Skip to main content

State-of-the-Art Diagnosis in Myocardial Ischema

  • Chapter
Vascular Medicine

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 197))

  • 83 Accesses

Abstract

In the last decade substantial improvements have been made in the diagnostic capabilities to detect myocardial ischemia. Particularly, the development and advancement of noninvasive imaging modalities have resulted in increased understanding of the functional sequelae of coronary artery stenosis. Imaging techniques such as stress perfusion scintigraphy and dobutamine echocardiography have found a niche in the diagnostic armamentarium of the clinical cardiologist in search of adequate methods to delineate or to exclude myocardial ischemia. One of the latest developments in this field is magnetic resonance imaging by virtue of its capability to evaluate myocardial perfusion and function. As the main subject of this chapter is dedicated to the state-of-the-art diagnosis of myocardial ischemia, the topic of the chapter is confined to stress myocardial perfusion scintigraphy as most of the experience world-wide has been obtained in this field of imaging. Especially the relative merits of single photon emission computed tomography (SPECT) and positron emission tomography (PET) will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weich HF, Strauss HW, Pitt B. The extraction of thallium-201 by the myocardium. Circulation 1977;56:188–91.

    PubMed  CAS  Google Scholar 

  2. Grunwald AM, Watson DD, Holzgrefe HH et al. Myocardial thallium-201 kinetics in normal and ischemic myocardium. Circulation 1981;64:610–8.

    Article  PubMed  CAS  Google Scholar 

  3. Pohost GM, Zir LM, Moore RH et al. Differentiation of transiently ischemic from infarcted myocardium by serial imaging after a single dose of thallium-201. Circulation 1977;55:294–302.

    PubMed  CAS  Google Scholar 

  4. Detrano R, Janosi A, Lyons KP et al. Factors affecting sensitivity and specificity of a diagnostic test: The exercise thallium scintigram. Am J Med 1988;84(4):699–710.

    Article  PubMed  CAS  Google Scholar 

  5. Gerson M. Test accuracy, test selection and test result interpretation in chronic coronary artery disease. In: Gerson MC, ed. Cardiac Nuclear Medicine. New York: McGraw-Hill, 1987:309–48.

    Google Scholar 

  6. Kotler TS, Diamond GA. Exercise thallium-201 scintigraphy in the diagnosis and prognosis of coronary artery disease. Ann Int Med 1990;113:684–702.

    PubMed  CAS  Google Scholar 

  7. Fintel DJ, Links JM, Brinker JA et al. Improved diagnostic performance of exercise thallium-201 single photon emission computed tomography over planar imaging in the diagnosis of coronary artery disease: A receiver-operating characteristic analysis. J Am Coll Cardiol 1989;13(3):600–12.

    Article  PubMed  CAS  Google Scholar 

  8. Mahmarian JJ, Verani MS. Exercise thallium-201 perfusion scintigraphy in the assessment of coronary artery disease. Am J Cardiol 1991;67:2D–11D.

    Article  PubMed  CAS  Google Scholar 

  9. Van Train K, Maddahi J, Berman DS et al. Quantitative analysis of tomographic stress thallium-201 myocardial scintigrams: A multicenter trial. J Nucl Med 1990:31:1168–79.

    PubMed  Google Scholar 

  10. Iskandrian AS, Heo J, Kong B et al. Effect of exercise level on the ability of thallium- 201-tomographic imaging in detecting coronary artery disease: Analysis of 461 patients. J Am Coll Cardiol 1989;14:1477–86.

    Article  PubMed  CAS  Google Scholar 

  11. Maddahi J, Van Train K, Prigent F et al. Quantitative single photon emission computed thallium-201 tomography for detection and localization of coronary artery disease: Optimization and prospective validation of a new technique. J Am Coll Cardiol 1989;14:1689–99.

    Article  PubMed  CAS  Google Scholar 

  12. Okada R, Glover D, Gaffney T et al. Myocardial kinetics of technetium-99m hexakis- 2-methoxy-2-methylpropylisonitrile. Circulation 1988;77:491–8.

    Article  PubMed  CAS  Google Scholar 

  13. Melon PG, Beanlands RS, DeGrado TR, Nguyen N, Petry NA, Schwaiger M. Comparison of technetium-99m sestamibi and thallium-201 retention characteristics in canine myocardium. J Am Coll Cardiol 1992;20:1277–83.

    Article  PubMed  CAS  Google Scholar 

  14. Taillefer R, Primeau M, Costi P et al. Technetium-99m myocardial perfusion imaging in detection of coronary artery disease: Comparison between initial (1-hr) and delayed (3-hr) postexercise images. J Nucl Med 1991;32:2311–7.

    Google Scholar 

  15. Berman DS, Kiat H, Van Train KF et al. Technetium 99m sestamibi in the assessment of chronic coronary artery disease. Semin Nucl Med 1991;21:190–212.

    Article  PubMed  CAS  Google Scholar 

  16. Faber TL, Akers MS, Peshock RM et al. Three-dimensional motion and perfusion quantification in gated single-photon emission computed tomograms. J Nucl Med 1991;32:2311–7.

    PubMed  CAS  Google Scholar 

  17. Berman DS, Kiat HS, Van Train KF et al. Myocardial perfusion imaging with technetium-99m-sestamibi: Comparative analysis of available imaging protocols. J Nucl Med 1994;35:681–8.

    PubMed  CAS  Google Scholar 

  18. Verzijlbergen JF, Cramer MJM, Niemeyer et al. 99mTc sestamibi for planar myocardial perfusion imaging; Not as ideal as the physical properties. Nucl Med Comm 1991;12:381–91.

    Article  CAS  Google Scholar 

  19. Taillefer R, Lambert R, Dupras G et al. Clinical comparison between thallium-201 and Tc-99m-methoxy isobutyl isonitrile (hexamibi) myocardial perfusion imaging for detection of coronary artery disease. Eur J Nucl Med 1989;15:280–6.

    Article  PubMed  CAS  Google Scholar 

  20. Iskandrian AS, Heo J, Kong B et al. Use of technetium-99m isonitrile (RP-30A) in assessing left ventricular perfusion and function at rest and during exercise in coronary artery disease, and comparison with coronary angiography and exercise thallium-201 SPECT imaging. Am J Cardiol 1989;64:270–5.

    Article  PubMed  CAS  Google Scholar 

  21. Maddahi J, Van Train KF, Prigent F et al. Myocardial perfusion imaging with technetium-99m sestamibi SPECT in the evaluation of coronary artery disease. Am J Cardiol 1990;66:55E–62E.

    Article  PubMed  CAS  Google Scholar 

  22. Kahn, JK, McGhie I, Akers MS et al. Quantitative rotational tomography with 201TI and 99mTc 2-methoxy-isobutyl-isonitrile. A direct comparison in normal individuals and patients with coronary artery disease. Circulation 1989;79:1282–93.

    Article  PubMed  CAS  Google Scholar 

  23. Kiat H, Maddahi J, Roy LT et al. Comparison of technetium-99m methoxyisobutyl isonitrille and thallium-201 for evaluation of coronary artery disease by planar and tomographic methods. Am Heart J1989;117:1–11

    Article  PubMed  CAS  Google Scholar 

  24. Cramer MJM, Van der Wall EE,Verzijlbergenet al. SPECT versus planar 99mTc- sestamibi myocardial scintigraphy: Comparison of accuracy and impact on patient management in chronic ischemic heart disease. Q J Nucl Med 1997;41:1–9.

    PubMed  CAS  Google Scholar 

  25. Leppo JA, Meerdink DJ. Comparative myocardial extraction of two technetium- labeled BATO derivatives (SQ30217, SQ32014) and thallium. J Nucl Med 1990;31:67–74.

    PubMed  CAS  Google Scholar 

  26. Gray WA, Gewirtz H. Comparison of 99mTc-teboroxime with thallium for myocardial imaging in the presence of a coronary artery stenosis. Circulation 1991;84:1796–1807.

    PubMed  CAS  Google Scholar 

  27. Sinusas AJ, Shi QX, Saltzberg MT et al. Technetium-99m tetrofosmin to assess myocardial blood flow; Experimental validation in an intact canine model of ischemia. J Nucl Med 1994;35:664–7.

    PubMed  CAS  Google Scholar 

  28. Tamaki N, Takahashi N, Kawamoto M et al. Myocardial tomography uusing technetium-99m-tetrofosmin to evaluate coronary artery disease. J Nucl Med 1994;35:594–600.

    PubMed  CAS  Google Scholar 

  29. Van Eck-Smit BLF, Poots S, Zwinderman AH, Bruschke AVG, Pauwels EKJ, Van der Wall EE. Myocardial SPECT imaging with 99Tcm—tetrofosmin in clinical practice: Comparison of a 1 day and a 2 day imaging protocol. Nucl Med Comm 1997; 18:24–30.

    Article  Google Scholar 

  30. Knabb RM, Gidday JM, Ely SW, Rubio R, Berne RM. Effects of dipyridamole on myocardial adenosine and active hyperemia. Am J Physiol 1984;247:H804–H810.

    PubMed  CAS  Google Scholar 

  31. Rahonsky A, Kempthorne-Rawson J and the Intravenous Dipyridamole Thallium Myocardial Perfusion Imaging Study Group. Circulation 1990;81:1205–9.

    Article  Google Scholar 

  32. Beller GA. Pharmacologic stress imaging. JAMA 1991;265;633–8.

    Article  PubMed  CAS  Google Scholar 

  33. Moser GH, Schrader J, Deursen A. Turnover of adenosine in plasma of human and dog blood. Am J Physiol 1989;256(Cell Physiol 25):C799–C806.

    PubMed  CAS  Google Scholar 

  34. Verani MS, Mahmarian JJ, Hixson JB, Boyce TM, Staudacher RA. Diagnosis of coronary artery disease by controlled coronary vasodilation with adenosine and thallium-201 scintigraphy in patients unable to exercise. Circulation 1990;82:80–7.

    Article  PubMed  CAS  Google Scholar 

  35. Verani MS, Mahmarian JJ. Myocardial perfusion scintigraphy during maximal coronary artery vasodilation with adenosine. Am J Cardiol 1991;67:12D–17D.

    Article  PubMed  CAS  Google Scholar 

  36. Hays JT, Mahmarian JJ, Cochran A, Verani MS. Dobutamine thallium-201 tomography for evaluating patients with suspected coronary artery disease unable to undergo exercise or vasodilator pharmacologic stress testing. J Am Coll Cardiol 1993;21:1583–90.

    Article  PubMed  CAS  Google Scholar 

  37. Brown KA. Prognostic value of thallium-201 myocardial perfusion imaging. A diagnostic tool comes of age. Circulation 1991;83:363–81.

    PubMed  CAS  Google Scholar 

  38. Brown KA, Boucher CA, Okada RD et al. Prognostic value of exercise thallium-201 imaging in patients presenting for evaluation of chest pain. J Am Coll Cardiol 1983;1:994–1001.

    Article  PubMed  CAS  Google Scholar 

  39. Machecourt J, Longere P, Fagret D et al. Prognostic value of thallium-201 single- photon emission computed tomographic myocardial perfusion imaging according to extent of myocardial defect. Study in 1926 patients with follow-up at 33 months.J Am Coll Cardiol199423:1096–106

    Article  PubMed  CAS  Google Scholar 

  40. Pollock SG, Abbott RD, Boucher CA, Beller GA, Kaul S. Independent and incremental prognostic value of tests performed in hierarchical order to evaluate patients with suspected coronary artery disease. Validation of models based on these tests. Circulation 1992;85:237–48

    PubMed  CAS  Google Scholar 

  41. Pamelia FX, Gibson RS, Watson DD, Craddock GB, Sirowatka J, Beller GA. Prognosis with chest pain and normal thallium-201 exercise scintigrams. Am J Cardiol 1985;55:920–6.

    Article  PubMed  CAS  Google Scholar 

  42. Wackers FJTh, Russo DJ, Russo D, Clements JP. Prognostic significance of normal quantitative planar thallium-201 stress scintigraphy in patients with chest pain. J Am Coll Cardiol 1985;6:27–30.

    Article  PubMed  CAS  Google Scholar 

  43. Gill JB, Ruddy TD, Newell JB, Finkelstein DM, Strauss HW, Boucher CA. Prognostic importance of thallium uptake by the lungs during exercise in coronary artery disease. N Engl J Med 1987;317:1485–9.

    Article  Google Scholar 

  44. Koss JH, Kobren SM, Grunwald AM, Bodenheimer MM. Role of thallium-201 myocardial perfusion scintigraphy in predicting prognosis in suspected coronary artery disease. Am J Cardiol 1987;59:531–4.

    Article  PubMed  CAS  Google Scholar 

  45. Oosterhuis WP, Breeman A, Niemeyer MG et al. Patients with a normal exercise thallium-201 myocardial scintigram: always a good prognosis? Eur J Nucl Med 1993;20:151–8.

    Article  PubMed  CAS  Google Scholar 

  46. Brown KA, Rowen M. Prognostic value of a normal exercise myocardial perfusion imaging study in patients with angiographically significant coronary artery disease. Am J Cardiol 1993;71:865–7.

    Article  PubMed  CAS  Google Scholar 

  47. Abdel Fattah A, KamalAM, PancholyS et al. Prognostic implications of normal exercise tomographic thallium images in patients with angiographic evidence of significant coronary artery disease. Am J Cardiol1994;74:769–71.

    Article  PubMed  CAS  Google Scholar 

  48. Boucher CA, Zir LM, SellerGA et al. Increased lung uptake of TI-201 during exercise myocardial imaging: clinical, hemodynamic and angiographic implications in patients with coronary artery disease. Am J Cardiol1980;46:189–96.

    Article  PubMed  CAS  Google Scholar 

  49. Brundage BH, Massie BM, Botvinick EH. Improved regional ventricular function after successful revascularization. J Am Coll Cardiol 1984;3:902–8.

    Article  PubMed  CAS  Google Scholar 

  50. Dilsizian V, Bonow RO, Cannon RO et al. The effect of coronary artery bypass grafting on left ventricular systolic function at rest: Evidence for preoperative subclinical myocardial ischemia. Am J Cardiol1988;61:1248–54.

    Article  PubMed  CAS  Google Scholar 

  51. Elefteriades JA, Tolis Jr G, Levi E, Mills LK, Zaret BL. Coronary artery bypass grafting in severe left ventricular dysfunction: Excellent survival with improved ejection fraction and functional state. J Am Coll Cardiol 1993;22:1411–7.

    Article  PubMed  CAS  Google Scholar 

  52. The Multicenter Postinfarction Research Group. Risk stratification and survival after myocardial infarction. N Eng J Med 1983;309:331–6.

    Article  Google Scholar 

  53. Pigott JD, Kouchoukos NT, Oberman A, Cutter GR. Late results of surgical and medical therapy for patients with coronary artery disease and depressed left ventricular function. J Am Coll Cardiol 1985;5:1036–45.

    Article  PubMed  CAS  Google Scholar 

  54. Tillisch J, Brunken R, Marshall R et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986;314:884–8.

    Article  PubMed  CAS  Google Scholar 

  55. Vom Dahl J , Eitzman DT, Al-Aouar ZR et al. Relation of regional function, perfusion and metabolism in patients with advanced coronary artery disease undergoing surgical revascularization. Circulation1994;90:2356–66.

    Google Scholar 

  56. Knuuti MJ, Saraste M, Nuutila P et al. Myocardial viability: Fluorine-18-deoxyglucose positron emission tomography in prediction of wall motion recovery after revascularization. Am Heart J 1994;127:785–96.

    Article  PubMed  CAS  Google Scholar 

  57. Dilsizian V, Rocco TP, Freedman NM, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990;323:141–6.

    Article  PubMed  CAS  Google Scholar 

  58. Ragosta M, Beller GA, Watson DD, Kaul S, Gimple LW. Quantitative planar rest-redistribution TI-201 imaging in detection of myocardial viability and prediction of improvement in left ventricular function after coronary artery bypass surgery in patients with severely depressed left ventricular function. Circulation 1993;87:1630–41.

    PubMed  CAS  Google Scholar 

  59. Arnese M, Cornel JH, Salustri A et al. Prediction of improvement of regional left ventricular function after surgical revascularization; A comparison of low-dose dobutamine echocardiography with 201-TL SPECT. Circulation 1995;91:2748–52.

    PubMed  CAS  Google Scholar 

  60. Bax JJ, Cornel JH, Visser FC et al. Prediction of recovery of regional ventricular dysfunction following revascularization; Comparison of F18-fluorodeoxyglucose SPECT, thallium-201 stress-reinjection SPECT and dobutamine echocardiography. J Am Coll Cardiol 1996;28:558–64.

    Article  PubMed  CAS  Google Scholar 

  61. La Canna G, Alfieri O, Giubbini R, Gargano M, Ferrari R, Visioli O. Echocardiography during infusion of dobutamine for identification of reversible dysfunction in patients with chronic coronary artery disease. J Am Coll Cardiol 1994;23:617–26.

    Article  PubMed  Google Scholar 

  62. Maddahi J, Schelbert H, Brunken R, Di Carli M. Role of TI-201 and PET imaging in evaluation of myocardial viability and management of patients with coronary artery disease and left ventricular dysfunction. J Nucl Med 1994;35:707–15.

    PubMed  CAS  Google Scholar 

  63. Cornel JH, Bax J J, Fioretti PM. Assessment of myocardial viability by dobutamine stress echocardiography. Curr Opin Cardiol 1996;11:621–6.

    Article  PubMed  CAS  Google Scholar 

  64. Marwick TH. Recent advances in stress echocardiography. Curr Opin Cardiol 1995;10:619–5.

    Article  PubMed  CAS  Google Scholar 

  65. Bonow RO, Dilsizian V. Assessing viable myocardium with thallium-201. Am J Cardiol 1992;70:10E–17E.

    Article  PubMed  CAS  Google Scholar 

  66. Bonow RO,DilsizianV,CuocoloA,BacharachSL. Identification of viable myocardium in patients with chronic coronary artery disease andl left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with 18-F- Fluorodeoxyglucose. Circulation 1991;83:26–37.

    PubMed  CAS  Google Scholar 

  67. Dilsizian V, Freedman NMT, Bacharach SL, Perrone-Filardi P, Bonow RO. Regional Tl uptake in irreversible defects: Magnitude of change in Tl activity after reinjection distinguishes viable from nonviable myocardium. Circulation 1992;85:627–34.

    PubMed  CAS  Google Scholar 

  68. Vanoverschelde J-LJ, D’Hondt A-M, Marwick T et al. Head-to-head comparison of exercise-redistribution-reinjection thallium single-photon emission computed tomography and low dose dobutamine echocardiography for prediction of reversibility of chronic left ventricular ischemic dysfunction. J Am Coll Cardiol 1996;28:432–42.

    Article  PubMed  CAS  Google Scholar 

  69. Ohtani H, Tamaki N, Yonekura Y et al. Value of thallium-201 reinjection after delayed SPECT imaging for predicting reversible ischemia after coronary artery bypass grafting. Am J Cardiol 1990;66:394–9.

    Article  PubMed  CAS  Google Scholar 

  70. Tamaki N, Ohtani H, Yamashita K et al. Metabolic activity in the areas of new fill-in after thallium-201 reinjection: Comparison with positron emission tomography using fluorine-18-deoxyglucose. J Nucl Med 1991;32:673–8.

    PubMed  CAS  Google Scholar 

  71. Haque T, Furukawa T, Takahashi M, Kinoshita M. Identification of hibernating myocardium by dobutamine stress echocardiography: Comparison with thallium-201 reinjection imaging. AM Heart J 1995;130:553–63.

    Article  PubMed  CAS  Google Scholar 

  72. Bax JJ,CornelJH,VisserFC,FiorettiPM,WijnsW.Which is the preferred technique to predict improvement of regional left ventricular dysfunction after coronary revascularization?Circulation1996;94(Suppl.l):l–233 (Abstract).

    Google Scholar 

  73. Gewirtz H, Beller GA, Strauss HW, Dinsmore RE, Zir LM, McKusick KA, Pohost GM. Transient defect of resting thallium scans in patients with coronary artery disease. Circ 1979;53:707–13.

    Google Scholar 

  74. Mori T, Minamiji K, Kurogane H et al. Rest-injected thallium-201 imaging for assessing viability of severe asynergic regions. J Nucl Med 1991;32:1718–24.

    PubMed  CAS  Google Scholar 

  75. Marzullo P, Parodi O, Reisenhofer B et al. Value of rest thallium-201 /technetium-99m sestamibi and dobutamine echocardiography for detecting myocardial viability. Am J Cardiol 1993;71:166–72.

    Article  PubMed  CAS  Google Scholar 

  76. Udelson JE,Coleman PS,MetherallJ et all.Predicting recovery of severe regional ventricular dysfunction; Comparison of resting scintigraphy with 201Tl and 99Tc-sestamibi.Circulation 1994;89:2552–61.

    PubMed  CAS  Google Scholar 

  77. Qureshi U,NaguehSF,AfridiI et al.Dobutamine echocardiography and quantitative rest-redistribution 201TI tomography in myocardial hibernation. Relation of contractile reserve to 201Tl uptake and comparative prediction of recovery of function.Circulation 1997;95:626–35.

    PubMed  CAS  Google Scholar 

  78. Alfieri O, La Canna G, Giubinni R, Pardini A, Zogno M, Fucci C. Recovery of myocardial function. Eur J Cardio-Thorac Surg 1993;7:325–30.

    Article  CAS  Google Scholar 

  79. Charney R, Schwinger ME, Chun J et al. Dobutamine echocardiography and resting- redistributron thallium-201 scintigraphy predicts recovery of hibernating myocardium after coronary revascularization. Am Heart J 1994; 128:864–9.

    Article  PubMed  CAS  Google Scholar 

  80. Perrone-Filardi P,PaceL,Prastaro M et al. Assessment of myocardial viability in patients with chronic coronary artery disease. Rest-4-hour-24-hour 201TI tomography versus dobutamine echocardiography. Circulation1996;94:2712–9.

    PubMed  CAS  Google Scholar 

  81. Van Eck-Smit BLF, van der Wall EE. Reinjection of thallium for detection of viable myocardium: Why not do it immediately? Br Heart J 1995;74:101–2.

    Article  PubMed  Google Scholar 

  82. Van Eck-Smit BLF, van der Wall EE, Kuijper AFM, Pauwels EKJ. Immediate thallium-201 reinjection following stress imaging: A novel timesaving approach for detection of myocardial viability. J Nucl Med 1993;34:737–43.

    PubMed  Google Scholar 

  83. Schelbert HR. Metabolic imaging to assess myocardial viability. J Nucl Med 1994;35(Suppl):8S–14S.

    PubMed  CAS  Google Scholar 

  84. Camici P, Ferrannini E, Opie LP. Myocardial metabolism in ischemic heart disease: Basic principles and application to imaging by positron emission tomography. Progr Cardiovasc Dis 1989;32:217–38.

    Article  CAS  Google Scholar 

  85. Marwick TH,MaclntyreWJ,LafontA, NemecJJ,SalcedoEE. Metabolic responses of hibernating and infarcted myocardium to revascularization.Circulation 1992;85:1–347–53.

    Google Scholar 

  86. Gerber BL,VanoverscheldeJ-LJBolA et al.Myocardial blood flow, glucose uptake and recruitment of inotropic reserve in chronic left ventricular ischemic dysfunction. Implications for the pathophysiology of chronic hibernation.Circulation1996;94:651–9.

    PubMed  CAS  Google Scholar 

  87. Tamaki N, Yonekura Y, Yamashita K et al. PET using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol 1989;64:860–5.

    Article  PubMed  CAS  Google Scholar 

  88. Gropler RJ, Geltman EM, Sampathkumaran K et al. Comparison of carbon-11-acetate with fluorine-18-fluorodeoxyglucose for delineating viable myocardium by positron emission tomography. J Am Coll Cardiol 1993;22:1587–97.

    Article  PubMed  CAS  Google Scholar 

  89. Maes AF,BorgersM,FlamengW et al.Assessment of myocardial viability in chronic coronary artery disease using technetium-99m sestamibi SPECT. Correlation with histologic and positron emission tomographic studies and functional follow-up.J Am Coll Cardiol1997;29:62–8.

    Article  PubMed  CAS  Google Scholar 

  90. Tamaki N, Kawamoto M, Tadamura E et al. Prediction of reversible ischemia after revascularization. Perfusion and metabolic studies with positron emission tomography. Circulation 1995;91:1697–705.

    PubMed  CAS  Google Scholar 

  91. Baer FM, Voth E, Deutsch HJ, Schneider CA et al. Predictive value of low dose dobutamine transesophageal echocardiography and fluorine-18 fluorodeoxyglucose positron emission tomography for recovery of regional left ventricular function after successful revascularization. J Am Coll Cardiol 1996;28:60–9.

    Article  PubMed  CAS  Google Scholar 

  92. Lucignani G, Paolini G, Landoni C et al. Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methoxyisobutylisonitrile SPECT and fluorine-18 fluoro-2-deoxy-D-glucose positron emissi on tomography in patients with coronary artery disease. Eur J Nucl Med 1992;19:874–81.

    Article  PubMed  CAS  Google Scholar 

  93. Carrel T, Jenni R, Haubold-Reuter S, Von Schulthess G, Pasic M, Turina M. Improvement of severely reduced left ventricular function after surgical revascularization in patients with preoperative myocardial infarction. Eur J Cardiothorac Surg 1992;6:479–84.

    Article  PubMed  CAS  Google Scholar 

  94. Keijer JT, BaxJJ, Van Rossum AC, Visser FC, Visser CA. Myocardial perfusion imaging: Clinical experience and recent progress in radionuclide scintigraphy and magnetic resonance imaging.Int J Card Imaging1997;in press.

    Google Scholar 

  95. Bax JJ, Visser FC, Huitink JM, Visser CA. Exercise thallium-201 scintigraphy: Diagnostic and prognostic value in patients with known or suspected coronary artery disease. Cardiologie 1995;2:230–40.

    Google Scholar 

  96. Meeder JG, Peels JOJ, Blanksma PK et al. Comparison between PET-myocardial perfusion imaging and intracoronary Doppler-flow velocity measurements at rest and during cold pressor esting in angiographically normal coronary arteries in patients with single-vessel coronary artery disease. Am J Cardiol 1996;78:526–31.

    Article  PubMed  CAS  Google Scholar 

  97. Meeder JG, Blanksma PK, van der Wall EE et al. Long-term cigarette smoking is associated with increased myocardial perfusion heterogeneity assessed by positron emission tomography. Eur J Nucl Med 1996;23:1442–7.

    Article  PubMed  CAS  Google Scholar 

  98. Meeder JG, Blanksma PK, van der Wall EE et al. Coronary vasomotion in patients with syndrome X: evaluation with positron emission tomography and parametric myocardial perfusion imaging. Eur J Nucl Med 1997;24:530–7.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Kluwer Academic Publisher

About this chapter

Cite this chapter

Bax, J.J., van der Wall, E.E. (1997). State-of-the-Art Diagnosis in Myocardial Ischema. In: van der Wall, E.E., Cats, V.M., Baan, J. (eds) Vascular Medicine. Developments in Cardiovascular Medicine, vol 197. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0037-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0037-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6505-4

  • Online ISBN: 978-94-009-0037-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics