Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 503))

Abstract

The cosmic microwave background (CMB) comprises the oldest photons in the universe and is arguably our most direct cosmological observable. All precise and accurate measurements of its attributes serve to distinguish between cosmological models. Detector technology and observing techniques have advanced to the point where fluctuations in the CMB of order a few microkelvin are measured almost routinely. In these lecture notes, we review recent measurements of both the absolute temperature and the anisotropy of the CMB and discuss the relation between the data and the general theoretical framework. Future directions are indicated and the upcoming satellite experiments are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weirs, R., Ann. Rev, Astron. Astrophys, 1980, 18: 489.

    Article  ADS  Google Scholar 

  2. Readhead, A. C. S. and Lawrence, C. R., Ann. Rev, Astron. Astrophys, 1992, 30: 653.

    Article  ADS  Google Scholar 

  3. White, M. Scott, D. and Silk, J. Ann. Rev, Astron. Astrophys, 1994, 32: 319.

    Article  ADS  Google Scholar 

  4. Bond, J. R., in Cosmology and Large Scale Structure, ed R. Schaeffer, 1995, Elsevier Science Publishers, Netherlands

    Google Scholar 

  5. Tegmark, M. Proc. Enrico Fermi Course CXXXII, Varenna, 1995. (astro-ph/9511079)

    Google Scholar 

  6. Hu, W., Sugiyama, N. k Silk, J. Review for Nature, 1996, (astro-ph/9604166).

    Google Scholar 

  7. Smoot, G. & Scott, D. Current Summary of Results. in L. Montanet et al. Phy. Rev D50, 1173 (1994), off-year addition (astro-ph/9603157).

    Google Scholar 

  8. Page, L., Proceedings from the Critical Dialogues in Cosmology Conference, Princeton NY, June 1996.

    Google Scholar 

  9. Sunyaev, R. A. & Zel’dovich, Ya. B. Ann. Rev, Astron. Astrophys, 1980, 18: 537.

    Article  Google Scholar 

  10. Danese, L., Burigana, C. Toffolatti, L., De Zotti, G. & Franceschini, A. The Cosmic Microwave Background: 25 Years Later, 153, 1990, Kluwer Academic Publishers. Mandolesi & Vittorio (eds.)

    Google Scholar 

  11. Bartlett, J. G., Stebbine, A. 1991, ApJ, 371: 8.

    Article  ADS  Google Scholar 

  12. Partridge, B. “3K: The Cosmic Microwave Background Radiation”, Cambridge University Press, 1995.

    Google Scholar 

  13. Wright, E. L. et al., 1991, Ap.J. 381: 200.

    Article  ADS  Google Scholar 

  14. COBE is the COsmic Background Explorer. The three experiments aboard the satellite are the Differential Microwave Radiometers (30–90 GH$, DMR), the Far InfraRed Absolute Spectrophotometer (60–630 GH$, FIRAS), and the Diffuse WraRed Background Experiment (1.2–240 jLm, DIRBE) All the experiments produce maps of the sky.

    Google Scholar 

  15. Haslam et al., 1982 A&AS, 47, 1 1991b, ApJ, 379, 1

    ADS  Google Scholar 

  16. Available through the Infrared Processing and Analysis Center in Pasadena, CA.

    Google Scholar 

  17. Kogut, A. et al. 1996, Ap.J. 464: L5 - L9.

    Article  ADS  Google Scholar 

  18. Netterfield, C. B. et al., 1997, ApJ. accepted, (astro-ph/9601197).

    Google Scholar 

  19. Ratra, B. Banday, A. J., Góraski, K. M., do Sugiyama, N. 1995, (astro-ph/9512145).

    Google Scholar 

  20. Tegmark, M. and Efstathiou, G. Submitted to MNRAS (astro-ph/950T009).

    Google Scholar 

  21. Mather J. C. et al. 1994 Ap.J. ApJ 420: 439.

    Article  ADS  Google Scholar 

  22. Fixsen D. J. et al. 1996 ApJ 473:576. (astro-ph/9605054).

    Google Scholar 

  23. Fixsen D. J. et al. 1994 ApJ 420: 457

    Article  ADS  Google Scholar 

  24. Gush, H. et al., 1990, PRL, 65, 537.

    Article  ADS  Google Scholar 

  25. Private communication, June 1996.

    Google Scholar 

  26. Rybicki and Lightman. “Radiative Processes in Astrophysics” John WileY& Sons, New York, 1979.

    Google Scholar 

  27. Wright, E. L., et al. 1994, Ap.J. ApJ, 420: 450.

    Article  ADS  Google Scholar 

  28. Bersanelli M. et al. 1994, Ap.J. 424: 517.

    Article  ADS  Google Scholar 

  29. Peebles, P. J. E. et al. 1991, Nature, 352: 769.

    Article  ADS  Google Scholar 

  30. Staggs, S. T., et al, 1996, ApJ 473:L1 (astro-ph/9609128).

    Google Scholar 

  31. The team of R. Shafer M. Mather M. DiPirro A. Kogut, D. Fixsen, M. Seiffert, P. Lubin, & S. Levin have designed a satellite mission called DIMES (Diffuse Microwave Emission Survey) to measure the CMB temperature between 2 and 100 GHs to 0.1 mK accuracy. A subset of this team is also building a balloon experiment for a multifrequency absolute measurement. They hope to fly in early 1997. More information may be obtained from httP: ceylon.gsfc.nasa.8ov DIMES

    Google Scholar 

  32. Burigana C. Danese L.& De Zotti G.F. 1991a A&A 246, 49

    ADS  Google Scholar 

  33. Burigana C. Danese L.& De Zotti G.F. 1991b ApJ 379, 1

    Article  ADS  Google Scholar 

  34. Smith C. 1996, Ph.D. Thesis Princeton University.

    Google Scholar 

  35. Staggs, S., 1993, Ph.D. Thesis, Princeton University.

    Google Scholar 

  36. Jungmam, G., Kamionkowski, M., Kosowsky, A. and Spergel, D. Phys. Rev. D, 1996, 54 1332.

    Article  Google Scholar 

  37. Peebles P. J. E. 1994, ApJ 419: 149.

    Google Scholar 

  38. Ratra, B. & Sugiyama, N.1995, (astro-ph/9512157)

    Google Scholar 

  39. Silk. J. 1968 ApJ 151: 459.

    Article  ADS  Google Scholar 

  40. Sunayev, R.A. and Zel’dovich Y. B., 1970, Astrophysics and Space Science, 7:3–19, Reidel, Dordrecht-Holland.

    Google Scholar 

  41. Peebles P.J.E. and Yu J.T., 1970, AP.J 162:815.,

    Google Scholar 

  42. Hu, W. and White, M.1996, IAS preprint IASSNS-AST 96/47. Submitted to Ap.J.Available through httP://www.sns.ias.edu whu.

    Google Scholar 

  43. Kanionkowski, M., Spergel D. N., & Sugiyama N. 1994 ApJ 426: L57.

    Article  ADS  Google Scholar 

  44. Timbie P 1985, PhD. Thesis “A Novel Interferometer to Search for Anisotropy in the 2.7 K Background Radiation.” Princeton.

    Google Scholar 

  45. Meinhold, P., 1989 PhD. Thesis, “Anisotropy Measurements of the Cosmic Microwave Background Radiation at 3 mm Wavelength and an Angular Scale of 30 Arcminutes.” UCB

    Google Scholar 

  46. Robertson T.1996 Senior Thesis Princeton University.

    Google Scholar 

  47. FIRS. The Far InfraRed Survey. This is an experiment that started at MIT but has since moved to Princeton, University of Chicago and NASA GSFC. It is a bolometer based balloon-borne radiometer. It confirmed the initial COBE/DMR discovery.

    Google Scholar 

  48. Bock J. et al. Proceedings of “Submillimeter and Far-Infrared Space Instrumentation,” 30thESLAB Symposium, 24–26 Sept. 1996, ESTEC, Noordwijk, The Netherlands.

    Google Scholar 

  49. Kowitt, M. S. et al. 1996, Appl. Opt. 35: 5630.

    Article  MathSciNet  ADS  Google Scholar 

  50. Nahum, M. & Martinis, J. M. 1993, “Novel Hot-electron Bolometer” Proceedings from 20thconference on Low-Temperature Physics, Eugene, OR.

    Google Scholar 

  51. Downey, P. M. et al. 1984, Appl. Opt. 239: 10

    Google Scholar 

  52. Lee, A. T. et al. 1996, Preprint, To appear in Appl. Phys. Lett.

    Google Scholar 

  53. CAT. This is the Cambridge Anisotropy Telescope. It operates near 15 GHz and produces images of the microwave background. Early results are reported in Scott et al. 1996, Ap.J. 461: L1.

    Article  Google Scholar 

  54. Netterfield, B et al., 1995 ApJ 445: L69

    Article  ADS  Google Scholar 

  55. Kuhr H. Paulin-Toth I.I.K. Witzel A. &Schmidt J. 1981 AJ 86, 854.

    Article  ADS  Google Scholar 

  56. Bond J. R. Astro. Lett. & Comm. Vol 32, No. 1 1995. Presented in 1994.

    Google Scholar 

  57. Smoot G.F. et al.1992, Ap.J. 396:L1.

    Google Scholar 

  58. Bennet, C. et al.1996 Ap.J. 464:L1-L4.

    Google Scholar 

  59. Górski K. et al.1996 Ap.J. 464:L11-L15.

    Google Scholar 

  60. Hinshaw G. et al.1996, Ap.J. 464:L17-L20.

    Google Scholar 

  61. Wright E. et al. 1996 Ap.J. 464: L21 - L24.

    Article  ADS  Google Scholar 

  62. Peebles, P.J.E. 1995, Private Communication

    Google Scholar 

  63. Crittenden R. G. & Turok N. 1995 PRL 75, 14

    Article  Google Scholar 

  64. Sugiyama, N. 1995, Ap.J., 100, 281

    Article  ADS  Google Scholar 

  65. Kogut, A. et al. 1996, ApJ 464: L29 - L33.

    Article  MathSciNet  ADS  Google Scholar 

  66. Bond J. R. & Efstathiou G. 1987 MNRAS 226 655.

    ADS  Google Scholar 

  67. Górski, K. M.1996 Private Communication

    Google Scholar 

  68. Tegmark M. 1996 Ap.J. 464: L35.

    Article  ADS  Google Scholar 

  69. Hauser, M. G. & Peebles P.J.E. 1973, Ap.J. 185: 757.

    Article  ADS  Google Scholar 

  70. Górski, K. M. 1994 Ap.J. 430: L85.

    Article  ADS  Google Scholar 

  71. Wollack E. et al.1997, ApJ, Accepted (astro-ph 9601196).

    Google Scholar 

  72. ACE and BEAST. These two new projects are aimed at using HEMTs between 26 and 100 GHz on both super- pressure and conventional long -duration balloon platforms. The finest resolution will be near 1/5°.

    Google Scholar 

  73. APACHE. This ex eriment will observe from Dome-C in the Antarctic. Web site http://tonno.tesre.bo.cnr.it/ valenzia/ APACHE/ apache.html contains more information.

    Google Scholar 

  74. ARGO. A balloon-borne bolometer based experiment. Results are reported in de Bernardis, et al. 1994, Ap.J. 422: L33.

    Article  Google Scholar 

  75. ATCA: Australia Telescope Compact Array. An interferometer operating at 8.7 GHz with a 2’ resolution produced a map that was analyzed for anisotropy. The results are reported in Subrahmanyan R. Ekers, R. D., Sinclair, M. & Silk J. 1993 MNRAS 263:416.

    Google Scholar 

  76. BAM: Balloon Anisotropy Measurement. This uses a differential Fourier transform spectrometer to measure the spectrum of the anisotropy between 90 and 300 GHz. Recent results are reported in astro- ph/9609108. More information may be obtained from http://cmbr. physics.ubc.edu.

    Google Scholar 

  77. Bartol. This is a bolometer-based experiment designed to look at 2° angular scales. It observed from the Canary Islands. Results are reported in Piccirillo et al. astroph/9609186.

    Google Scholar 

  78. BOOMERanG is a collaboration between the Caltech, Berkele, Santa Barbara, (Ruhl) and Rome groups. It will use bolometers to measure the anisotropy in the CMB between 90 and 410 GHz. The ultimate goal is a circumpolar Antarctic flight.

    Google Scholar 

  79. CBI: Cosmic Back ound Imager. This is an interferometer that plans to produce maps of the microwave sk near 30 GHz.

    Google Scholar 

  80. HACME/SP. This uses HEMTs on the ACME telescope. Observations were made from the South Pole. Recent results are reported in Gundersen, J. et al. 1995 Ap.J. 443: L57.

    Article  Google Scholar 

  81. IAB. A bolometer-based experiment carried out at the Italian Antarctic Base. Result are reported in Piccirillo, L. & Calisse, P. 1993 Ap.J. 413: 529.

    Google Scholar 

  82. MAT. This is the Mobile Anisotropy Telescope. It is similar to QMAP but is designed to operate from the ground in Chile.

    Google Scholar 

  83. MAX was a collaboration between UCSB and Berkeley. It is a balloon-borne bolometer-based radiometer spanning roughly between 90 and 420 GHz. Recent results are reported in Lim et al.1996 Ap. J. 469:169. It flew on the ACME telescope.

    Google Scholar 

  84. MAXIMA is a collaboration between Caltech and Berkeley. It is the next generation of MAX. Web site http://physics7.berkeley.edu/group/cmb/gen.html contains more information.

    Google Scholar 

  85. MSAM. There are a number of versions of MSAM. All use bolometers of various sorts and fly on balloons. The MSAM collaboration includes NASA/GSFC, Bartol Research Institute, Brown University, and the University of Chicago.

    Google Scholar 

  86. OVRO. The Owen’s Valley Radio Observatoty telescopes operate with various receivers between 15 and 30 GHz. The 40 m dish has a 2’ beam, and the 5.5 m has a 7.3’ beam. The experiments are aimed primarily at small angular scales.

    Google Scholar 

  87. PYTHON. A multi pixel bolometer- and HEMT- based experiment operated from the ground at the South Pole. The experiment has run in a number of configurations. Recent results are reported in Ruhl, J., et al. 1995, Ap.J., 453: L1.

    Article  Google Scholar 

  88. QMAP. This is a balloon-borne experiment that uses a combination of HEMTs and SIS detectors. The angular resolution is 1/5°. This experiment is designed to produce “true” maps of the sky.

    Google Scholar 

  89. SASK. These experiments are based on HEMT amplifiers operating between 26 and 46 GHz. They were performed in Saskatoon, Saskatchewan CA. Three years of observations have gone into the final data set.

    Google Scholar 

  90. SUZIE is a bolometer-based experiment that observes from the ground. It is primarily intended to measure the SZ effect at high frequencies though it will also give information on the anisotropy at small scales.

    Google Scholar 

  91. TopHat is a collaboration between Bartol Research Institute, Brown University, DSRI, NASA/GSFC, and the University of Chicago. The group plans to observe with an extremely light-weight bolometer-based payload mounted on top of a scientific balloon that circumnavigates the Antarctic. For more information see http://cobi.gsfc.nasa.gov/msam-tophat.html.

    Google Scholar 

  92. Tenerife. Ground based differential radiometers with 10–33 GHz receivers. The resolution is about 6°. The experiment observes from the Observatorio del Teide in Tenerife, Spain. It has operated for many years. Recent results are discussed in Hancock et al. 1994, Nature, 367, 333.

    Article  Google Scholar 

  93. VCA: Very Compact Array. This is an interferometer being developed at the University of Chicago. It will produce maps of the CMB at 30 GHz and be sensitive to larger angular scales than CBI.

    Google Scholar 

  94. VLA. This is work done near 5 GHz, on arcminute and smaller angular scales. It uses the Very Large Array. Recent results are reported in Fomalont et al. 1993, Ap.J. 404: 8 – 20.

    Article  Google Scholar 

  95. VSA: Very Small Array. This is a 30 GHz interferometer; the next generation of CAT. Web site http://www.mrao.com.ac.uk/telescopes/cat/vsa.html contains more information.

    Google Scholar 

  96. White Dish. This experiment uses and on-axis Cassegrain telescope and a 90 GHz single-mode bolometer. It observed at the South Pole and is sensitive to small angular scales. Results are reported in Tucker et al., 1993, Ap.J. 419: L45.

    Article  Google Scholar 

  97. Ratra, B. 1996. The original compilation was reported in Ratra & Sugiyama, 1995. This is available through astro-ph/9512157. Ratra has kept the list up-to-date and kindly supplied his more recent results.

    Google Scholar 

  98. Ganga, K. M. et al. 1993, Ap.J. 432: 115 - L18.

    Google Scholar 

  99. Cheng, E. S. et al., 1994, Ap.J. 422: L37 - L40.

    Article  ADS  Google Scholar 

  100. Cheng, E. S. et al., 1996, Ap.J. 456: L71 - L74.

    Article  ADS  Google Scholar 

  101. Inman, C. A. et al, Submitted to Ap.J. Letters; astro-ph/9603017.

    Google Scholar 

  102. Crittenden, R. G., Coulson D., & Turok, Phys. Rev. D, 1995, D52, 5402. See also astro-ph/9408001 and astro-ph/9406046.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Kluwer Academic Publishers

About this chapter

Cite this chapter

Page, L.A. (1997). On Observing the Cosmic Microwave Background. In: Schramm, D.N., Galeotti, P. (eds) Generation of Cosmological Large-Scale Structure. NATO ASI Series, vol 503. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0053-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0053-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6513-9

  • Online ISBN: 978-94-009-0053-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics