Advertisement

Thermochemistry and Kinetics

  • Richard C. Flagan

Abstract

The synthesis of ceramic materials from gaseous precursors has received considerable attention in recent years, and many aspects of the chemistry have been elucidated. Some of the greatest advances have come in the development of technologies for the chemical vapor deposition of ceramic films, particularly those that find uses in microelectronics fabrication. An understanding of the chemistry begins with an examination of the gas composition and equilibrium condensed phases, and continues to the detailed treatment of the gas phase and surface reaction kinetics. The database on thermodynamics properties for the chemical species of concern in ceramic synthesis is far better developed than that for the reaction kinetics. Unfortunately, thermodynamics only describes the potential to form a material. The kinetics must be known to predict the chemistry quantitatively.

Keywords

Chemical Vapor Deposition Aerosol Particle Knudsen Number Titanium Nitride Primary Particle Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adjaottor, A.A. and Griffin, G.L. (1992) Aerosol synthesis of aluminum nitride powder using metalorganic reactants. J. Am. Ceram. Sci., 75, 3209–14.CrossRefGoogle Scholar
  2. Allendorf, M.D. and Kee, R.J. (1991) A model of silicon carbide chemical vapor deposition. J. Electrochem. Soc., 138, 841–52.CrossRefGoogle Scholar
  3. Ando, Y. and Uyeda, R. (1981) Preparation of ultra-fine SiC particles by gas evaporation. Commun. Am. Ceram. Soc., 1, C-12–C-13.CrossRefGoogle Scholar
  4. Barin, I., Knack, O. and Kubaschewski, O. (1977) Thermodynamic Properties of Inorganic Substances, Springer-Verlag.Google Scholar
  5. Benton, M.D. and Kragh, F. (1991) Ultra-fine particles of TïN. Z. Phys. D Atoms Mol. Clust., 19, 299–307.CrossRefGoogle Scholar
  6. Bernard, C. and Madar, R. (1990) Benefits and limits of the thermodynamic approach to C.V.D. processes. Mat. Res. Soc. Symp. Proc., 168, 3–17.CrossRefGoogle Scholar
  7. Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (1960) Transport Phenomena, Wiley, New York.Google Scholar
  8. Boyd, D.C., Haasch, R.T., Mantell, D.R., Schulze, R.K., Evans, J.F. and Gladfelter, W.L. (1989) Organometallic azides as precursors for aluminum nitride thin films. Chem. Mater., 1, 119–24.CrossRefGoogle Scholar
  9. Buiting, M.J. and Reader, A.H. (1990) Influence of impurities and microstractures on the resistivity of LPCVD titanium nitride films. Mat. Res. Soc. Symp. Proc., 168, 199–204.CrossRefGoogle Scholar
  10. Bunz, H.J. (1990) Coagulation Workshop — Nuclear Research Center, Karlsruhe, 16–18 March 1988 — Summary Report, Aerosol Sci., 21, 139–53.CrossRefGoogle Scholar
  11. Chang, Y.I. and Pfender, E. (1987) Thermochemistry of thermal plasma chemical reactions. Part II. A survey of synthesis routes for silicon nitride production. Plasma Chem. Plasma Process., 7, 299–316.CrossRefGoogle Scholar
  12. Chorley, R.W. and Lednor, P.W. (1991) Synthetic routes to high surface area non-oxide materials. Adv. Mater., 3, 474–85.CrossRefGoogle Scholar
  13. Erikson, G. (1975) Chem. Scripta, 8, 100.Google Scholar
  14. Fantoni, R., Borsella, E., Piccirillo, S., Ceccato, R. and Enzo, S. (1990) Laser synthesis and crystallographic characterization of ultrafine SiC powders. J. Mater. Res., 5, 143–50.CrossRefGoogle Scholar
  15. Fischman, G.S. and Petuskey, W.T. (1985) Thermodynamic analysis and kinetic implications of chemical vapor deposition of SiC from Si-C-Cl-H gas systems. J. Am. Ceram. Soc., 68, 185–90.CrossRefGoogle Scholar
  16. Fix, R.M., Gordon, R.G. and Hoffman, D.M. (1990) Titanium nitride thin films: properties and APCVD synthesis using organometallic precursors. Mat. Res. Soc. Symp. Proc., 168, 357–62.CrossRefGoogle Scholar
  17. Flagan, R.C. and Lunden, M.L. (1995) Particle structure control in nanoparticle synthesis from the vapor phase. Mater. Sci. Eng. A., 204, 113–24.CrossRefGoogle Scholar
  18. Flagan, R.C. and Seinfeld, J.H. (1988) Fundamentals of Air Pollution Engineering, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  19. Friedlander, S.K. (1977) Smoke, Dust and Haze, Wiley, New York.Google Scholar
  20. Fuchs, N.A. (1964) The Mechanics of Aerosols, Pergamon Press, New York.Google Scholar
  21. Gelbard, F. and Seinfeld, J.H. (1978) Numerical solution of the dynamic equation for particulate systems. J. Comput. Phys., 28, 357–75.CrossRefGoogle Scholar
  22. Gelbard, F. and Seinfeld, J.H. (1980) Simulation of multicomponent aerosol dynamics. J. Colloid Interface Sci., 78, 485–501.CrossRefGoogle Scholar
  23. Gelbard, F., Tambour, Y. and Seinfeld, J.H. (1980) Sectional representations for simulating aerosol dynamics. J. Colloid Interface Sci., 76, 541–56.CrossRefGoogle Scholar
  24. Gordon, R.G., Hoffman, D.M. and Riaz, U. (1991) Atmospheric pressure chemical vapor deposition of aluminum nitride thin films at 200–250°C. J. Mater. Res., 6, 5–7.CrossRefGoogle Scholar
  25. Hanson, R. and Salimian, S. (1984) Survey of rate constants in the N/H/O system, in Combustion Chemistry (ed. W.G. Gardiner, Jr), Springer-Verlag, New York, pp. 361–422.Google Scholar
  26. Hashman, T.W. and Pratsinis, S.E. (1992) Thermodynamics of vapor synthesis of AlN by nitridation of aluminum and its halides. J. Am. Ceram. Soc., 75, 920–28.CrossRefGoogle Scholar
  27. Hiram, Y. and Nir, A. (1983) A simulation of surface tension driven coalescence. J. Colloid Interface Sci., 95, 462–70.CrossRefGoogle Scholar
  28. Huseby, I.C. (1983) Synthesis and characterization of a high-purity AlN powder. J. Am. Ceram. Soc., 66, 217–20.CrossRefGoogle Scholar
  29. Interrante, L.V., Carpenter, II, L., Whitmarsh, C., Lee, W., Garbauskas, M. and Slack, G.A. (1986) Studies of organometallic precursors to aluminum nitride, in Mater. Res. Soc. Symp. Proc. Better Ceramics Through Chemistry II (eds C.J. Brinker, D.E. Clark and D.R. Ulrich), Material Research Society, Pittsburgh, PA, pp. 359–66.Google Scholar
  30. JANAF (1986) Thermochemical Tables, 3rd edn, J. Phys. Chem., Ref. Data 14 Suppl. 1.Google Scholar
  31. Kato, A., Hojo, J. and Watari, T. (1984) Some common aspects of the formation of nonoxide powders by the vapor reaction method, in Emergent Process Methods for High-Technology Ceramics (eds R.F. Davies, H. Palmour III and R.L. Porter), Plenum Press, New York, pp. 123–35.Google Scholar
  32. Keck, J.C. (1990) Rate-controlled constrained-equilibrium theory for chemical reactions in complex systems. Combust. Sci. Tech., 16, 125–54.Google Scholar
  33. Keck, J.C. and Gillespie, D. (1971) Rate-controlled partial equilibrium method for treating reacting gas mixtures. Combust. Flame, 17, 237–41.CrossRefGoogle Scholar
  34. Kee, R.J. and Miller, J.A. (1986) A structural approach to the computational modeling of chemical kinetics and transport in flowing systems, Springer-Verlag Ser. Chem. Phys., 47, 196–221.Google Scholar
  35. Kim, Y.P. and Seinfeld, J.H. (1992) Simulation of multicomponent aerosol dynamics. J. Colloid Interface Sci., 149, 425–49.CrossRefGoogle Scholar
  36. Kimura, I., Hottu, N., Nukui, H., Saito, N. and Yasukawa, S. (1988) Synthesis of fine AlN powder by vapour-phase reaction. J. Mater. Sci. Lett., 7, 66–68.CrossRefGoogle Scholar
  37. Kingon, A.I., Lutz, L.J. and Davis, R.F. (1983a) Thermodynamic calculations for the chemical vapor deposition of silicon nitride. J. Am. Ceram. Soc., 66, 551–57.CrossRefGoogle Scholar
  38. Kingon, A.I., Lutz, L.J. and Davis, R.F. (1983b) Thermodynamic calculations for the chemical vapor deposition of silicon carbide. J. Am. Ceram. Soc., 66, 558–66.CrossRefGoogle Scholar
  39. Kobata, A., Kusakabe, K. and Morooka, S. (1991) Growth and transformation of TiO2 crystallites in aerosol reactor. AIChE J., 37, 347–59.CrossRefGoogle Scholar
  40. Koch, W. and Friedlander, S.K. (1990) The effect of particle coalescence on the surface area of a coagulating aerosol. J. Colloid Interface Sci., 140, 419–27.CrossRefGoogle Scholar
  41. Koch, W. and Friedlander, S.K. (1991) Particle growth by coalescence and agglomeration. Part. Sci., 8, 86–89.Google Scholar
  42. Komiyama, H., Osawa, T., Kazi, H. and Konno, T. (1987) Rapid growth of AlN films by particle precipitation aided chemical vapor deposition, in High Tech Ceramics (ed. P. Vincenzini), Elsevier Science, Amsterdam, pp. 667–76.Google Scholar
  43. Kong, P.C. and Pfender, E. (1987) Formation of ultrafine β-silicon carbide powders in an argon thermal plasma jet. Langmuir, 3, 259–65.CrossRefGoogle Scholar
  44. Kosecki, S. and Ishitani, A. (1992) Theoretical study on silicon-nitride film growth: Ab initio molecular orbital calculations. J. Appl. Phys., 72, 5808–13.CrossRefGoogle Scholar
  45. Lai, F.S., Friedlander, S.K., Pich, J. and Hidy, G.M. (1972) The self-preserving particle size distribution for Brownian coagulation in the free-molecule regime. J. Colloid Interface Sci., 39, 395–405.CrossRefGoogle Scholar
  46. Landgreb, J.D. and Pratsinis, S.E. (1989) Gas-phase manufacture of particulates: interplay of chemical reactions and aerosol coagulation in the free molecular regime. Ind. Eng. Chem. Res., 28, 1474–81.CrossRefGoogle Scholar
  47. Larkin, D.J. and Interrante, L.V. (1992) Chemical vapor deposition of silicon carbide from 1,3-disilacyclobutane. Chem. Mater., 4, 22–24.CrossRefGoogle Scholar
  48. Li, Y.L., Liang, Y., Zheng, F. and Hu, Z.Q. (1994) Carbon dioxide laser synthesis of ultrafine silicon-carbide powders from diethoxydimethylsilane. J. Am. Ceram. Soc., 77, 1662–64.CrossRefGoogle Scholar
  49. Lunden, M.M. (1994) Sintering of aerosol agglomerates. Ph.D. Thesis in Mechanical Engineering, California Institute of Technology.Google Scholar
  50. Manasevit, H.M., Erdman, F.M. and Simpson, W.I. (1971) The use of metalorganics in the preparation of semiconductor materials. J. Electrochem. Soc., 118, 1864–68.CrossRefGoogle Scholar
  51. Matsoukas, T. and Friedlander, S.K. (1991) Dynamics of aerosol agglomerate formation. J. Colloid Interface Sci., 146, 495–506.CrossRefGoogle Scholar
  52. Meakin, P., Donn, B. and Mulholland, G.W. (1989) Collisions between point masses and fractal aggregates. Langmuir, 5, 510–18.CrossRefGoogle Scholar
  53. Morosanu, C.E. (1990) Thin Films by Chemical Vapour Deposition. Elsevier, New York.Google Scholar
  54. Mountain, R.D., Mulholland, G.W. and Baum, H. (1986) Simulation of aerosol agglomeration in the free molecular and continuum flow regimes. J. Colloid Interface Sci.114, 67–81.CrossRefGoogle Scholar
  55. Mulholland, G.W., Samson, R.J., Mountain, R.D. and Ernst, M.H. (1988) Cluster size distribution for free molecular agglomeration. Energy Fuels, 2, 481–86.CrossRefGoogle Scholar
  56. Nagel, S.R., MacChesney, J.B. and Walker, K.L. (1982) An overview of the modified chemical vapor deposition (MOCVD) process and performance. IEEE J. Quantum Elect.18, 459–76.CrossRefGoogle Scholar
  57. Nakanishi, N., Mori, S. and Kato, E. (1990) Kinetics of chemical vapor deposition of titanium nitride. J. Electrochem. Soc., 137, 322–28.CrossRefGoogle Scholar
  58. Nickel, K.G., Riedel, R. and Petzow, G. (1989) Thermodynamic and experimental study of high-purity aluminum nitride formation from aluminum chloride by chemical vapor deposition. J. Am. Ceram. Soc., 72, 1804–10.CrossRefGoogle Scholar
  59. Pauleau, Y. et al. (1980) Thermodynamics and kinetics of chemical vapor deposition of aluminum nitride films. J. Electrochem. Soc., 127, 1532–37.CrossRefGoogle Scholar
  60. Pratsinis, S.E. and Mastrangelo, S.V.R. (1989) Material synthesis aerosol reactors. Chem. Eng. Progr., May, 62–66.Google Scholar
  61. Pring, J.N. and Fielding, W. (1909) The preparation at high temperatures of some refractory metals from their chlorides. J. Chem. Soc., 95, 1497–506.Google Scholar
  62. Prochazka, S. and Greskovich, C. (1978) Synthesis and characterization of a pure silicon nitride powder. Ceram. Bull., 57, 579–86.Google Scholar
  63. Rao, N.P. and McMurry, P.H. (1989) Nucleation and growth of aerosol in chemically reacting systems — a theoretical study of the near collision controlled regime. Aerosol Sci. Technol.11, 120–32.CrossRefGoogle Scholar
  64. Reynolds, W.C. (1981) STANJAN — interactive computer programs for chemical equilibrium analysis. Department of Mechanical Engineering, Stanford University.Google Scholar
  65. Rogak, S.N., Baltensperger, U. and Flagan, R.C. (1991) Measurement of mass transfer to agglomerate aerosols. Aerosol Sci. Technol, 14, 447–58.CrossRefGoogle Scholar
  66. Rogak, S.N. and Flagan, R.C. (1992) Coagulation of aerosol agglomerates in the transition regime. J. Colloid Interface Sci., 151, 203–24.CrossRefGoogle Scholar
  67. Seigneur, C., Hudischewskyj, A.B., Seinfeld, J.H., Whitby, K.T. and Whitby, E.R. (1986) Simulation of aerosol dynamics — a comparative review of mathematical models. Aerosol Sci. Technol., 5, 205–22.CrossRefGoogle Scholar
  68. Seinfeld, J.H. (1986) Atmospheric Chemistry and Physics of Air Pollution, Wiley, New York.Google Scholar
  69. Seto, T., Shimada, M. and Okuyama, K. (1995) Evaluation of sintering of nanometer-sized titania using aerosol method. Aerosol Sci. Technol., 23, 183–200.CrossRefGoogle Scholar
  70. Sheppard, L.M. (1987) Vapor-phase synthesis of ceramics. Adv. Mater. Process., 4, 53–58.Google Scholar
  71. Sommerer, T.J. and Kushner, M.J. (1992) Numerical investigation of the kinetics and chemistry of rf glow discharge plasmas sustained in He, N2, O2, He/N2/O2, He/CF4/O2, and SiH4/NH3 using a Monte Carlo-fluid hybrid model. J. Appl. Phys., 71, 1654–73.CrossRefGoogle Scholar
  72. Spear, K.E. and Dirkx, R.R. (1990) Predicting the chemistry in CVD systems. Mater. Res. Soc. Symp. Proc., 168, 19–30.CrossRefGoogle Scholar
  73. Stinton, D.P., Besmann, T.M. and Lowden, R.A. (1988) Advanced ceramics by chemical vapor deposition techniques. Ceram. Bull., 67, 350–54.Google Scholar
  74. Tachibana, A., Yamaguchi, K., Kawauchi, S. and Kurosaki, Y. (1992) SiH3 radical mechanisms for Si-N bond formation. J. Am. Chem. Soc., 114, 7504–07.CrossRefGoogle Scholar
  75. Talbot, L., Cheng, R.K., Schefer, R.W. and Willis, D.R. (1980) Thermophoresis of particles in a heated boundary layer. J. Fluid Mech., 101, 737–58.CrossRefGoogle Scholar
  76. Ulrich, G.D. and Subramanian, N.S. (1977) Particle growth in flames III. Coalescence as a rate-controlling process. Combust. Sci. Technol., 17, 119–26.CrossRefGoogle Scholar
  77. Wachtman, J.B. and Haber, R.A. (1986) Ceramic films and coatings. Chem. Eng. Progr., January, 39–45.Google Scholar
  78. Weinberg, W.C. (1982) Thermophoretic efficiency in modified chemical vapor deposition process. J. Am. Ceram. Soc.65, 81–87.CrossRefGoogle Scholar
  79. White, W.B., Johnson, W.M. and Dantzig, G.B. (1958) Chemical equilibrium in complex mixtures. J. Chem. Phys., 28, 751–55.CrossRefGoogle Scholar
  80. Wu, J.J. and Flagan, R.C. (1988) A discrete-sectional solution to the aerosol dynamic equation. J. Colloid Interface Sci., 123, 339–52.CrossRefGoogle Scholar
  81. Wu, J.J., Nguyen, H.V. and Flagan, R.C. (1988) Evaluation and control of particle properties in aerosol reactors. AIChE J., 34, 1249–56.CrossRefGoogle Scholar
  82. Xiong, Y. and Pratsinis, S.E. (1993) Formation of agglomerate particles by coagulation and sintering. 1. A 2-dimensional solution of the population balance equation. J. Aerosol Sci., 24, 283–300.CrossRefGoogle Scholar
  83. Xiong, Y., Akhtar, M.K. and Pratsinis, S.E. (1993) Formation of agglomerate particles by coagulation and sintering. 2. The evolution of the morphology of aerosol-made titania, silica, and silica-doped titania powders. J. Aerosol Sci., 24, 301–13.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1997

Authors and Affiliations

  • Richard C. Flagan
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations