Erosion and Recovery of the Plasmasphere in the Plasmapause Region

  • D. L. Carpenter
  • J. Lemaire
Part of the Space Science Series of ISSI book series (SSSI, volume 2)


Understanding the basic plasmasphere erosion/recovery cycle remains a major, as yet largely unmet, challenge to the space science community. We do not yet have a description of the formation of a new plasmapause boundary, nor have we been able to map the evidently complex electric fields that develop at subauroral latitudes during the process of plasmasphere erosion. Density structure regularly observed in the plasmapause region suggests that instabilities play an as yet unassessed role in the erosion/recovery cycle. Electron density interior to a newly formed plasmapause boundary tends to be reduced by factors of up to 3 in association with the erosion process, so that refilling during recovery occurs there as well as in the more deeply depleted plasmatrough region beyond. The number of electrons lost from this interior region, apparently through interchange with the ionosphere, can be of order 50% of the number lost from beyond the new boundary through flow perpendicular to B. Evidence has been found that of order 20% of the plasma removed from the main plasmasphere during an erosion event remains in the outer afternoon-dusk magnetosphere for extended periods. It is not yet known whether eroded plasmas entering the Earth’s boundary layers make a geophysically important contribution to the plasma sheet. New insights into these and other important questions await both future photon and radio imaging of the plasmasphere from high altitude as well as continued work with certain excellent, as yet only partially exploited, satellite data sets.


Magnetic Storm Plasma Sheet Electron Density Profile Synchronous Orbit Substorm Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afonin, V. V., Bassolo, V. S., Smibauer, Y. and Lemaire, J.: 1997, ‘Motion and erosion of the nightside plasmapause region and of the associated subauroral electron temperature enhancement: COSMOS-900 observations’, J.Geophys. Res. 102, 2093.ADSCrossRefGoogle Scholar
  2. Anderson, P. C., Heelis, R. A. and Hanson, W. B.: 1991, ‘The ionospheric signatures of rapid subauroral ion drifts’, J. Geophys. Res. 96, 5785.ADSCrossRefGoogle Scholar
  3. Anderson, P. C., Hanson, W. B., Heelis, R. A., Craven, J. D., Baker, D. N. and Frank, L. A.: 1993, ‘A proposed production model of rapid subauroral ion drifts and their relationship to substorm evolution’, J. Geophys. Res. 98, 6069.ADSCrossRefGoogle Scholar
  4. Angerami, J. J. and Carpenter, D. L.: 1966, ‘Whistler studies of the plasmapause in the magnetosphere, 2, Equatorial density and total tube electron content near the knee in magnetospheric ionization’, J. Geophys. Res. 71, 711.ADSGoogle Scholar
  5. Axford, W. I. and Hines, C. O.: 1961, ‘A unifying theory of high-latitude geophysical phenomena and geomagnetic storms’, Canad. J. Phys. 39, 1433.MathSciNetADSCrossRefGoogle Scholar
  6. Block, L. P.: 1966, ‘On the distribution of electric fields in the magnetosphere’, J. Geophys. Res. 71, 855.ADSGoogle Scholar
  7. Brace, L. H. and Theis, R. F.: 1974, ‘The behavior of the plasmapause at midlatitudes: ISIS 1 Langmuir probe measurements’, J. Geophys. Res. 79, 1871.ADSCrossRefGoogle Scholar
  8. Brice, N. M.: 1967, ‘Bulk motion of the magnetosphere’, J. Geophys. Res. 72, 5193.ADSCrossRefGoogle Scholar
  9. Calvert, W. et al.: 1995, ‘The feasibility of radio sounding in the magnetosphere’, Radiosci. 30, 1577.ADSGoogle Scholar
  10. Carpenter, D. L.: 1962, ‘The magnetosphere during magnetic storms; a whistler analysis’, Ph.D. thesis, Stanford University.Google Scholar
  11. Carpenter, D. L.: 1963, ‘Whistler evidence of a ‘knee’ in the magnetospheric ionization density profile’, J. Geophys. Res. 68, 1675.MathSciNetADSCrossRefGoogle Scholar
  12. Carpenter, D. L.: 1966, ‘Whistler studies of the plasmapause in the magnetosphere, 1, Temporal variations in the position of the knee and some evidence on plasma motions near the knee’, J. Geophys. Res. 71, 693.ADSGoogle Scholar
  13. Carpenter, D. L.: 1967, ‘Relations between the dawn minimum in the equatorial radius of the plasmapause and Dst, Kp and the local K at Byrd Station’, J. Geophys. Res. 72, 2969.CrossRefGoogle Scholar
  14. Carpenter, D. L.: 1970, ‘Whistler evidence of the dynamic behavior of the duskside bulge in the plasmasphere’, J. Geophys. Res. 75, 3837.ADSCrossRefGoogle Scholar
  15. Carpenter, D. L.: 1995, ‘Earth’s plasmasphere awaits rediscovery’, Eos, trans. AGU, 76, 89.ADSCrossRefGoogle Scholar
  16. Carpenter, D. L. and Akasofu, S.-I.: 1972, ‘Two substorm studies of relations between westward electric fields in the outer plasmasphere, auroral activity, and geomagnetic perturbations’, J. Geophys. Res. 11, 6854.ADSCrossRefGoogle Scholar
  17. Carpenter, D. L. and Anderson, R. R.: 1992, ‘An ISEE/whistler model of equatorial electron density in the magnetosphere’, J. Geophys. Res. 97, 1097.ADSCrossRefGoogle Scholar
  18. Carpenter, D. L. and Park, C. G.: 1973, ‘On what ionosphere workers should know about the plasmapause-plasmasphere’, Rev. Geophys. Space Phys. 11, 133.ADSCrossRefGoogle Scholar
  19. Carpenter, D. L., Stone, K., Siren, J. C. and Crystal, T. L.: 1972, ‘Magnetospheric electric fields deduced from drifting whistler paths’, J. Geophys. Res. 77, 2819.ADSCrossRefGoogle Scholar
  20. Carpenter, D. L., Park, C. G. and Miller, T. W.: 1979, ‘A model of substorm electric fields deduced from drifting whistler paths’, J. Geophys. Res. 84, 6559.ADSCrossRefGoogle Scholar
  21. Carpenter, D. L., Giles, B. L., Chappell, C. R., Décréau, P. M. E., Anderson, R. R., Persoon, A. M., Smith, A. J., Corcuff, Y. and Canu, P.: 1993, ‘Plasmasphere dynamics in the dusk-side bulge region: a new look at an old topic’, J. Geophys. Res. 98, 19,243Google Scholar
  22. Cauffman, D. P. and Gurnett, D. A.: 1972, ‘Satellite measusrements of high latitude convection electric fields’,Space Sci. Rev. 13, 369.ADSCrossRefGoogle Scholar
  23. Chappell, C. R.: 1972, ‘Recent satellite measuremenets of the morphology and dynamics of the plasmasphere’, Rev. Geophys. Space Phys. 10, 951.ADSCrossRefGoogle Scholar
  24. Chappell, C. R.: 1974, ‘Detached plasma regions in the magnetosphere’, J. Geophys. Res. 79 1861.ADSCrossRefGoogle Scholar
  25. Chappell, C. R., Harris, K. K. and Sharp, G. W.: 1970a, ‘A study of the influence of magnetic activity on the location of the plasmapause as measured by OGO 5’ V. Geophys. Res. 75, 50.ADSCrossRefGoogle Scholar
  26. Chappell, C. R., Harris, K. K. and Sharp, G. W.: 1970b, ‘The morphology of the bulge region of the plasmasphere’, J. Geophys. Res. 75, 3848.ADSCrossRefGoogle Scholar
  27. Chappell, C. R., Harris, K. K. and Sharp, G. W.: 1971, ‘The dayside of the plasmasphere‘, J. Geophys. Res. 76, 7632.ADSCrossRefGoogle Scholar
  28. Chen, A. J. and Wolf, R. A.: 1972, ‘Effects on the plasmasphere of time-varying convection electric fields’, Plan. Space Sci. 20, 483.ADSCrossRefGoogle Scholar
  29. Décréau, P. M. E., Beghin, C. and Parrot, M.: 1982, ‘Global characteristics of the cold plasma in the equatorial plasmapause region as deduced from the GEOS 1 mutual impedance probe’, J. Geophys. Res. 87, 695.ADSCrossRefGoogle Scholar
  30. Dungey, J. W.: ‘The theory of the quiet magneto-sphere’, in J. King and W. Newman (eds.), Proceedings of the 1966 Symposium on Solar-Terrestrial Physics, Belgrade, Academic Press, Inc., London and New York, pp. 91–106.Google Scholar
  31. Elphic, R. C., Weiss, L. A., Thomsen, M. F. and McComas, D. J.: 1996 “Evolution of plasmaspheric ions at geosynchronous orbit during times of high geomagnetic activity’, Geophys. Res. Lett. 23, 2189.ADSCrossRefGoogle Scholar
  32. Elphic, R. C., Thomsen, M. F. and Borovsky, J. E.: 1997, ‘The fate of the outer plasmasphere’, Geophys. Res. Lett. 24, 365.ADSCrossRefGoogle Scholar
  33. Frank, L. A. et al.: 1994, ‘Imagers for the magnetosphere, aurora, and plasmasphere’, Optical Eng., 33 (2), 391.ADSCrossRefGoogle Scholar
  34. Freeman, J. W., Hills, H. K., Hill, T. W. and Reiff, P. H.: 1977, ‘Heavy ion circulation in the earth’s magnetosphere’, Geophys. Res. Lett. 4, 195.ADSCrossRefGoogle Scholar
  35. Freeman, M. P., Southwood, D. J., Lester, M., Yeoman, T. K. and Reeves, G. D.: 1992, ‘Substorm-associated radar auroral surges’, J. Geophys. Res. 97, 12,173.Google Scholar
  36. Fuselier, S. A., Peterson, W. K., Klumpar, D. M. and Shelley, E. G.: 1989, ‘Entry and acceleration of He+ in the low latitude boundary layer, Geophys. Res. Lett. 16, 751.ADSCrossRefGoogle Scholar
  37. Gallagher, D. L., Craven, P. D.., Comfort, R. H. and Moore, T. E.: 1995, ‘On the azimuthal variation of core plasma in the equatorial magnetosphere’, J. Geophys. Res. 100, 23, 597.Google Scholar
  38. Galperin, Y. I., Khalipov, V. L. and Zosimova, A. G.: 1974, ‘Plasma convection in the polar ionosphere’, Ann Geophys. 30, 1.Google Scholar
  39. Galperin, Y. I., Soloviev, V. S., Torkar, K., Foster, J. C. and Veselov, M. V.: 1997, ‘Predicting plasmaspheric radial density profiles’, J. Geophys. Res. 102, 2079.ADSCrossRefGoogle Scholar
  40. Gurnett, D. A.: 1976, ‘Plasma wave interactions with energetic ions near the magnetic equator’, J. Geophys. Res. 81, 2765.ADSCrossRefGoogle Scholar
  41. Gurnett, D. A. and Shaw, R. R.: 1973, ‘Electromagnetic radiation trapped in the magneto-sphere above the plasma frequency’, J. Geophys. Res. 78, 8136.ADSCrossRefGoogle Scholar
  42. Gringauz, K. I.: 1963, ‘The structure of the ionized gas envelope of earth from direct measurements in the USSR of local charged particle concentrations’Planet. Space Sci. 11, 281.ADSCrossRefGoogle Scholar
  43. Gringauz, K. I., Kurt, V. G., Moroz, V. I. and Shklovsky, I. S.: 1960, ‘Results of observations of charged particles up to R=100000 km with the aid of charged particle traps on Soviet cosmic rockets’, Astron. Zhurnal 4, 716.ADSGoogle Scholar
  44. Heppner, J. P. and Maynard, N. C.: 1987, ‘Empirical high latitude electric field models’, J. Geophys. Res. 92, 4467.ADSCrossRefGoogle Scholar
  45. Higel, B. and Wu, L.: 1984, ‘Electron density and plasmapause characteristics at 6.6 R E: A statistical study of the GEOS 2 relaxation sounder data’, J. Geophys. Res. 89, 1583.ADSCrossRefGoogle Scholar
  46. Ho, D. and Carpenter, D. L.: 1976, ‘Outlying plasmasphere structure detected by whistlers’, Planet. Space Sci. 24, 987.ADSCrossRefGoogle Scholar
  47. Horwitz,J. L.: 1983, ‘Plasmapause diffusion’ J. Geophys. Res. 88,4950ADSCrossRefGoogle Scholar
  48. Horwitz, J. L., Baugher, C. R., Chappell, C. R., Shelley, E. G. and Young, D. T.: 1981, ‘Pancake pitch angle distributions in warm ions observed with ISEE l’, J Geophys. Res. 86, 3311.ADSCrossRefGoogle Scholar
  49. Horwitz, J. L., Comfort, R. H. and Chappell, C. R.: 1990, ‘A statistical characterization of plasmasphere density structure and boundary locations’ J. Geophys. Res. 95, 7937.ADSCrossRefGoogle Scholar
  50. Huang, T. S., Wolf, R. A. and Hill, T. W.: 1990, ‘Interchange instability of the Earth’s plasmapause’, J. Geophys. Res. 95, 17, 187.Google Scholar
  51. Jaggi, R. K. and Wolf, R. A.: 1973, ‘Self-consistent calculation of the motion of a sheet of ions in the magnetosphere’, J Geophys. Res. 78, 2852.ADSCrossRefGoogle Scholar
  52. Karlson, E. T..: 1971, ‘Plasma flow in the magnetosphere. I. A two-dimensional model of stationary flow’, Cosmic Electrodynamics 1, 474.Google Scholar
  53. Kelley, M. C.: 1986, ‘Intense sheared flow as the origin of large-scale undulations of the edge of the diffuse aurora’, J. Geophys. Res. 91, 3225.ADSCrossRefGoogle Scholar
  54. Koons, H. C.: 1989, ‘Observations of large-amplitude, whistler mode wave ducts in the outer plasmasphere’, J. Geophys. Res. 94, 15,393.Google Scholar
  55. Kurita, K. and Hayakawa, M.: 1985, ‘Evaluation of the effectiveness of theoretical model calculation in determining the plasmapause structure’, J. Geophys. 57, 130.Google Scholar
  56. LeDocq, M. J., Gurnett, D. A. and Anderson, R. R.: 1994, ‘Electron number density fluctua-tions near the plasmapause observed by the CRRES spacecraft’, J Geophys. Res. 99, 23, 661.Google Scholar
  57. Lemaire, J.: 1974, ‘The “Roche-limit” of ionospheric plasma and formation of the plasma-pause’, Planet. Space Sci. 22, 757.Google Scholar
  58. Lemaire, J.: 1975, ‘The mechanisms of formation of the plasmapause’ Ann. Géophys., 31,175.Google Scholar
  59. Lemaire, J.: 1985, ‘Frontiers of the plasmasphere’, Thèse d’agrégation de l‘enseignement supérieur, Editions Cabay, Louvain-la-Neuve, Belgium.Google Scholar
  60. Lemaire,J. and Gringauz, K.I.: 1997, The Earth’s Plasmasphere, Cambridge University Press (in press).Google Scholar
  61. Lemaire, J. and Schunk, R. W.: 1992, ‘Plasmaspheric wind’, J Atmos. Terr. Phys. 54, 467.ADSCrossRefGoogle Scholar
  62. Lemaire, J. and Schunk, R. W.: 1994, ‘Plasmasphere convection with non-closed streamlines’, J Atmos. Terr. Phys. 56, 1629.ADSCrossRefGoogle Scholar
  63. Lennartsson, W. and Reasoner, D. L.: 1978, ‘Low-energy plasma observations at synchronous orbit’, J. Geophys. Res. 83, 2145.ADSCrossRefGoogle Scholar
  64. Moldwin, M. B., Thomsen, M. G., Bame, S. J., McComas, D. J. and Moore, K. R.: 1994, ‘An examination of the structure and dynamics of the outer plasmasphere using multiple geosynchronous satellites’, J. Geophys. Res. 99,11,475.Google Scholar
  65. Moldwin, M. B. Thomsen, M. F., Bame, S J., McComas, D. J. and Reeves, G. D.: 1995, ‘The fine scale structure of the outer plasmasphere’, J Geophys. Res. 100, 8021.ADSCrossRefGoogle Scholar
  66. Morfill, G. E.: 1978, ‘A review of selected topics in magnetospheric physics’, Rep. Prog. Phys. 41, 303.ADSCrossRefGoogle Scholar
  67. Nagai, T., Horwitz, J. L., Anderson, R. R. and Chappell, C. R.: 1985, ‘Structure of the plasmapause from ISEE 1 low energy ion and plasma wave observations’, J Geophys. Res. 90, 6622.ADSCrossRefGoogle Scholar
  68. Nishida, A.: 1966, ‘Formation of plasmapause, or magnetospheric plasma knee, by the combined action of magnetospheric convection and plasma escape from the tail’, J. Geophys. Res. 71, 5669.ADSGoogle Scholar
  69. Ober, D. M., Horwitz, J. L., Thomsen, M. F., Elphic, R C., McComas, D. J., Belian, R. D. and Moldwin, M. B.: 1997a, ‘Premidnight plasmaspheric “plumes”’ J. Geophys. Res. 102, in press.Google Scholar
  70. Ober, D. M., Horwitz, J. L. and Gallagher, D. L.: 1997b, ‘Formation of density troughs embedded in the outer plasmasphere by subauroral ion drifts (SAID)’, J. Geophys. Res. 102, in press.Google Scholar
  71. Ober, D. M., Horwitz, J. L. and Gallagher, D. L.: 1997c, ‘Convection of plasmaspheric plasma into the outer magnetosphere and boundary layer region: Initial results’, submitted to Encounters between global observations and models in the ISTP era, American Geophysical Union, Washington, D. C.Google Scholar
  72. Okada, T., Hayakawa, H., Tsuruda, K., Nishida, A. and Matsuoka, A.: 1993, ‘EXOS D observations of enhanced electric fields during the giant magnetic storm in March 1989’, J. Geophys. Res. 98,15, 417.Google Scholar
  73. Olsen, R. C., Shawhan, S. D., Gallagher, D. L., Green, J. L., Chappell, C. R. and Anderson, R. R.: 1987, ‘Plasma observations at the magnetic equator’. J. Geophys. Res. 92, 2385.ADSCrossRefGoogle Scholar
  74. Oya, H. and Ono, T.: 1987, ‘Stimulation of plasma waves in the magnetosphere using satellite JIKIKEN (EXOS-B) Part II: Plasma density across the plasmapause’, J. Geomag & Geoel. 39, 591.ADSCrossRefGoogle Scholar
  75. Park, C. G.: 1970, ‘Whistler observations of the interchange of ionization between the ionosphere and the protonosphere’, J. Geophys. Res. 75, 4249.ADSCrossRefGoogle Scholar
  76. Park, C. G.: 1973, ‘Whistler observations of the depletion of the plasmasphere during a magnetospheric substorm’, J. Geophys. Res. 78, 672.ADSCrossRefGoogle Scholar
  77. Park, C. G.: 1974, ‘Some features of plasma distribution in the plasmasphere deduced from Antarctic whistlers’, J. Geophys. Res. 79, 169.ADSCrossRefGoogle Scholar
  78. Park, C. G.: 1978, ‘Whistler observations of substorm electric fields in the nightside plasmasphere’, J. Geophys. Res. 83, 5773.ADSCrossRefGoogle Scholar
  79. Park, C. G. and Carpenter, D. L.: 1970, ‘Whistler evidence of large-scale electron density irregularities in the plasmasphere’, J. Geophys. Res. 75, 3825.ADSCrossRefGoogle Scholar
  80. Peterson, W. K., Shelley, E. G., Haerendel, G. and Paschmann, G.: 1982, ‘Energetic ion composition in the subsolar magnetopause and boundary layer’, J. Geophys. Res. 87, 2139.ADSCrossRefGoogle Scholar
  81. Richmond, A. D.: 1973, ‘Self-induced motions of thermal plasma in the magnetosphere and the stability of the plasmapause’, Radio Sci. 8, 1019.ADSCrossRefGoogle Scholar
  82. Roth, M.: 1975, ‘The plasmapause as a plasma sheath: a minimum thickness’, J. Atmos. Terr. Phys. 38, 1065.ADSCrossRefGoogle Scholar
  83. Saxton, J. M. and Smith, A. J.: 1989, ‘Quiet time plasmaspheric electric fields and plasmasphere- ionosphere coupling flluxes at L=2.5’, Planet. Space Sci. 37, 283.ADSCrossRefGoogle Scholar
  84. Smiddy, M., Kelley, M. C., Burke, W., Rich, F., Sagalyn, R., Shuman, B., Hays, R. and Lai, S.: 1977, ‘Intense poleward-directed electric fields near the ionospheric projection of the plasmapause’, Geophys. Res. Lett. 4, 543.ADSCrossRefGoogle Scholar
  85. Smith, A. J., Carpenter, D. L. and Lester, M.: 1981, ‘Longitudinal variations in plasmapause radius and the propagation of VLF noise within small (ÆL~0.5) extensions of the plasmapause’, Geophys. Res. Lett. 8, 5819.CrossRefGoogle Scholar
  86. Song, X-T., Gendrin, R. and Caudal, G.: 1988, ‘Refilling process in the plasmasphere and its relation to magnetic activity’, J. Atmos. Terr. Phys. 50, 185.ADSCrossRefGoogle Scholar
  87. Spiro, R. W., Harel, M., Wolf, R. A. and Reiff, P. H.: 1981, ‘Quantitative simulation of a magnetospheric substorm. 3. Plasmaspheric electric fields and evolution of the plasmapause’, J. Geophys. Res. 86, 2261.ADSCrossRefGoogle Scholar
  88. Stern, D. P.: 1974, ‘Models of the Earth’s electric field’, NASA/GSFC X Doc. 602-74-159. Google Scholar
  89. Tarcsai, Gy.: 1985, ‘Ionosphere-plasmasphere electron fluxes at middle latitudes obtained from whistlers’, Adv. Space Res. 5(4), 155.ADSCrossRefGoogle Scholar
  90. Volland, H.: 1973, ‘A semiempirical model of large-scale magnetospheric electric fields’, J. Geophys. Res. 78,171ADSCrossRefGoogle Scholar
  91. Weiss, L. A., Lambour, R. L., Elphic, R. C. and Thomsen, M. F.: 1997, ‘Study of plasmasphenc evolution using geosynchronous observations and global modeling’,Geophys. Res. Lett. 24, 599.ADSCrossRefGoogle Scholar
  92. Wolf, R. A.: 1983, ‘The quai-static (slow-flow) region of the magnetosphere’, in R. L. Carovillano and’J. M. Forbes, (eds.), Solar-Terrestrial Physics, Principles and Theoretical Foundations, D Reidel, Dordrecht, pp. 303 - 329.Google Scholar
  93. Yeh, H.-C., Foster, J. C., Rich, F. J. and Swider, W.: 1991, ‘Storm time electric field pene-tration observed at mid-latitude’, J. Geophys. Res. 96, 5707.ADSCrossRefGoogle Scholar
  94. Yau, A.W., and André, M.: 1997, ‘Sources of ions’, Space Sci. Rev. (this volume). Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • D. L. Carpenter
    • 1
    • 3
  • J. Lemaire
    • 2
  1. 1.Space, Telecommunications and Radioscience LaboratoryStanford UniversityStanfordUSA
  2. 2.Institute d’Aéronomie Spatiale de BelgiqueBrusselsBelgium
  3. 3.Space, Telecommunications and Radioscience LaboratoryStanford UniversityStanfordUSA

Personalised recommendations