Observing with Optical/Infrared Long Baseline Interferometers

  • John Davis
Part of the NATO Science Series C: (closed) book series (ASIC, volume 501)

Abstract

A brief introduction to the basic concepts involved in long baseline optical/infrared interferometry is followed by a discussion of observational, measurement and calibration techniques. Since observational experience with long baseline optical/infrared interferometers has so far been confined almost entirely to instruments operating with a single baseline at a time, examples from this experience are used as illustrations. However, the general principles for multi-aperture observations, necessary for imaging, are generally the same. A brief introduction to the additional requirements for imaging is given to provide an introduction to following presentations.

Keywords

Atmospheric Turbulence Optical Path Difference Calibration Source Angular Diameter High Angular Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    . Born, M. and Wolf, E. (1964) Principles of Optics, Pergamon PressGoogle Scholar
  2. 2.
    . Davis, J. (1994) The Sydney University Stellar Interferometer (SUSI), in J.G. Robertson and W.J. Tango (eds.), Proc. IAU Symp. 158, Very High Angular Resolution Imaging, Kluwer, Dordrecht, pp. 135 – 142Google Scholar
  3. 3.
    . Fried, D.L. (1965) Statistics of a geometric representation of wavefront distortion, J. Opt. Soc. Am. 55, 427 – 1435MathSciNetGoogle Scholar
  4. 4.
    . Buscher, D.F. (1994) A thousand and one nights of seeing on Mount Wilson, in J.B. Breckinridge (ed.), SPIE Proc. 2200, SPIE, Washington, pp. 260 – 271CrossRefGoogle Scholar
  5. 5.
    . Colavita, M.M., Shao, M. and Staelin, D.H. (1987) Atmospheric phase measurements with the Mark III stellar interferometer, Applied Optics 26, 4106 – 4112ADSCrossRefGoogle Scholar
  6. 6.
    . Shao, M. et al. (1988) Initial stellar diameter measurements with the Mark III Interferometer, Ap. J. 327, 905 – 910Google Scholar
  7. 7.
    . Shao, M. et al. (1988) The Mark III stellar interferometer, Astron. Astrophys. 193, 357 – 371Google Scholar
  8. 8.
    . Davis, J. and Tango, W.J. (1985) The Sydney University 11.4 m prototype stellar interferometer, Proc. Astron. Soc. Australia 6, 34 – 38ADSGoogle Scholar
  9. 9.
    . Davis, J. and Tango, W.J. (1985) A new very high angular resolution stellar interferometer, Proc. Astron. Soc. Australia 6, 38 – 43ADSGoogle Scholar
  10. 10.
    . Tango, W.J. and Twiss, R.Q. (1980) Michelson stellar interferometry, Progress in Optics XVII, 239 – 277Google Scholar
  11. 11.
    . Shao, M. and Staelin, D.H. (1977) Long-baseline optical interferometer for astrometry, J. Opt. Soc. Am. 67, 81 – 86ADSCrossRefGoogle Scholar
  12. 12.
    . Shao, M. et al. (1990) Wide-angle astrometry with the Mark III stellar interferometer, Astron. J. 100, 1710 – 1711Google Scholar
  13. 13.
    . Mozurkewich, D. et al. (1991) Angular diameter measurements of stars, Astron. J. 101, 2207 – 2219ADSCrossRefGoogle Scholar
  14. 14.
    Armstrong, J.T. et al. (1992) The orbit of a Equulei measured with long-baseline interferometry: component masses, spectral types, and evolutionary state, Astron. J. 104, 241 – 252Google Scholar
  15. 15.
    . Gay, J. and Mekarnia, D. (1988) Infrared interferometry at CERGA, in F. Merkle (ed.), High-Resolution Imaging by Interferometry, ESO Conference and Workshop Proceedings No. 29, ESO, Garching bei Miinchen, pp. 811 – 816Google Scholar
  16. 16.
    . Benson, J. A. et al. (1991) The infrared angular diameter of Alpha Herculis measured with a Michelson interferometer, Astron. J. 102, 2091 – 2097Google Scholar
  17. 17.
    . Baldwin, J.E. et al. (1994) Design and performance of COAST, in J.B. Breckinridge (ed.), SPIE Proc. 2200, SPIE, Washington, pp. 118 – 128CrossRefGoogle Scholar
  18. 18.
    . Dyck, H.M. et al. (1995) First 2.2 /um results from the IOTA interferometer, Astron. J. 109, 378 – 382Google Scholar
  19. 19.
    . Mourard, D. et al. (1994) The GI2T interferometer on Plateau de Calern, Astron. Astrophys. 283, 705 – 713Google Scholar
  20. 20.
    . Mourard, D. et al. (1994) Estimation of visibility amplitude by optical long-baseline Michelson interferometry with large apertures, Astron. Astrophys. 288, 675 – 682Google Scholar
  21. 21.
    . Coude du Foresto, V. and Ridgway, S. (1992) FLUOR: a stellar interferometer using single-mode infrared fibers, in J.M. Beckers and F. Merkle (eds.), High-Resolution Imaging by Interferometry II, ESO Conference and Workshop Proceedings No. 39, ESO, Garching bei Miinchen, pp. 731 – 740Google Scholar
  22. 22.
    . Buscher, D.F. (1990) Optimizing a ground-based optical interferometer for sensitivity at low light levels, Mon. Not. R. Astron. Soc. 235, 1203 – 1226ADSGoogle Scholar
  23. 23.
    . Buscher, D.F. (1990) Optimizing a ground-based optical interferometer for sensitivity at low light levels, Mon. Not. R. Astron. Soc. 235, 1203 – 1226ADSGoogle Scholar
  24. 24.
    Fried, D.L. (1978) The nature of atmospheric turbulence effects on imaging and pseudo-imaging systems and its quantification, in J. Davis and W.J. Tango (eds.), Proc. IAU Colloquium No. 50: High Angular Resolution Stellar Interferometry,Google Scholar
  25. Chatterton Astronomy Department, University of Sydney, pp. 4-1–4–44Google Scholar
  26. 26.
    . Shaklan, S.B., Colavita, M.M. and Shao, M. (1991) Visibility calibration using single mode fibers in a long-baseline interferometer, in J.M. Beckers and F. Merkle (eds.), High-Resolution Imaging by Interferometry 77, ESO Conference and Workshop Proceedings No. 39, ESO, Garching bei München, pp. 1271 – 1283Google Scholar
  27. 27.
    . Roddier, F. (1981) The effects of atmospheric turbulence in optical astronomy, in E. Wolf (ed.), Progress in Optics XIX, North-Holland, Amsterdam, pp. 283 – 376Google Scholar
  28. 28.
    . Davis, J. et al. (1995) Atmospheric path variations for baselines up to 80 m measured with the Sydney University Stellar Interferometer, Mon. Not. R. Astron. Soc. 273, L53 – L58ADSGoogle Scholar
  29. 29.
    . Nisenson, P. and Traub, W. (1987) Magnitude limit of the group delay fringe tracking method for long baseline interferometry, in J.W. Goad (ed.), Interferometric Imaging in Astronomy, Proceedings of a Joint Workshop on High-Resolution Imaging from the Ground using Interferometric Techniques, ESO-NOAO, pp. 129 – 133Google Scholar
  30. 30.
    . Lawson, P.R. (1995) Group-delay tracking in optical stellar interferometry with the fast Fourier transform, J. Opt. Soc. Am. A 12, 366 – 374ADSCrossRefGoogle Scholar
  31. 31.
    . Davis, J. (1984) Long baseline optical interferometry, in J.A. Roberts (ed.), Indirect Imaging, Cambridge University Press, Cambridge, pp. 125 – 141Google Scholar
  32. 32.
    . Lacasse, M.G. and Traub, W.A. (1988) Glass compensation for an air filled delay line, in F. Merkle (ed.), High-Resolution Imaging by Interferometry, ESO Conference and Workshop Proceedings No. 29, ESO, Garching bei München, pp. 959 – 970Google Scholar
  33. 33.
    . Tango, W.J. (1990) Dispersion in stellar interferometry, Appl. Opt. 29, 516 – 521ADSGoogle Scholar
  34. 34.
    . Ten Brummelaar, T.A. (1995) Differential path considerations in optical stellar interferometry, Appl. Opt. 34, 2214 – 2219ADSGoogle Scholar
  35. 35.
    . Traub, W.A. (1990) Constant-dispersion grism spectrometer for channeled spectra, J. Opt. Soc. Am. A 7, 1779 – 1791ADSCrossRefGoogle Scholar
  36. 36.
    . Lawson, P.R. and Davis, J. (1996) Dispersion compensation in stellar interferometry, Appl. Opt. 35, 612 – 620ADSGoogle Scholar
  37. 37.
    . Tango, W.J. and Twiss, R.Q. (1974) Diffraction effects in long path interferometers, appl. Opt. 13, 1814 – 1819ADSGoogle Scholar
  38. 38.
    . Bagnuolo, W.G. (1988) Simulations for the CHARA/GSU interferometer and binary star speckle photometry, in F. Merkle (ed.), High-Resolution Imaging by Interferometry, ESO Conference and Workshop Proceedings No. 29, ESO, Garching bei München, pp. 981 – 994Google Scholar
  39. 39.
    . Mekarnia, D. and Gay, J. (1989) Alteration du visibilite par diffraction de Fresnel en synthese d’ouverture, J. Optics 20, 131 – 140ADSCrossRefGoogle Scholar
  40. 40.
    . Hrynevych, M. (1994) Differential diffraction in Michelson stellar interferometry, in J.G. Robertson and W.J. Tango (eds.), Proc. IAU Symp. 158, Very High Angular Resolution Imaging, Kluwer, Dordrecht, pp. 224 – 226Google Scholar
  41. 41.
    . Traub, W.A. (1988) Polarization effects in stellar interferometers, in F. Merkle (ed.), High-Resolution Imaging by Interferometry, ESO Conference and Workshop Proceedings No. 29, ESO, Garching bei München, pp. 1029 – 1038Google Scholar
  42. 42.
    . Hanbury Brown, R., Davis, J. and Allen, L.R., (1974) The angular diameters of 32 stars, Mon. Not. R. astr. Soc. 167, 121 – 136ADSGoogle Scholar
  43. 43.
    . Pearson, T.J. and Readhead, A.C.S. (1984) Image formation by self-calibration in radio astronomy, Ann. Rev. Astron. Astrophys. 22, 97 – 130ADSCrossRefGoogle Scholar
  44. 44.
    . Thompson, A.R., Moran, J.M. and Swenson, G.W. (1986) Interferometry and Synthesis in Radio Astronomy, John Wiley & Sons, New YorkGoogle Scholar
  45. 45.
    . Clark, B.G. et al. (1989) Synthesis Imaging in Radio Astronomy, R.A. Perley, F.R. Schwab and A.H. Bridle (eds.), Astron Soc. Pacific Conf. Series 6, Astron. Soc. Pacific., San FranciscoGoogle Scholar
  46. 46.
    . Baldwin, J.E. et al. (1986) Closure phase in high-resolution optical imaging, Nature 328, 595 – 597ADSCrossRefGoogle Scholar
  47. 47.
    . Haniff, C.A. et al. (1987) The first images from optical aperture synthesis, Nature 328, 694 – 696ADSCrossRefGoogle Scholar
  48. 48.
    Baldwin, J.E. et al, (1996) The first images from an optical aperture synthesis array: mapping of Capella with COAST at two epochs, Astron. Astrop. 306, L13 – L16ADSGoogle Scholar
  49. 49.
    NOAO-ESO Conference (1987) J. Goad (ed.), Interferometric Imaging in Astronomy, NO AO, TucsonGoogle Scholar
  50. 50.
    . NOAO-ESO Conference (1988) F. Merkle (ed.), High-Resolution Imaging by Interferometry, ESO Conference and Workshop Proceedings No. 29, ESO, Garching bei MünchenGoogle Scholar
  51. 51.
    . ESO Conference (1991) J.M. Beckers and F. Merkle (eds.), High-Resolution Imaging by Interferometry //, ESO Conference and Workshop Proceedings No. 39, ESO, Garching bei MünchenGoogle Scholar
  52. 52.
    SPIE Conference (1994) Amplitude and Intensity Spatial Interferometry II, J.B. Breckinridge (ed.), SPIE Proc. 2200, SPIE, WashingtonGoogle Scholar
  53. 53.
    . Bester, M. et al. (1994) The U.C. Berkeley Infrared Spatial Interferometer—recent system upgrades and analysis of atmospheric fluctuations, in J.B. Breckinride (ed.), SPIE Proc. 2200, SPIE, Washington, pp. 274 – 285CrossRefGoogle Scholar
  54. 54.
    . Carleton, N.P. et al. (1994) Current status of the IOTA interferometer, in J.B. Breckinridge (ed.), SPIE Proc. 2200, SPIE, Washington, pp. 152 – 165CrossRefGoogle Scholar
  55. 56.
    . Colavita, M.M. et al. (1994) ASEPS-0 Testbed Interferometer, in J.B. Breckinridge (ed.), SPIE Proc. 2200, Washington, pp. 89 – 97Google Scholar
  56. 56.
    . Armstrong, J.T. (1994) Progress on the Big Optical Array (BOA), in J.B. Breckinridge (ed.), SPIE Proc. 2200, SPIE, Washington, pp. 62 – 70CrossRefGoogle Scholar
  57. 57.
    . Hutter, D.J. (1994) U.S. Naval Observatory Astrometric Interferometer, in J.B. Breckinridge (ed.), SPIE Proc. 2200, SPIE, Washington, pp. 81 – 88CrossRefGoogle Scholar
  58. 59.
    . McAlister, H.A. et al. (1994) The CHARA Array, in J.B. Breckinridge (ed.), SPIE Proc. 2200, SPIE, Washington, pp. 129 – 139CrossRefGoogle Scholar
  59. 59.
    von der Lühe, O. (1994) The interferometric mode of the ESO Very Large Telescope, in J.B. Breckinridge (ed.), SPIE Proc. 2200, SPIE, Washington, pp. 168 – 179CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • John Davis
    • 1
  1. 1.Chatterton Astronomy DepartmentSchool of Physics, University of SydneyAustralia

Personalised recommendations