Models for Simulating Molecular Properties in Condensed Systems

  • Mati Karelson
  • Geerd H. F. Diercksen
Part of the NATO ASI Series book series (ASIC, volume 500)

Abstract

The disordered condensed media (liquids, solutions, polymers, glasses etc.) are most widespread objects in chemistry and physics. As a rule, the quantum-chemical methods give a description of isolated individual molecules that corresponds to the infinitely rare gas at OK, i.e. to the conditions close to the intergalaxial space. Therefore, it is of large theoretical and practical importance to extend the quantum description of atomic and molecular systems to the disordered condensed media, including pure liquids, solutions, polymeric and glassy materials. The quantum theory of solid matter with ordered crystal lattices has been extensively developed on the basis of use of the translational symmetry in such systems and will not be reviewed in the present lecture notes. The reader is referred to excellent reviews on this subject [1, 2]. However, we will consider the theory which is applicable to low symmetry molecular impurities in regular crystals. In the following, we wish to review theoretical methods used to approach different chemical and physical aspects of the solvation of molecular systems in disordered condensed media.

Keywords

Solvent Molecule Dielectric Medium Solute Molecule Spherical Cavity Polarizable Continuum Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Slater, J.C. Quantum Theory of Molecules and Solids, Vol. II, McGraw Hill, New York, 1965.Google Scholar
  2. 2.
    André, J.-M.; Delhalle, J.; Brédas, J.-L. Quantum Chemistry Aided Design of Organic Polymers, World Scientific Publishing Co., Singapore, 1991.Google Scholar
  3. 3.
    Reichardt, Chr. Solvents and Solvent Effects in Organic Chemistry, VCH, Weinheim, 1988.Google Scholar
  4. 4.
    Hammett, L.P. Physical Organic Chemistry, McGraw Hill, New York, 1970.Google Scholar
  5. 5.
    Ben-Naim, A. Water and Aqueous Solutions, Plenum Press, New York, 1974.Google Scholar
  6. 6.
    Ben-Naim, A. J. Phys. Chem. 1978, 82, 792.Google Scholar
  7. 7.
    Ben-Naim, A. Solvation Thermodynamics, Plenum Press, New York, 1987.Google Scholar
  8. 8.
    Tomasi, J.; Persico, M. Chem. Rev. 1994, 94, 2027.Google Scholar
  9. 9.
    Hill, T.H. An Introduction to Statistical Thermodynamics, Addison-Wesley, Reading, 1960.Google Scholar
  10. 10.
    Giesen, D.J; Cramer, C.J.; Truhlar, D.G. J. Phys. Chem. 1994, 98, 4141.Google Scholar
  11. 11.
    Huggins, M.L. J. Chem. Phys. 1941, 9, 440.Google Scholar
  12. 12.
    Flory, P.J. J. Chem. Phys. 1941, 9, 660.Google Scholar
  13. 13.
    Hildebrand, J.H. J. Chem. Phys. 1947, 15, 225.Google Scholar
  14. 14.
    Sharp, K.A.; Nicholls, A.; Fine, R.F; Honig, B. Science 1991, 252, 106.Google Scholar
  15. 15.
    Irisa, M.; Nagayama, K; Hirata, F. Chem. Phys. Lett. 1993, 207, 430.Google Scholar
  16. 16.
    Tuñón, I; Silla, E.; Pascual-Ahuir, J.L. Chem. Phys. Lett. 1993, 203, 289.Google Scholar
  17. 17.
    Flory, P.J. Discuss. Faraday Soc. 1970, 49, 7.Google Scholar
  18. 18.
    Sharp, K.A.; Nicholls, A.; Friedman, R.; Honig, B. Biochemistry 1991, 30, 9686.Google Scholar
  19. 19.
    Ben-Naim, A.; Mazo, R.M. J. Phys. Chem. 1993, 93, 10829.Google Scholar
  20. 20.
    Abraham, M.H.; Sakellariou, P. J. Chem. Soc. Perkin Trans. 2 1994, 405.Google Scholar
  21. 21.
    Eley, D.D. Trans. Faraday Soc. 1939, 35, 1281.Google Scholar
  22. 22.
    Susskind, B.; Kasarnowski, I. Z. Anorg. Allg. Chem. 1933, 214, 385.Google Scholar
  23. 23.
    Simonson, T.; Brünger, A.T. J. Phys. Chem. 1994, 98, 4683.Google Scholar
  24. 24.
    Tolman, C.R. J. Chem. Phys. 1948, 16, 758.Google Scholar
  25. 25.
    Kirkwood, J.G.; Buff, F.P. J. Chem. Phys. 1949, 17, 338.Google Scholar
  26. 26.
    Kondo, S. J. Chem. Phys. 1956, 25, 662.Google Scholar
  27. 27.
    Sinanoglu, O. Chem. Phys. Lett. 1967, 1, 283.Google Scholar
  28. 28.
    Sinanoglu, O. in: Molecular Interactions, Ratajczak, H.; Orville-Thomas, W.J, Eds.; J. Wiley: New York, 1982., p. 283.Google Scholar
  29. 29.
    Oakenfull, D.G.; Fenwick, D.E. J. Phys. Chem. 1974, 78, 1759.Google Scholar
  30. 30.
    Postma, J.P.M.; Berendsen, H.J.C.; Haak, J.R. Faraday Symp. Chem. Soc. 1982, 17, 55.Google Scholar
  31. 31.
    Gogonea, V.; Osawa, E. J. Mol. Struct. (Theochem) 1994, 311, 305.Google Scholar
  32. 32.
    Reiss, H.; Frisch, H.L.; Lebowitz, J.L. J. Chem. Phys. 1959, 31, 369.Google Scholar
  33. 33.
    Frisch, H.L. Adv. Chem. Phys. 1963, 6, 229.Google Scholar
  34. 34.
    Reiss, H. Adv. Chem. Phys. 1966, 9, 1.Google Scholar
  35. 35.
    Pierotti, R.A. Chem. Rev. 1976, 76, 717.Google Scholar
  36. 36.
    Gibbons, R.M. Mol. Phys. 1969, 17, 81.Google Scholar
  37. 37.
    Irisa, M.; Nagayama, K.; Hirata, F. Chem. Phys. Lett. 1993, 207, 430.Google Scholar
  38. 38.
    Hirschfelder, J.D.; Curtiss, C.F.; Bird, R.B. Molecular Theory of Gases and Liquids, J. Wiley, New York, 1954.Google Scholar
  39. 39.
    Margenau, H.; Kestner, N.R. Theory of Intermolecular Forces, Pergamon, Oxford, 1971.Google Scholar
  40. 40.
    Mahanty, J.; Ninham, W.B. Dispersion Forces, Academic Press, New York, 1976.Google Scholar
  41. 41.
    Hobza, P.; Zahradnik, P. Intermolecular Complexes, Elsevier, Amsterdam, 1988.Google Scholar
  42. 42.
    Huron, M.J.; Claverie, P. Chem. Phys. Lett. 1969, 4, 429.Google Scholar
  43. 43.
    Kitaigorodsky, A.I. Tetrahedron 1961, 14, 230.Google Scholar
  44. 44.
    Pertsin, A.J.; Kitaigorodsky, A.I. The Atom-Atom Pair Potential Method, Springer, Berlin, 1986.Google Scholar
  45. 45.
    Frecer, F.M.; Miertuš, S.; Májeková, M. J. Mol. Struct. (Theochem) 1991, 227, 157.Google Scholar
  46. 46.
    Thole, B.T.; van Duijnen, P.Th. Theor. Chim. Acta 1980, 55, 307.Google Scholar
  47. 47.
    Rullman, J.A.C.; Bellido, M.N.; van Duijnen, P.Th. J. Mol. Biol. 1989, 206, 101.Google Scholar
  48. 48.
    Dijkman, J.P.; van Duijnen, P.Th. Int. J. Quant. Chem.: Quantum Biol. Symp. 1991, 18, 49.Google Scholar
  49. 49.
    Linder, B. J. Chem. Phys. 1960, 33, 668.Google Scholar
  50. 50.
    Linder, B. J. Chem. Phys. 1962, 37, 963.Google Scholar
  51. 51.
    Linder, B. Adv. Chem. Phys. 1967, 12, 225.Google Scholar
  52. 52.
    Rinaldi, D.; Costa-Cabral, B.J.; Rivail, J.-L. Chem. Phys. Lett. 1986, 125, 495.Google Scholar
  53. 53.
    Aguilar, M.A.; Olivares del Valle, F.J. J. Chem. Phys. 1989, 138, 327.Google Scholar
  54. 54.
    Rösch, N.; Zerner, M.C. J. Phys. Chem. 1994, 98, 5817.Google Scholar
  55. 55.
    Abe, T.; Amako, Y.; Nishioka, T.; Azumi, H. Bull. Chem. Soc. Japan 1966, 39, 845.Google Scholar
  56. 56.
    Amos, A.T.; Burrows, B.L. Adv. Quantum Chem. 1973, 7, 289.Google Scholar
  57. 57.
    Kirkwood, J.G. J. Chem. Phys. 1939, 7, 911.Google Scholar
  58. 58.
    Onsager, L. J. Am. Chem. Soc. 1936, 58, 1486.Google Scholar
  59. 59.
    Böttcher, C.J.F. and Bordewijk, P. Theory of Electric Polarization, 2nd ed., vol. II, Elsevier Co, Amsterdam, 1978.Google Scholar
  60. 60.
    Abraham, R.J.; Hudson, B.D.; Kermode, M.W.; Mines, J.R. J. Chem. Soc. Farad. Trans. 1988, 84, 1911.Google Scholar
  61. 61.
    Rivail, J.-L.; Rinaldi, D. Chem. Phys. 1976, 18, 233.Google Scholar
  62. 62.
    Karelson, M.M.; Tamm, T.; Katritzky, A.R.; Cato, S.J.; Zerner, M.C. Tetrahedron Comput. Methodol. 1989, 2, 295.Google Scholar
  63. 63.
    Rinaldi, D.; Ruiz-Lopez, M.F.; Rivail, J.-L. J. Chem. Phys. 1983, 78, 834.Google Scholar
  64. 64.
    Rinaldi, D.; Rivail, J.-L.; Rguini, N. J. Comput. Chem. 1992, 13, 675.Google Scholar
  65. 65.
    Rivail, J.-L.; Terryn, B.; Rinaldi, D.; Ruiz-Lopez, M.F. J. Mol. Struct. (Theochem) 1988, 166, 319.Google Scholar
  66. 66.
    Pascual-Ahuir, J.L.; Silla, E. J. Comput. Chem. 1990, 11, 1047.Google Scholar
  67. 67.
    Silla, E.; Tuñón, I.; Pascual-Ahuir, J.L. J. Comput. Chem. 1991, 12, 1077.Google Scholar
  68. 68.
    Richards, F.M. Annu. Rev. Biophys. Bioeng. 1977, 6, 151.Google Scholar
  69. 69.
    Lee, B.; Richards, F.M. J. Mol. Biol. 1971, 55, 379.Google Scholar
  70. 70.
    Hylton, J.; Christoffersen, R.E.; Hall, G.G. Chem. Phys. Lett. 1974, 26, 501.Google Scholar
  71. 71.
    Tapia, O.; Goscinski, O. Mol. Phys. 1975, 29, 1653.Google Scholar
  72. 72.
    Karelson, M.M. Org. React. 1980, 17, 357.Google Scholar
  73. 73.
    Karelson, M.M. Org. React. 1980, 17, 366.Google Scholar
  74. 74.
    Karelson, M.; Zerner, M.C. J. Phys. Chem. 1992, 92, 6949.Google Scholar
  75. 75.
    Karelson, M.M.; Katritzky, A.R.; Zerner, M.C. Int. J. Quant. Chem. 1986, S20, 521.Google Scholar
  76. 76.
    Szabo, A.; Ostlund, N. Modern Quantum Chemistry, MacMillan, New York, 1982.Google Scholar
  77. 77.
    Tapia, O. J. Mol. Struct. (Theochem) 1991, 226, 59.Google Scholar
  78. 78.
    Tapia, O.; Colonna, F.; Ángyán, J. J. Chim. Phys. 1990, 87, 875.Google Scholar
  79. 79.
    Ángyán, J. J. Math. Chem. 1992, 10, 93.Google Scholar
  80. 80.
    Jansen, G.; Colonna, F.; Ángyán, J. Int. J. Quant. Chem. 1996, 58, 251.Google Scholar
  81. 81.
    Thole, B.T. Chem. Phys. 1981, 59, 341.Google Scholar
  82. 82.
    Tapia, O.; Johannin, G. J. Chem. Phys. 1981, 75, 3624.Google Scholar
  83. 83.
    Ángyán, J.; Allavena, M.; Picard, M.; Potier, A.; Tapia, O. J. Chem. Phys. 1982, 77, 4723.Google Scholar
  84. 84.
    Tapia, O. in: Theoretical Models of Chemical Bonding, Ed. Maksic, Z.B., Springer-Verlag, Berlin; 1990. vol. 4.Google Scholar
  85. 85.
    Ángyán, J.; Chipot, C. Int. J. Quant. Chem. 1994, 52, 17.Google Scholar
  86. 86.
    Thole, B.T.; van Duijnen, P.Th. Chem. Phys. 1982, 71, 211.Google Scholar
  87. 87.
    Thole, B.T.; van Duijnen, P.Th. Theor. Chim. Acta 1983, 63, 209.Google Scholar
  88. 88.
    Thole, B.T.; van Duijnen, P.Th. Biophys. Chem. 1983, 18, 53.Google Scholar
  89. 89.
    van Duijnen, P.Th.; Juffer, A.H; Dijkman, H. J. Mol. Struct. (Theochem) 1992, 260, 195.Google Scholar
  90. 90.
    deVries, A.H.; van Duijnen, P.Th. Int. J. Quant. Chem. 1996, 57, 1067.Google Scholar
  91. 91.
    Dijkman, H.; van Duijnen, P.Th. Int. J. Quant. Chem. Quantum Biol. Symp. 1991, 18, 49.Google Scholar
  92. 92.
    van Duijnen, P.Th.; deVries, A.H. Int. J. Quant. Chem. Quantum Chem. Symp. 1995, 29, 531.Google Scholar
  93. 93.
    Miertuš, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117.Google Scholar
  94. 94.
    Hoshi, H.; Sakurai, M.; Inoue, Y. Chûjô, R, J. Chem. Phys. 1987, 87, 1107.Google Scholar
  95. 95.
    Hoshi, H.; Sakurai, M.; Inoue, Y. Chûjô, R, J. Mol. Struct. (Theochem) 1988, 180, 267.Google Scholar
  96. 96.
    Drummond, M.L. J. Chem. Phys. 1988, 88, 5014.Google Scholar
  97. 97.
    Wang, B.; Ford, G.P. J. Chem. Phys. 1992, 97, 4162.Google Scholar
  98. 98.
    Fox, T.; Rösch, N.; Zauhar, R.J. J. Comput. Chem. 1993, 14, 253.Google Scholar
  99. 99.
    Luque, F.J.; Orozco, M.; Bhadane, P.K.; Gadre, S.R. J. Chem. Phys. 1994, 100, 6718.Google Scholar
  100. 100.
    Zauhar, R.J.; Morgan, R.S. J. Comput. Chem. 1990, 11, 603.Google Scholar
  101. 101.
    Pascual-Ahuir, J.L.; Silla, E.; Tomasi, J.; Bonaccorsi, R. J. Comput. Chem. 1987, 8, 778.Google Scholar
  102. 102.
    Zerner, M.C. private communication. Google Scholar
  103. 103.
    Karelson, M.; Tamm, T.; Zerner, M.C. J. Phys Chem. 1993, 97, 11901.Google Scholar
  104. 104.
    Klamt, A.; Schüürmann, G. J. Chem. Soc. Perkin Trans. 2 1993, 799.Google Scholar
  105. 105.
    Klamt, A. J. Phys. Chem. 1995, 99, 2224.Google Scholar
  106. 106.
    Klopman, G. Chem. Phys. Lett. 1967, 1, 200.Google Scholar
  107. 107.
    Germer, H.A. Theor. Chim. Acta 1974, 34, 145.Google Scholar
  108. 108.
    Constanciel, R.; Tapia, O. Theor. Chim. Acta 1978, 48, 75.Google Scholar
  109. 109.
    Cramer, C.J.; Truhlar, D.G. J. Am. Chem. Soc. 1991, 113, 8305.Google Scholar
  110. 110.
    Cramer, C.J.; Truhlar, D.G. J. Am. Chem. Soc. 1991, 113, 8552.Google Scholar
  111. 111.
    Cramer, C.J.; Truhlar, D.G. J. Comput. Chem. 1992, 13, 1089.Google Scholar
  112. 112.
    Cramer, C.J.; Truhlar, D.G. Science 1992, 256, 213.Google Scholar
  113. 113.
    Cramer, C.J.; Lynch, G.C.; Hawkins, G.D.; Truhlar, D.G. AMSOL 4.0. QCPE 606 QCPE Bull. 1993, 13, 78.Google Scholar
  114. 114.
    Basilevsky, M.V.; Chudinov, G.E. Chem. Phys. 1991, 157, 245.Google Scholar
  115. 115.
    Karelson, M. in: Problem Solving in Computational Molecular Science, NATO ASI Series, Wilson, S. and Diercksen, G.H.F. (Eds.) Kluwer, Dordrecht. 1997.Google Scholar
  116. 116.
    Mikkelsen, K.V.; Ågren, H.; Jensen, H.J.Aa.; Helgaker, T. J. Chem. Phys. 1988, 89, 3086.Google Scholar
  117. 117.
    Ågren, H.; Medina-Llanos, C.; Mikkelsen, K.V.; Jensen, H.J.Aa. Chem. Phys. Lett. 1988, 153, 322.Google Scholar
  118. 118.
    Medina-Llanos, C.; Ågren, H.; Mikkelsen, K.V.; Jensen, H.J.Aa. J. Chem. Phys. 1989, 90, 6422.Google Scholar
  119. 119.
    Mikkelsen, K.V.; Ågren, H. J. Phys. Chem. 1990, 94, 6220.Google Scholar
  120. 120.
    Rivail, J.-L. C. R. Acad. Sei. Paris 1990, 311 II, 307.Google Scholar
  121. 121.
    Rivail, J.-L.; Rinaldi, D.; Ruiz-Lopez, M.F. in: Theoretical and Computational Models for Organic Chemistry, Formosinho, S.J.; Csizmadia, I.G. and Arnaut, L.G. (Eds.), Kluwer, Dordrecht. 1991, pp. 77-92.Google Scholar
  122. 122.
    Olivares del Valle, F.J.; Tomasi, J. Chem. Phys. 1991, 150, 139.Google Scholar
  123. 123.
    Olivares del Valle, F.J.; Aguilar, M.A. J. Comput. Chem. 1992, 13, 115.Google Scholar
  124. 124.
    Olivares del Valle, F.J.; Aguilar, M.A. J. Mol Struct. (Theochem) 1993, 280, 25.Google Scholar
  125. 125.
    Contreras, R.R.; Aizman, A.J. Int. J. Quant. Chem. Quantum Chem. Symp. 1991, 25, 281.Google Scholar
  126. 126.
    Hall, R.J.; Davidson, M.M.; Burton, N.A.; Hillier, I.H. J. Phys. Chem. 1995, 99, 921.Google Scholar
  127. 127.
    Contreras, R.R.; Pérez. P.; Aizman, A.J. Int. J. Quant. Chem. 1995, 56, 433.Google Scholar
  128. 128.
    Mineva, T.; Russo, N.; Toscano, M. Int. J. Quant. Chem. 1995, 56, 663.Google Scholar
  129. 129.
    Tawa, G.J., Martin, R.L.; Pratt, L.R.; Russo, T.V. J. Phys. Chem. 1996, 100, 1515.Google Scholar
  130. 130.
    Famini, G.R.; Kassel, R.J.; King, J.W.; Wilson, L.Y. Quant. Struct.-Act. Relat. 1991, 10, 344.Google Scholar
  131. 131.
    Famini, G.R.; Ashman, W.P.; Mickiewicz, A.P.; Wilson, L.Y. Quant. Struct.- Act. Relat. 1992, 11, 162.Google Scholar
  132. 132.
    Famini, G.R.; Wilson, L.Y. J. Phys. Org. Chem. 1992, 5, 395.Google Scholar
  133. 133.
    Famini, G.R.; Penski, C.A.; Wilson, L.Y. J. Phys. Org. Chem. 1992, 5, 395.Google Scholar
  134. 134.
    Tapia. O.; Lluch, J.M.; Cardenas, R.; Andres, J. J. Am. Chem. Soc. 1989, 111, 829.Google Scholar
  135. 135.
    Freitas, L.C.G.; Longo, R.L.; Simas, A.M. J. Chem. Soc. Faraday Trans. 1992, 88, 189.Google Scholar
  136. 136.
    Rick, S.W.; Berne, B.J. J. Am. Chem. Soc. 1994, 116, 3949.Google Scholar
  137. 137.
    Karelson, M.M. Org. React. 1983, 20, 127.Google Scholar
  138. 138.
    Karelson, M.M.; Zerner, M.C. J. Am. Chem. Soc. 1990, 112, 9405.Google Scholar
  139. 139.
    Diercksen, G.H.F.; Karelson, M.; Tamm, T.; Zerner, M.C. Int. J. Quant. Chem. 1994, S28, 339.Google Scholar
  140. 140.
    Clementi, E.; Corongiu, G. (Eds.) Computational Chemistry, METECC-95, STEF, Cagliari, 1995.Google Scholar
  141. 141.
    Boys, S.F.; Bernardi, F. Mol. Phys. 1970, 19, 553.Google Scholar
  142. 142.
    Latajka, Z.; Scheiner, S. J. Comput. Chem. 1987, 8, 674.Google Scholar
  143. 143.
    Arrighini, P. Intermolecular Forces and Their Evaluation by Perturbation Theory, Lecture Notes in Chemistry, vol. 25, Springer-Verlag, Berlin, 1981.Google Scholar
  144. 144.
    Jeziorski, B.J.; Mozsynski, R.; Ratkiewicz, A.; Rybak, S.; Szalewicz, K.; Williams, H.L. Chapter 3 in: Methods and Techniques in Computational Chemistry, METECC-94, vol. B. STEF, Cagliari, 1994.Google Scholar
  145. 145.
    Stillinger, F.H. Adv. Chem. Phys. 1975, 31, 1.Google Scholar
  146. 146.
    Engström, S.; Jönsson, B.; Impey, R.W. J. Chem. Phys. 1984, 80, 5481.Google Scholar
  147. 147.
    van Gunsteren, W.F. Current Opinion in Structural Biology 1993, 3, 277.Google Scholar
  148. 148.
    Corongiu, C.; Martorana, V. Chapter 3 in: Methods and Techniques in Computational Chemistry, METECC-94, vol. C. STEF, Cagliari, 1994.Google Scholar
  149. 149.
    Scott, W.R.P.; van Gunsteren, W.F. Chapter 9 in: Methods and Techniques in Computational Chemistry, METECC-95, Ed. by E. Clementi and G. Corongiu, STEF, Cagliari, 1995.Google Scholar
  150. 150.
    Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.F.; Stewart, J.J.P. J. Am. Chem. Soc. 1985, 107, 3902.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Mati Karelson
    • 1
  • Geerd H. F. Diercksen
    • 2
  1. 1.Department of ChemistryUniversity of TartuTartuEstonia
  2. 2.Max-Planck-Institut für AstrophysikGarching bei MünchenDeutschland

Personalised recommendations