Skip to main content

Quantitative Cardiovascular Image Analysis: Current Status and what are Realistic Expectations for the Future?

  • Chapter
Vascular Medicine

Abstract

Cardiology is typically an image oriented specialty. Single still images, but much more so dynamic and increasingly three-dimensional image sequences, play a major role in clinical decision making and clinical research trials. Of major interest is always the state of the coronary arteries and of the left ventricular function. In this chapter an overview is given of the various quantitative approaches using automated edge detection techniques which have been developed in our departments to: 1) assess the severity of disease of coronary obstructions from x-ray arteriography and intravascular ultrasound; and 2) assess the global and regional left ventricular function from x-ray angiography, echocardiography and magnetic resonance (MR) imaging. Also, the possibilities of MR flow velocity mapping are presented. In addition, for each modality and application a short description is given of the future developments and expectations. Finally, it is recognized that the automated combination of the data from the different imaging modalities (i.e. image fusion) will be a topic of major research in the future. As a current and practical example, the image fusion of biplane x-ray arteriography and 3D intravascular ultrasound is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johnson MR. Principles and practice of coronary angiography. In: Marcus Cardiac Imaging. DJ Skorton, HR Schelbert, GL Wolf, BH Brundage (Eds.). W.B. Saunders Company, Philadelphia, 1996:220–51.

    Google Scholar 

  2. Plokker HWTh Coronary arteriography. Limitations and unresolved issues. Int J Cardiac imaging 1995;11 (Suppl.1):49-51.

    Article  Google Scholar 

  3. Brundage BH. What is the current role of ultrafast CT in coronary imaging? In: Cardiovascular Imaging.JHC Reiber, EE van der Wall, Eds., Kluwer Academic Publishers, Dordrecht, 1996:531–544.

    Chapter  Google Scholar 

  4. van Rossum AC, Post JC. To which extent can the coronary artery tree be imaged and quantified with the current MR technology? In: Cardiovascular Imaging. JHC Reiber, EE van der Wall (Eds.). Kluwer Academic Publishers, Dordrecht, 1996:301–14.

    Chapter  Google Scholar 

  5. Duerinckx AJ. Advantages and limitations of coronary MR angiography. In: Cardiovascular Imaging, JHC Reiber, EE van der Wall (Eds.). Kluwer Academic Publishers, Dordrecht, 1996:357–365.

    Chapter  Google Scholar 

  6. Manning WJ. Current and future applications of magnetic resonance coronary angiography. In: Cardiovascular Imaging. JHC Reiber, EE van der Wall (Eds.). Kluwer Academic Publishers, Dordrecht, 1996:329–55.

    Chapter  Google Scholar 

  7. Di Mario C, Fitzgerald PJ, Colombo A. New developments in intracoronary ultrasound. In: Cardiovascular Imaging. JHC Reiber, EE van der Wall (Eds.). Kluwer Academic Publishers, Dordrecht, 1996:257–75.

    Chapter  Google Scholar 

  8. Römer TjJ. Raman spectroscopy during catheterization: the chemical composition of the plaque. This book, Chapter 11.

    Google Scholar 

  9. Sheehan FH. Principles and practice of contrast ventriculography. In: Marcus Cardiac Imaging. DJ Skorton, HR Schelbert, GL Wolf, BH Brundage (Eds.). W.B. Saunders Company, Philadelphia, 1996:164–87.

    Google Scholar 

  10. Weyman AE. Principles and practice of Echocardiography.Lea & Febiger, Philadelphia, 2nd edition, 1994.

    Google Scholar 

  11. Marwick ThH. Current status of stress echocardiography for the diagnosis of myocardial ischemia and viability. In: Advances in Imaging Techniques in Ischemic Heart Disease. EE van der Wall, ThH Marwick, JHC Reiber (Eds.). Kluwer Academic Publishers, Dordrecht, 1995;83–99.

    Chapter  Google Scholar 

  12. Gibbons RJ, Miller TD. Equilibrium radionuclide angiography. In: Marcus Cardiac Imaging. DJ Skorton, HR Schelbert, GL Wolf, BH Brundage (Eds.). W.B. Saunders Company, Philadelphia, 1996:941–62.

    Google Scholar 

  13. van der Wall EE, Vliegen HW, de Roos A, Bruschke AVG. Magnetic resonance imaging in coronary artery disease. Circulation 1995;92:2723–39.

    PubMed  Google Scholar 

  14. Holman ER, Buller VGM, de Roos A et al. Detection and quantification of dysfunctional myocardium by magnetic resonance imaging. A new three-dimensional method for quantitative wall-thickening analysis. Circulation 1997;52:924–31.

    Google Scholar 

  15. van der Wall EE. Current status of myocardial perfusion scintigraphy. In: Advances in Imaging Techniques in ischemic heart disease. EE van der Wall, ThH Thomas, JHC Reiber (Eds.). Kluwer Academic Publishers, Dordrecht, 1995:1–16.

    Chapter  Google Scholar 

  16. Reiber JHC, Koning G, van der Zwet PMJ et al. Assessment of myocardial flow reserve with the DCI. Medica Mundi 1993;38:81–8.

    Google Scholar 

  17. Wolters MJA. Densitometric assessment of regional myocardial perfusion. Doctoral thesis. Leiden University, 1997.

    Google Scholar 

  18. Thomas JD. Contrast ultrasound for assessment of myocardial perfusion: promise and pitfalls. In: Advances in imaging techniques in ischemic heart disease. EE van der Wall, ThH Thomas, JHC Reiber (Eds.). Kluwer Academic Publishers, Dordrecht, 1995:101–11.

    Chapter  Google Scholar 

  19. Jerosch-Herold M, Wilke N. MR first pass imaging: quantitative assessment of transmural perfusion and collateral flow. Int J Cardiac Imaging 1997:14:205–18.

    Article  Google Scholar 

  20. Gensini GG, Kelly AE, Da Costa BCB, Huntington PP. Quantitative angiography: the measurement of coronary vaso-motility in the intact animal and man. Chest 1971;60:522–30.

    Article  PubMed  CAS  Google Scholar 

  21. Brown BG, Bolson E, Frimer M, Dodge HT. Quantitative coronary arteriography. Estimation of dimensions, hemodynamic resistance, and atheroma mass of coronary, artery lesions using the arteriograms and digital computation. Circulation 1977;55:329–37.

    PubMed  CAS  Google Scholar 

  22. Reiber JHC, Serruys PW, Kooijman CJ et al. Assessment of short-, medium-, and long-term variations In arterial dimensions from computer-assisted quantitation of coronary cineangiograms. Circulation 1985;71:280–8.

    Article  PubMed  CAS  Google Scholar 

  23. Reiber JHC. An overview of coronary quantitation techniques as of 1989. In: Quantitative Coronary Arteriography. JHC Reiber, PW Serruys (Eds.). Kluwer Academic Publishers, Dordrecht, 1991:55–132.

    Chapter  Google Scholar 

  24. Bruschke AVG, Reiber JHC, Lie KI, Wellens HJJ (Eds.). Lipid-lowering therapy and progression of coronary atherosclerosis. Kluwer Academic Publishers, Dordrecht, 1996.

    Google Scholar 

  25. Reiber JHC, van der Zwet PMJ, Koning G et al. Accuracy and precision of quantitative digital coronary arteriography: observer-, short-, and medium-term variabilities. Cath Cardiovasc Diagn 1993;28:187–98.

    CAS  Google Scholar 

  26. van der Zwet PMJ, Reiber JHC. A new approach for the quantification of complex lesion morphology: The Gradient Field Transform: Basic principles and validation results. JACC 1994;24:216–24.

    PubMed  Google Scholar 

  27. Reiber JHC, von Land CD, Koning G et al. Comparison of accuracy and precision of quantitative coronary arterial analysis between cinefilm and digital systems. In: Progress in quantitative coronary arteriography. JHC Reiber, PW Serruys (Eds.). Kluwer Academic Publishers, Dordrecht, 1994:67–85.

    Chapter  Google Scholar 

  28. van der Zwet PMJ, Reiber JHC. The influence of image enhancement and reconstruction on quantitative coronary arteriography. Int J Cardiac Imaging 1995;11:211–21.

    Article  Google Scholar 

  29. Koning G, Baretta P, Zwart P, Reiber JHC. Effect of lossy image compression on QCA results. Circulation 1995;82(Suppl.I):1–22 (Abstract).

    Google Scholar 

  30. Goedhart B, Reiber JHC. The role of DICOM in the digital catheterization laboratory. In: Cardiovascular Imaging. JHC Reiber, EE van der Wall (Eds.). Kluwer Academic Publishers, Dordrecht, 1996:171–84.

    Chapter  Google Scholar 

  31. Digital Cardiac Imaging in the 21st century: A Primer. ThE Kennedy, SE Nissen, R Simon, JD Thomas, PL Tilkemeier (Eds.). The Cardiac and Vascular Information Working Group, American College of Cardiology, Bethesda, Maryland, USA, 1997.

    Google Scholar 

  32. Cusma JT, Bashore TM. The digital catheterization laboratory - is it practical today? In: Cardiovascular Imaging. JHC Reiber, EE van der Wall (Eds.). Kluwer Academic Publishers, Dordrecht, 1996:157–70.

    Chapter  Google Scholar 

  33. Dumay ACM. Image reconstruction from biplane angiographic projections. Doctoral thesis, Delft University of Technology, 1992.

    Google Scholar 

  34. Wahle A, Wellnhofer E, Mugaragu I, Sauer HU, Oswald H, Fleck E. Assessment of diffuse coronary artery disease by quantitative analysis of coronary morphology based upon 3-D reconstruction from biplane angiograms. Trans Med Imaging 1995;14:230–41.

    Article  CAS  Google Scholar 

  35. Seiler C Kirkeeide RL, Gould KL. Basic structure-function relations of the epicardial coronary vascular tree; basis of quantitative coronary arteriography for diffuse coronary artery disease. Circulation 1992;85:1987–2003.

    PubMed  CAS  Google Scholar 

  36. Görge G, Ge J, Haude M et al, intravascular ultrasound for evaluation of coronary arteries. Herz 1996;21:78–89.

    PubMed  Google Scholar 

  37. Maurincomme E, Finet G, Reiber JHC, Savalle L, Magnin I. Quantitative intravascular ultrasound imaging: evaluation of an automated approach. J Am Coll Cardiol 1995;25:354A (Abstract).

    Article  Google Scholar 

  38. Maurincomme E, Finet G. What are the advantages and limitations of three- dimensional intracoronary ultrasound imaging? In: Cardiovascular Imaging. JHC Reiber, EE van der Wall (Eds.). Kluwer Academic Publishers, Dordrecht, 1996:243–255.

    Chapter  Google Scholar 

  39. Li W, Bom N, von Birgelen C, van der Steen TFW, de Korte CL, Gussenhoven EJ, Lancée CL. State of the art in ICUS quantitation. In: Cardiovascular Imaging. JHC Reiber, EE van der Wall (Eds.). Kluwer Academic Publishers, Dordrecht, 1996:79–92.

    Google Scholar 

  40. Evans JL, Ng K-H, Wiet SG et al. Accurate three-dimensional reconstruction of intravascular data — spatially correct three-dimensional reconstructions. Circulation 1996;93:567–76.

    PubMed  CAS  Google Scholar 

  41. Zhang X, Sonka M (Personal communication)

    Google Scholar 

  42. Reiber JHC, Serruys PW, Slager CJ. In: Quantitative coronary and left ventricular cineangiography: methodology and clinical applications. Martinus Nijhoff Publishers, Dordrecht, 1986.

    Book  Google Scholar 

  43. van der Zwet PMJ, Koning G, Reiber JHC. Left ventricular contour detection.A fully automated approach, Comput Cardiol 1992:359–62.

    Google Scholar 

  44. Sher DB, Revankar S, Rosenthal S. Computer methods in quantitation of cardiac wall parameters from two-dimensional echocardiograms: a survey. Int J Cardiac Imaging 1992;8:11–26.

    Article  CAS  Google Scholar 

  45. Marwick ThH.Current status of stress echocardiography for the diagnosis of myocardial ischemia and viability. In: Advances in imaging techniques in ischemic heart disease. EE van der Wall, ThH Marwick, JHC Reiber (Eds.). Kluwer Academic Publishers, Dordrecht, 1995:83–99.

    Chapter  Google Scholar 

  46. Bosch JG, Savalle LH, van Burken G, Reiber JHC. Evaluation of a semiautomatic contour detection approach in sequences of short-axis two-dimensional echocardiographic images. J Am Soc Echocardiogr 1995;8:810–21.

    Article  PubMed  CAS  Google Scholar 

  47. Nijland F, Kamp O, Verhorst PMJ, de Voogt WG, Visser CA. Impact of myocardial viability on left ventricular size and function following acute myocardial infarction. Abstract submitted to AHA, 1997.

    Google Scholar 

  48. Bosch JG, Reiber JHC, van Burken G, Savalle L, Maurincomme E, Helbing WA. Automated contour detection and acoustic quantification. Eur Heart J 1995;16(Suppl.J):35–41.

    PubMed  Google Scholar 

  49. Sakuma H, Fujia N, Foo TKF et al. Evaluation of left ventricular volume and mass with breath-hold cine MR imaging. Radiology 1993;188:377–80.

    PubMed  CAS  Google Scholar 

  50. Young AA, Kramer CM, Ferrari VA, Axel L, Reichek N. Three dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation 1994;90:854–67.

    PubMed  CAS  Google Scholar 

  51. Kramer CR, Lima JAC, Reichek N et al. Regional differences in function within noninfarcted myocardium during left ventricular remodelling. Circulation 1993;88:1279–88.

    PubMed  CAS  Google Scholar 

  52. Lamb HJ, Doornbos J, van der Velde EA, Kruit MC, Reiber JHC, de Roos A. Echopanar MRI of the heart on a standard sytem: validation of measurement of left ventricular function and mass. JCAT 1996;20:942–9.

    CAS  Google Scholar 

  53. Wilke N, Simm C, Zhang J et al. Contrast-enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperhemia. Magn Res Med 1993;29:485–97.

    Article  CAS  Google Scholar 

  54. Maier SE, Fischer SE, McKinnon GC, Hess OM, Krayenbuehl HP, Boesigner P. Evaluation of left ventricular segmental wall motion in hypertrophic cardiomyopathy with myocardial tagging. Circulation 1992;86:1919–28.

    PubMed  CAS  Google Scholar 

  55. Bayar R, Shapiro EO, Graves WL et al. Quantification and validation of left ventricular wall thickening by a three-dimensional volume element magnetic resonance imaging approach. Circulation 1990;81:297–307.

    Article  Google Scholar 

  56. van der Geest RJ, Jansen E, Buller VGM, Reiber JHC. Automated detection of left ventricular epi- and endocardial contours in short-axis MR images. Comput Cardiol, 1994:33–6.

    Google Scholar 

  57. van der Geest RJ, Buller VGM, Jansen E et al. Comparison between manual and automated analysis of left ventricular volume parameters from short axis MR images. J Comput Assist Tomogr (in press).

    Google Scholar 

  58. Azhari H, Sidemen S, Weiss JL et al.Three-dimensional mapping of acute ischemic regions using MRI: wall thickening versus motion analysis. Am J Physiol 1990;259 (Heart Circ Physiol 28):H1492–H503

    PubMed  CAS  Google Scholar 

  59. Buller VGM, van der Geest RJ, Kool MD, Reiber JHC. Accurate three-dimensional wall thickness measurement from multi-slice short-axis MR imaging. Comput Cardiol 1995:245–8.

    Google Scholar 

  60. Szolar DH, Sakuma H, Higgins CB. Cardiovascular application of magnetic resonance flow and velocity measurements. J Magn Res Imag 1996;6:78–89.

    Article  CAS  Google Scholar 

  61. van der Geest RJ, Buller VGM, Reiber JHC. Automated quantification of flow velocity and volume in the ascending and descending aorta using MR flow velocity mapping. Comput Cardiol 1995:29–32.

    Google Scholar 

  62. Scheidegger MB, Stuber M, Boesiger P, Hess QM. Coronary artery imaging by magnetic resonance. Herz 1996;21:90–6.

    PubMed  CAS  Google Scholar 

  63. Lelieveldt BPF, van der Zwet PMJ, van der Geest RJ, Reiber JHC. Anatomical modelling with CSG-trees consisting of hyperquadric shape primitives. Comp Aided Geometric Design (submitted).

    Google Scholar 

  64. Davis CP, Ladd MEB, Romanowski BJ, Wildermuth S, Knoplioch JF, Debatin JF. Human aorta: preliminary results with virtual endoscopy based on three-dimensional MR imaging data sets. Radiology 1996;199:37–40.

    PubMed  CAS  Google Scholar 

  65. Prause GPM, DeJong SC, McKay CR, Sonka M. Towards a geometrically correct 3- D reconstruction of turtuous coronary arteries based on biplane angiography and intravascular ultrasound. Int J Cardiac Imag 1997 (in press).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Kluwer Academic Publishers

About this chapter

Cite this chapter

Reiber, J.H.C. et al. (1997). Quantitative Cardiovascular Image Analysis: Current Status and what are Realistic Expectations for the Future?. In: van der Wall, E.E., Cats, V.M., Baan, J. (eds) Vascular Medicine. Developments in Cardiovascular Medicine, vol 197. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0037-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0037-0_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6505-4

  • Online ISBN: 978-94-009-0037-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics