Introduction to Correlation Properties of Galaxy Distribution

  • L. Pietronero
  • M. Montuori
  • F. Sylos Labini
Part of the NATO ASI Series book series (ASIC, volume 503)


Statistical analysis of spatial galaxy distribution is usually performed through the two point function ξ(r). This analysis allows one to determine a correlation length r 0 (ξ(r 0) = 1), which separates a correlated regime (r < r 0) from an uncorrelated one (r > r 0). Some years ago we criticized this approach and proposed a new one based on the concepts and methods of modern Statistical Physics. Here we present an introduction to these methods and report the results of the analysis to all the available three dimensional catalogues of galaxies and clusters, ie CfA, Perseus-Pisces, SSRS, IRAS, Stromlo-APM, LEDA, Las Campanas and ESP for galaxies and Abell and ACO for clusters. All the data analyzed are consistent with each other and show fractal correlations (with dimension D ≃ 2) up to the deepest scales probed until now (1000h –1Mpc) and even more as indicated from the new interpretation of the number counts. The very first consequence of this result is that the usual statistical methods (as for example ξ(r)), based on the assumption of homogeneity, are therefore inconsistent for all the length scales probed until now. In the range of self-similarity theories should shift from “amplitudes” to “exponents”. These facts lead to fascinating conceptual implications about our knowledge of the universe and to a new scenario for the theoretical challenge in this field.


Fractal Dimension Correlation Length Correlation Property Conditional Density Luminosity Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baryshev, Y., Sylos Labini, F., Montuori, M., Pietronero, L. (1994) Vistas in Astron. 38, 419 – 500MathSciNetADSCrossRefGoogle Scholar
  2. Benoist C. et al.(1996) Astrophys. J., in printGoogle Scholar
  3. Coleman, P.H. Pietronero, L.,& Sanders,R.H., (1988) Astron. & Astrophys.200L32 - L34ADSGoogle Scholar
  4. Coleman, P.H. and Pietronero, L., (1992) Phys.Rep.231, pp. 311 – 391ADSCrossRefGoogle Scholar
  5. Davis, M., Peebles, P. J. E. (1983) Astrophys. J.267, 465 – 482ADSCrossRefGoogle Scholar
  6. Davis M. et al., (1988) Astrophys. J. 333, L9-L12Google Scholar
  7. Da Costa L.N., et al.(1994) Astrophys. J. 424 L1-L4Google Scholar
  8. Davis. M., (1997)(astro-ph/9610149) in the Proc. of theCritical Dialogues in Cosmology” N. Turok ed.Google Scholar
  9. Di Nella H., Montuori M., Paturel G., Pietronero L., and Sylos Labini F., (1996) Astron.Astrophys.Lett.308, L33 - L36ADSGoogle Scholar
  10. Erzan A, Pietronero L., Vespignani A. (1995) Rev. Mod. Phys.67, 554ADSCrossRefGoogle Scholar
  11. Mandelbrot, B. (1982) The Fractal Geometry of Nature, Freeman, New YorkzbMATHGoogle Scholar
  12. Park, C., Vogeley, M.S., Geller, M., Huchra, J. (1994) Astrophys. J.431569ADSCrossRefGoogle Scholar
  13. Peebles, P.E.J., (1993) Principles of physical Cosmology Princeton Univ.Press.Google Scholar
  14. Pietronero L., and Tosatti E. Eds (1986) Fractal in Physics North-Holland, AmsterdamGoogle Scholar
  15. Pietronero, L. Physica A 144, 257–284Google Scholar
  16. Schecther P., (1976) Astrophys. J., 203297ADSCrossRefGoogle Scholar
  17. Sylos Labini, F., (1994), Astrophys. J., 433, 464 – 467ADSCrossRefGoogle Scholar
  18. Sylos Labini, F., Gabrielli, A., Montuori, M., Pietronero,L. (1996) 266195 – 242Google Scholar
  19. Sylos Labini, F., Montuori, M., Pietronero,L. (1996) Physica A 230, 336 – 358ADSCrossRefGoogle Scholar
  20. Sylos Labini, F., Pietronero,L. (1996) Astrophys. J.469, 28 – 42ADSCrossRefGoogle Scholar
  21. Sylos Labini, F. Amendola, L. (1996) Astrophys. J. 468 Ll-L4Google Scholar
  22. Sylos Labini, F., Montuori, M and Pietronero, L. (1996), preprintGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • L. Pietronero
    • 1
    • 2
  • M. Montuori
    • 1
    • 2
  • F. Sylos Labini
    • 1
    • 2
  1. 1.Dipartimento di FisicaUniversita di Roma “La Sapienza”Italy
  2. 2.INFM unit of Roma 1Italy

Personalised recommendations