase synthesis of boron and titanium diboride powders. J. Mater. Sci., 22, 737–44.CrossRefGoogle Scholar
  9. Cauchetier, M., Croix, O. and Luce, M. (1988) Laser synthesis of silicon carbide powders from silane and hydrocarbon mixtures. Adv. Ceram. Mater., 3(6), 548–52.Google Scholar
  10. Cauchetier, M., Croix, O., Luce, M., Michon, M., Paris, J. and Tistchenko, S. (1987) Laser synthesis of ultrafine powders, in High Tech Ceramics (ed. P. Vincenzini), Elsevier, Amsterdam, pp. 545–53.Google Scholar
  11. Cauchetier, M., Croix, O., Luce, M., Baraton, M.I., Merle, T. and Quintard, P. (1991) Nanometric Si/C/N composite powders: laser synthesis and IR characterization. J. Europ. Ceram. Soc., 8, 215–19.CrossRefGoogle Scholar
  12. Croix, O., Gounot, M., Bergez, P., Luce, M. and Cauchetier, M. (1991) Sintering of laser formed silicon carbide powders. Mater. Sci. Monogr., 66B, 1447–55.Google Scholar
  13. Danforth, S.C. and Haggerty, J.S. (1983) Mechanical properties of sintered and nitrided laser-synthesized silicon powder. J. Am. Ceram. Soc., 66(4), C-58–59.CrossRefGoogle Scholar
  14. Fantoni, R.E., Borsella, E., Piccirillo, S., Ceccato, R. and Enzo, S. (1990) Laser synthesis and crystallographic characterization of ultrafine SiC powders. J. Mater. Res., 5(1), 143–50.CrossRefGoogle Scholar
  15. Flint, J.H. and Haggerty, J.S. (1988) Models for synthesis of ceramic powders by vapor phase reactions. Ceram. Trans., 1, 244–52.Google Scholar
  16. Flint, J.H., Marra, R.A. and Haggerty, J.S. (1986) Powder temperature, size, and number density in laser-driven reactions. Aerosol Sci. Technol., 5, 249–60.CrossRefGoogle Scholar
  17. Frurip, D.J., Staszak, P.R. and Blander, M. (1984) Production of amorphous iron-silicon powders via laser pyrolysis of gaseous precursors. J. Non-Cryst. Sol., 68, 1–10.CrossRefGoogle Scholar
  18. Gilissen, R., Erauw, J.P., Schrijvers, J., Cauchetier, M., Luce, M. and Herlin, N. (1994) Encapsulation HIPing of laser synthesized nanosize silicon carbide, in Proceedings International Conference on Hot Isostatic Pressing (eds L. Delaney and H. Tas), Elsevier, Amsterdam, pp. 355–62.Google Scholar
  19. Gupta, A., West, G.A. and Yardley, J.T. (1985) Light induced productions of ultrafine powders comprising metal silicide powder and silicon. US Patent 4,558,017.Google Scholar
  20. Haggerty, J.S. (1984) Sinterable ceramic powders from laser heated gas phase reactions and rapidly solidified ceramic materials. Energy Laboratory Report MIT-El 84-009, Massachusetts Institute of Technology.Google Scholar
  21. Haggerty, J.S., Garvey, G.J., Flint, J.H., Sheldon, B.W., Aoki, M., Okuyama, M., Ritter, J.E. and Nair, S.V. (1988) Processing and properties of reaction-bonded silicon nitride and sintered silicon carbide made from laser-synthesized powders. Ceram. Trans., 1, 1059–68.Google Scholar
  22. Knudsen, A.K. (1987a) Laser-driven synthesis and densification of ultrafine boron carbide powders. Adv. Ceram., 21, 237–47.Google Scholar
  23. Knudsen, A.K. (1987b) Process for the preparation of submicron-sized titanium diboride. US Patent 4,689,129.Google Scholar
  24. Knudsen, A.K. and Rafaniello, W. (1990) Titanium diboride/boron carbide composites with high hardness and toughness. US Patent 4,957,884.Google Scholar
  25. Knudsen, A.K. and Rafaniello, W. (1991) Titanium diboride/boron carbide composites with high hardness and toughness. US Patent 5,032,242.Google Scholar
  26. Knudsen, A.K., Haney, C.N. and Beaman, D.R. (1988) Laser-synthesized TiB2/B4C composites with high hardness and toughness. Paper read at 90th Annual Meeting of the American Ceramic Society, Cincinnati, Ohio, May 1988.Google Scholar
  27. Li, Y.-L., Liang, Y. and Hu, Z.-Q. (1995) Properties and structural characterization of the laser synthesized nano-composite Si-N-C powders. Mater. Res. Soc. Proc., 363, 269–74.CrossRefGoogle Scholar
  28. Li, Y.-L., Liang, Y., Zheng, F., Shong, X. and Hu, Z.-Q. (1994) Phase transition and particulate growth of laser synthesized ultrafine amorphous silicon nitride powders. J. Mater. Set. Lett., 13(21), 1588–90.CrossRefGoogle Scholar
  29. Lihrmann, J.-M. and Cauchetier, M. (1994) A model for the formation of nanosized SiC powders by laser-induced gas-phase reaction. J. Europ. Ceram. Soc., 13(1), 4H6.CrossRefGoogle Scholar
  30. Marra, R.A. and Haggerty, J.S. (1982) Synthesis and characteristics of ceramic powders made from laser-heated gases. Ceram. Eng. Sci. Proc., 3, 3–19.CrossRefGoogle Scholar
  31. Niihara, K., Nakahira, A. and Hirai, T. (1984) The effect of stoichiometry on mechanical properties of boron carbide. J. Am. Ceram. Soc., 67, C-13–14.CrossRefGoogle Scholar
  32. Nilsen, K., Danforth, S.C. and Wautier, H. (1987) Dispersion of laser-synthesized Sİ3N4 powder in nonaqueous systems. Adv. Ceram., 21, 537–47.Google Scholar
  33. Nilsen, K., Riman, R.E. and Danforth, S.C. (1988) The effect of moisture on the processing of silicon nitride in imidazoline-hexane solutions, in Proceedings for the Third International Symposium on Ceramic Materials and Components for Engines (ed. V.J. Tennery), Las Vegas, NV, 27–30 November, 1988, American Ceramic Society, Westerville, OH, pp. 155–67.Google Scholar
  34. Okutani, T., Nakato, Y., Suzuki, M., Yamaguchi, M. and Watanabe, J. (1991) Synthesis of SiC powder and S1C-Sİ3N4 composite powder by a YAG laser. Mater. Sci. Monogr., 66B, 1149–58.Google Scholar
  35. O’Neil, J.A., Horsbaugh, M., Tann, J., Grant, K.J. and Paul, G.L. (1989) Production of fine ceramic powders from chloromethylsilanes using pulsed excimer radiation. J. Am. Ceram. Soc., 72(7), 1130–35.CrossRefGoogle Scholar
  36. Rice, G.W. (1986) Laser synthesis of Si/C/N powders from 1,1,1,3,3,3-hexamethyldisilazane. J. Am. Ceram. Soc., 6(8), C-183–85.CrossRefGoogle Scholar
  37. Rice, G.W. and Woodin, R.L. (1989) Kinetics and mechanism of laser-driven powder synthesis from organosilane precursors. J. Mater. Res., 4(6), 1538–48.CrossRefGoogle Scholar
  38. Richton, R.E. and Farrow, L.A. (1982) BCl3 absorption of CO2 laser lines. J. Chem. Phys., 76(11), 5256–59.CrossRefGoogle Scholar
  39. Sawhill, H.T. and Haggerty, J.S. (1982) Crystallization of ultrafine amorphous Si3N4 during sintering. J. Am. Ceram. Soc., 65(8), C-131–32.CrossRefGoogle Scholar
  40. Suzuki, M., Nakata, Y., Okutani, T. and Kato, A. (1992) Preparation of SiC ultrafine particles from SiH2Cl2 and C2H4 gas mixtures by a carbon dioxide laser. J. Mater. Soc., 27(22), 6091–97.CrossRefGoogle Scholar
  41. Suzuki, M., Maniette, Y., Nakata, Y. and Okutani, T. (1993) Synthesis of silicon carbide-silicon nitride composite ultrafine particles using a carbon dioxide laser. J. Am. Ceram. Soc., 76(5), 1195–200.CrossRefGoogle Scholar
  42. Symons, W. and Danforth, S.C. (1987) Synthesis and characterization of laser-synthesized silicon nitride powders. Adv. Ceram., 21, 249–56.Google Scholar
  43. Symons, W. and Danforth, S.C. (1988) Hot isostatic pressing of laser synthesized silicon nitride powder, in Proceedings for the Third International Symposium on Ceramic Materials and Components for Engines (ed. V.J. Tennery), American Ceramic Society, Westerville, OH, Las Vegas, NV, 27–30 November, 1988, pp. 67–75.Google Scholar
  44. Tougne, P., Hommel, H., Legrand, A.P., Herlin, N., Luce, M. and Cauchetier, M. (1993) Evolution of the structure of ultrafine silicon carbide laser-formed powders with synthesis conditions. Diamond Relat. Mater., 2(2–4), 486–90.CrossRefGoogle Scholar
  45. Van Weeren, R., Carrasquillo, G., Leone, E., Curran, S. and Danforth, S.C. (1994) Laser synthesized silicon nitride powder: chemical and physical characteristics. Ceram. Trans. (Sil. Based Struct. Ceram.), 42, 47–54.Google Scholar
  46. Vassen, R. and Stoever, D. (1993) HIP densification of nanophase SiC. Br. Ceram. Proc., 51, 99–104.Google Scholar
  47. Willaime, F., Boulanger, L. and Cauchetier, M. (1995) Morphology of nanometric boron nitride powders produced by laser pyrolysis. Mater. Res. Soc. Proc., 359, 53–58.CrossRefGoogle Scholar
  48. Xiao, T.D., Strutt, P.R. and Gonsalves, K.E. (1990) Silicon nitride synthesis by laser pyrolysis of an aerosol-dispersed precursor. Mater. Res. Soc. Proc., 168, 299–304.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1997

Authors and Affiliations

  • Arne K. Knudsen
    • 1
  1. 1.Ceramics & Advanced MaterialsThe Dow Chemical CompanyMidlandUSA

Personalised recommendations