Evolution of the Two-Point Correlation Function: Zel’dovich Approximation vs. Scaling Ansätze

  • C. Porciani
Part of the NATO ASI Series book series (ASIC, volume 503)


We study the evolution of the mass autocorrelation function in the Zel’dovich approximation and we compare the results with the predictions of the scaling ansatz for the growth of gravitational clustering formulated by Jain, Mo & White [7].


Power Spectrum Gravitational Instability Redshift Dependence Gravitational Cluster Redshift Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baugh, C.M. and Efstathiou, G. (1994) A comparison of the evolution of density fields in perturbation theory and numerical simulations- I. Non-linear evolution of the power spectrum, MNRAS 270, 183 – 198ADSGoogle Scholar
  2. 2.
    Baugh, C.M. and Gaztañaga, E. (1996) Testing ansatze for quasi-nonlinear clustering: the linear APM power spectrum, MNRAS 280, L37 – L43ADSGoogle Scholar
  3. 3.
    Bond, J.R. & Couchmann, H.M.P. (1988) w gg(V) as a probe of large scale structures, in A. Coley, C.C. Dyer and B.O.J. Tupper (eds.), Proc. Second Canadian Conference on General Relativity & Relativistic Astrophysics, World Scientific, Singapore, 385 – 394Google Scholar
  4. 4.
    Coles, P. (1990) Second-order evolution of Cold Dark Matter perturbations, MNRAS 243, 171 – 176ADSGoogle Scholar
  5. 5.
    Coles, P., Melott, A.L. and Shandarin, S.F. (1993) Testing approximations for nonlinear gravitational clustering, MNRAS 260, 765 – 776ADSGoogle Scholar
  6. 6.
    Hamilton, A.J.S., Kumar, P., Lu, E. and Mathews, A. (1991) Reconstructing the primordial spectrum of fluctuations of the Universe for the observed non-linear clustering of galaxies, ApJ 374, L1 - L4ADSCrossRefGoogle Scholar
  7. 7.
    Jain, B., Mo, H.J. and White, S.D.M. (1995) The evolution of correlation functions and power spectra in gravitational clustering, MNRAS 276, L25 - L29ADSGoogle Scholar
  8. 8.
    Mann, R.G., Heavens, A.F. and Peacock, J.A. (1993) The richness dependence of cluster correlations, MNRAS 263, 798 – 816ADSGoogle Scholar
  9. 9.
    Peacock, J.A. and Dodds, S.J. (1996) Non-linear evolution of cosmological power spectra, MNRAS 280, L19 - L26ADSGoogle Scholar
  10. 10.
    Porciani C. (in press) Evolution of the two-point correlation function in the Zel’dovich approximation, MNRAS, astro-ph 9609029Google Scholar
  11. 11.
    Zel’dovich, Ya.B. (1970) Gravitational instability: an approximate theory for large density perturbations, A & A 5, 84 – 89ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • C. Porciani
    • 1
  1. 1.SISSA, Scuola Internazionale di Studi Superiori AvanzatiTriesteItaly

Personalised recommendations