Endothelial (dys)Function, Lipid Reduction and Balloon Angioplasty

  • Han J. G. H. Mulder
  • Martin J. Schalij
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 197)


The endothelium is an important anatomical structure which is present throughout the whole vascular system. This review will focus on the endothelial function of the coronary artery system, especially in relation to cholesterol reduction and percutaneous transluminal coronary angioplasty (PTCA). The review is divided into four parts; 1) endothelial function; 2) endothelial dysfunction; 3) restoring endothelial function by cholesterol reduction; and 4) endothelial (dys)function and PTCA.


Nitric Oxide Smooth Muscle Cell Endothelial Dysfunction Endothelial Function Percutaneous Trans Luminal Coronary Angioplasty 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Vanhoutte PM. Endothelium and control of vascular function. State of the Art lecture. Hypertension 1989;13:658–67.Google Scholar
  3. 3.
    Berliner JA, Navab M, Fogelman AM ET AL. Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation 1995;91:2488–96PubMedGoogle Scholar
  4. 4.
    Moncada S, Higgs A. The l-arginine-nitric oxide pathway. N Engl J Med 1993;329:2002–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987;327:524–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Myers PR, Minor R Jr., Guerra R Jr., Bates JN, Harrison DG. Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide. Nature 1990;345:161–3.PubMedCrossRefGoogle Scholar
  7. 7.
    Kelm M, Schrader J. Control of coronary vascular tone by nitric oxide. Circ Res 1990;66:1561–75.PubMedGoogle Scholar
  8. 8.
    Moncada S. The first Robert Furchgott lecture: from endothelium-dependent relaxation to the L-arginine: NO pathway. Blood Vessels 1990;27:208–17.PubMedGoogle Scholar
  9. 9.
    Sase K, Michel T. Expression and regulation of endothelial nitric oxide synthase. Trends Cardiovasc Med 1997;7:28–37.PubMedCrossRefGoogle Scholar
  10. 10.
    Radomski MW, Palmer RMJ, Moncada S. The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem Biophys Res Commun 1987;148:1482–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Scott-Burden T, Vanhoutte PM. The endothelium as a regulator of vascular smooth muscle proliferation. Circulation 1993;87:V-51-V-55 Google Scholar
  12. 12.
    Provost P, Lam JY, Lacoste L, Merhi Y, Waters D. Endothelium-derived nitric oxide attenuates neutrophil adhesion to endothelium under arterial flow conditions. Arterioscler Thromb 1994;14:331–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Keaney JF Jr., Vita JA. Atherosclerosis, oxidative stress, and antioxidant protection in endothelium-derived relaxing factor action. Prog Cardiovasc Dis 1995;38:129–54.PubMedCrossRefGoogle Scholar
  14. 14.
    Chen G, Suzuki H, Weston AH. Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels. Br J Pharmacol 1983;95:1165–74.Google Scholar
  15. 15.
    Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 1994;368:850–3.PubMedCrossRefGoogle Scholar
  16. 16.
    Hecker M, Bara AT, Bauersachs J, Busse R. Characterization of endothelium-derived hyperpolarizing factor as a cytochrome P450-derived arachidonic acid metabolite in mammals. J Physiol Lond 1994;4811:407–14.Google Scholar
  17. 17.
    Siegel G, Schnalke F, Stock G, Grote J. Prostacyclin, endothelium-derived relaxing factor and vasodilatation. Adv Prostaglandin Thromboxane Leukot Res 1989;19:267–70.PubMedGoogle Scholar
  18. 18.
    Yanagisawa M, Kurihara H, Kimura S. A novel potent vasoconstrictor, peptide produced by vascular endothelial cells. Nature 1988;332:411-5. PubMedCrossRefGoogle Scholar
  19. 19.
    Lincoln J, Loesch A, Burnstock G. Localization of vasopressin, serotonin and angiotensin II in endothelial cells of the renal and mesenteric arteries of the rat. Cell Tissue Res 1990;259:341–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Lin L, Nasjletti A. Role of endothelium-derived prostanoid in angiotensin-induced vasoconstriction. Hypertension 1991;18:158-64 PubMedGoogle Scholar
  21. 21.
    Cohen RA, Shepherd JT, Vanhoutte PM. Vasodilatation mediated by the coronary endothelium in response to aggregating platelets. Bibl Cardiol 1984;35–42.Google Scholar
  22. 22.
    Pohl U, Holtz J, Busse R, Bassenge E. Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 1986;8:37–44.PubMedGoogle Scholar
  23. 23.
    Olesen SP, Clapham DE, Davies PF. Haemodynamic shear stress activates a K + current in vascular endothelial cells. Nature 1988;331:168–70.PubMedCrossRefGoogle Scholar
  24. 24.
    Kelm M, Feelisch M, Spahr R, Piper HM, Noack E, Schrader J. Quantitative and kinetic characterization of nitric oxide and EDRF released from cultured endothelial cells. Biochem Biophys Res Commun 1988;154:236–44.PubMedCrossRefGoogle Scholar
  25. 25.
    Ludmer PL, Selwyn AP, Shook TL et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 1986;31 5:1046–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Fitchett DH. Forearm arterial compliance: a new measure of arterial compliance? Cardiovasc Res 1984;18:651–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Celermajer DS, Sorensen KE, Gooch VM et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992;340:1111–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Virchow R (ed): Phlogose und thrombose in gefassytem, gesammelte abhandlungen zur wissenschaftlichen medicin. Frankfurt am main, Meidinger Sohn and Co. 1856Google Scholar
  29. 29.
    Ross R. The pathogenesis of atherosclerosis; an update. N Engl J Med 1986;314:488–500.PubMedCrossRefGoogle Scholar
  30. 30.
    Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med 1992;326:242–50.PubMedCrossRefGoogle Scholar
  31. 31.
    Kannel WB, Castelli WP, Gordon T, McNamara PM. Serum cholesterol, lipoproteins, and the risk of coronary heart disease. The Framingham study. Ann Intern Med 1971;74:1–12.PubMedGoogle Scholar
  32. 32.
    Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989;320:915–23.PubMedCrossRefGoogle Scholar
  33. 33.
    Witztum JL. The oxidation hypothesis of atherosclerosis. Lancet 1994;344:793–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Holvoet P, Collen D. Oxidized lipoproteins in atherosclerosis and thrombosis. FASEB J 1994;8:1279–84.PubMedGoogle Scholar
  35. 35.
    Shimokawa H, Tomoike H, Nabeyama S et al. Coronary artery spasm induced in atherosclerotic miniature swine. Science 1983;221:560–2.PubMedCrossRefGoogle Scholar
  36. 36.
    Werns SW, Walton JA, Hsia HH, Nabel EG, Sanz ML, Pitt B. Evidence of endothelial dysfunction in angiographically normal coronary arteries of patients with coronary artery disease. Circulation 1989;79:287–91.PubMedCrossRefGoogle Scholar
  37. 37.
    Cox DA, Cohen ML. Effects of oxidized low-density lipoprotein on vascular contraction and relaxation: clinical and pharmacological implications in atherosclerosis. Pharmacol Rev 1996;48:3–19.PubMedGoogle Scholar
  38. 38.
    Sellke FW, Armstrong ML, Harrison DG. Endothelium-dependent vascular relaxation is abnormal in the coronary microcirculation of atherosclerotic primates. Circulation 1990;81:1586–93.PubMedCrossRefGoogle Scholar
  39. 39.
    Tamai Q, Matsuoka H, Itabe H, Wada Y, Kohno K, Imaizumi T. Single LDL apheresis improves endothelium-dependent vasodilatation in hypercholesterolemic humans. Circulation 1997;95:76–82.PubMedGoogle Scholar
  40. 40.
    Ohara Y, Peterson TE, Sayegh HS, Subramanian RR, Wilcox JN, Harrison DG. Dietary correction of hypercholesterolemia in the rabbit normalizes endothelial superoxide anion production. Circulation 1995;92:898-903. PubMedGoogle Scholar
  41. 41.
    Mohazzab KM, Kaminski PM, Wolin MS. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol 1994;266:H2568-72. PubMedGoogle Scholar
  42. 42.
    Ohara Y, Peterson TE, Zheng B, Kuo JF, Harrison DG. Lysophosphatidylcholine increases vascular superoxide anion production via protein kinase C activation. Arterioscler Thromb 1994;14:1007–13.PubMedCrossRefGoogle Scholar
  43. 43.
    Shimokawa H, Flavahan NA, Vanhoutte PM. Loss of endothelial pertussis toxin- sensitive G protein function in atherosclerotic porcine coronary arteries. Circulation 1991;83:652–60.PubMedGoogle Scholar
  44. 44.
    Liao JK, Shin WS, Lee WY, Clark SL. Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase. J Biol Chem 1995;270:319–24.PubMedCrossRefGoogle Scholar
  45. 45.
    Myers PR, Wright TF, Tanner MA, Ostlund RE Jr. The effects of native LDL and oxidized LDL on EDRF bioactivity and nitric oxide production in vascular endothelium. J Lab Clin Med 1994;124:672–83.PubMedGoogle Scholar
  46. 46.
    Bogaty P, Hackett D, Davies G, Maseri A. Vasoreactivity of the culprit lesion in unstable angina. Circulation 1994;90:5–11.PubMedGoogle Scholar
  47. 47.
    Zeiher AM, Schachinger V, Weitzel SH, Wollschlager H, Just H. Intracoronary thrombus formation causes focal vasoconstriction of epicardial arteries in patients with coronary artery disease. Circulation 1991;83:1519–25.PubMedGoogle Scholar
  48. 48.
    Endo A, Kuroda M, Tsujita Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J Antibiot Tokyo 1976;29:1346–8.PubMedGoogle Scholar
  49. 49.
    Yamamoto A, Sudo H, Endo A. Therapeutic effects of ML-236B in primary hypercholesterolemia. Atherosclerosis 1980;35:259–66.PubMedCrossRefGoogle Scholar
  50. 50.
    Hunninghake D. HMG-CoA reductase inhibitors. Curr Opin Lipidol 1992;3:22–8.CrossRefGoogle Scholar
  51. 51.
    Bakker-Arkema RG, Davidson MH, Goldstein RJ et al. Efficacy and safety of a new HMG-CoA reductase inhibitor, atorvastatin, in patients with hypertriglyceridemia. JAMA 1996;275:128–33.PubMedCrossRefGoogle Scholar
  52. 52.
    Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994;344:1383–9.Google Scholar
  53. 53.
    Shepherd J, Cobbe SM, Ford I et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med 1995;333:1301–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Sacks FM, Pfeffer MA, Moye LA et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 1998;335:1001–9.CrossRefGoogle Scholar
  55. 55.
    Waters D, Higginson L, Gladstone P et al. Effects of monotherapy with an HMG-CoA reductase inhibitor on the progression of coronary atherosclerosis as assessed by serial quantitative arteriography: The Canadian coronary atherosclerosis intervention trial. Circulation 1994;89:959–68.PubMedGoogle Scholar
  56. 56.
    Jukema JW, Bruschke AV, van-Boven AJ et al. Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels. The Regression Growth Evaluation Statin Study (REGRESS). PubMedGoogle Scholar
  57. 57.
    Tamura A, Mikuriya Y, Nasu M et al. Effect of pravastatin (10 mg/day) on progression of coronary atherosclerosis in patients with serum total cholesterol levels from 160 to 220 mg/dl and angiographically documented coronary artery disease. Am J Cardiol 1997;79:893–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Levine GN, Keaney JF Jr., Vita JA. Cholesterol reduction in cardiovascular disease. Clinical benefits and possible mechanisms. N Engl J Med 1995;332:512-21. PubMedCrossRefGoogle Scholar
  59. 59.
    Ambrose JA, Tannenbaum MA, Alexopoulos D et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 1988;12:56–62.PubMedCrossRefGoogle Scholar
  60. 60.
    Little WC, Constantinescu M, Applegate RJ et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 1988;78:1157-66. PubMedCrossRefGoogle Scholar
  61. 61.
    Harrison DG, Armstrong ML, Freiman PC, Heistad DD. Restoration of endothelium- dependent relaxation by dietary treatment of atherosclerosis. J Clin Invest 1987;80:1808–11.PubMedCrossRefGoogle Scholar
  62. 62.
    Leung WH, Lau CP, Wong CK. Beneficial effect of cholesterol-lowering therapy on coronary endothelium-dependent relaxation in hypercholesterolaemic patients. Lancet 1993;341:1496–500.PubMedCrossRefGoogle Scholar
  63. 63.
    Treasure CB, Klein JL, Weintraub WS et al. Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease. N Engl J Med 1995;332:481–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Anderson TJ, Meredith IT, Yeung AC, Frei B, Selwyn AP, Ganz P. The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vasomotion. N Engl J Med 1995;332:488–93.PubMedCrossRefGoogle Scholar
  65. 65.
    O’Driscoll G, Green D, Taylor RR. Simvastatin, an HMG-Coenzyme A reductase inhibitor, improves endothelial function within 1 month. Circulation 1997;95:1126-31 PubMedGoogle Scholar
  66. 66.
    Kamata K, Kojima S, Sugiura M, Kasuya Y. Preservation of endothelium-dependent vascular relaxation in cholesterol-fed mice by the chronic administration of prazosin or pravastatin. Jpn J Pharmacol 1996;70:149–56.PubMedCrossRefGoogle Scholar
  67. 67.
    Grunler J, Ericsson J, Dallner G. Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim Biophys Acta 1994;1212:259–77.PubMedGoogle Scholar
  68. 68.
    Corsini A, Mazzotti M, Raiteri M et al. Relationship between mevalonate pathway and arterial myocyte proliferation: in vitro studies with inhibitors of HMG-CoA reductase. Atherosclerosis 1993;101:117-25. PubMedCrossRefGoogle Scholar
  69. 69.
    Gruentzig AR. Transluminal dilatation of coronary-artery stenosis. Lancet 1978; 1:263.CrossRefGoogle Scholar
  70. 70.
    McBride W Lange RA Hillis LD. Restenosis after successful coronary angioplasty. Pathophysiology and prevention. N Engl J Med 1988;318:1734–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Gallo R, Chesabro JH, Badimon L, Fuster V, Bedimon JJ. Restenosis after coronary angioplasty Cardiol Rev 1996;4:146–52.Google Scholar
  72. 72.
    Bauters C, de-Groote P, Adamantidis M et al.Proto-oncogene expression in rabbit aorta after wall injury.First marker of the cellular process leading to restenosis after angioplasty? Eur Heart J 1992;13:556-559. PubMedGoogle Scholar
  73. 73.
    Thyberg J, Hedin U, Sjolund M, Palmberg L, Bottger BA. Regulation of differentiated properties and proliferation of arterial smooth muscle cells. Arteriosclerosis 1990;10:966–90.PubMedCrossRefGoogle Scholar
  74. 74.
    Stemerman MB, Spaet TH, Pitlick F, Cintron J, Lejnieks I, Tiell ML. Intimal healing. The pattern of reendothelialization and intimal thickening. Am J Pathol 1977;87:125–142. PubMedGoogle Scholar
  75. 75.
    Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987;316:1371-1375. PubMedCrossRefGoogle Scholar
  76. 76.
    Post MJ, Borst C, Kuntz RE. The relative importance of arterial remodeling compared with intimal hyperplasia in lumen renarrowing after balloon angioplasty. A study in the normal rabbit and the hypercholesterolemic Yucatan micropig. Circulation 1994;89:2816-2821 PubMedGoogle Scholar
  77. 77.
    Block PC, Myler RK, Stertzer S, Fallon JT. Morphology after transluminal angioplasty in human beings. N Engl J Med 1981;305:382–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Steele PM, Chesebro JH, Stanson AW et al. Balloon angioplasty. Natural history of the pathophysiological response to injury in a pig model. Circ Res 1985;57:105-112. PubMedGoogle Scholar
  79. 79.
    Casscells W. Migration of smooth muscle and endothelial cells. Critical events in restenosis. Circulation 1992;86:723–9.PubMedGoogle Scholar
  80. 80.
    Reidy MA, Clowes AW, Schwartz SM. Endothelial regeneration. V. Inhibition of endothelial regrowth in arteries of rat and rabbit. Lab Invest 1983;49:569-575 PubMedGoogle Scholar
  81. 81.
    Langille BL, O’Donnell F. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 1986;231:405–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med 1994;330:1431–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Cornwell TL, Arnold E, Boerth NJ, Lincoln TM. Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP. Am J Physiol 1994;36:C1405–C1413. Google Scholar
  84. 84.
    Shimokawa H, Aarhus LL, Vanhoutte PM. Porcine coronary arteries with regenerated endothelium have a reduced endothelium-dependent responsiveness to aggregating platelets and serotonin. Circ Res 1987;61:256–70.PubMedGoogle Scholar
  85. 85.
    Baykal D, Schmedtje JF, Runge MS. Role of the thrombin receptor in restenosis and atherosclerosis. Am J Cardiol 1995;75:82B–87B.PubMedCrossRefGoogle Scholar
  86. 86.
    Myers PR, Webel R, Thondapu V et al. Restenosis is associated with decreased coronary artery nitric oxide synthase. Int J Cardiol 1996;55:183–91.PubMedCrossRefGoogle Scholar
  87. 87.
    el-Tamimi H, Davies GJ, Crea F, Maseri A. Response of human coronary arteries to acetylcholine after injury by coronary angioplasty. J Am Coll Cardiol 1993;21:1152-1157. PubMedCrossRefGoogle Scholar
  88. 88.
    Vassanelli C, Menegatti G, Zanolla L, Molinari J, Zanotto G, Zardini P. Coronary vasoconstriction in response to acetylcholine after balloon angioplasty: possible role of endothelial dysfunction. Coron Artery Dis 1994;5:979–86.PubMedCrossRefGoogle Scholar
  89. 89.
    Sakai A, Hirayama A, Adachi T et al. Is the presence of hyperlipidemia associated with impairment of endothelium-dependent neointimal relaxation after percutaneous transluminal coronary angioplasty? Heart Vessels 1996; 11:255–61.PubMedCrossRefGoogle Scholar
  90. 90.
    Gellman J, Ezekowitz MD, Sarembock IJ et al. Effect of lovastatin on intimal hyperplasia after balloon angioplasty: a study in an atherosclerotic hypercholesterolemic rabbit. J Am Coll Cardiol 1991;17:251–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Reis GJ, Kuntz RE, Silverman DI, Pasternak RC. Effects of serum lipid levels on restenosis after coronary angioplasty. Am J Cardiol 1991;68:1431-1435. PubMedCrossRefGoogle Scholar
  92. 92.
    Sahni R, Maniet AR, Voci G, Banka VS. Prevention of restenosis by lovastatin after successful coronary angioplasty. Am Heart J 1991;121:1600–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Adachi H, Niwa A, Shinoda T. Prevention of restenosis after coronary angioplasty with low-density lipoprotein apheresis. Artif Organs 1995;19:1243–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Weintraub WS, Boccuzzi SJ, Klein JL et al. Lack of effect of lovastatin on restenosis after coronary angioplasty. Lovastatin Restenosis Trial Study Group. N Engl J Med 1994;331:1331-1337 PubMedCrossRefGoogle Scholar
  95. 95.
    Onaka H, Hirota Y, Kita Y et al. The effect of pravastatin on prevention of restenosis after successful percutaneous transluminal coronary angioplasty. Jpn Circ J 1994;58:100–6.PubMedCrossRefGoogle Scholar
  96. 96.
    O’Keefe JH Jr., Stone GW, McCallister BD Jr. et al. Lovastatin plus probucol for prevention of restenosis after percutaneous transluminal coronary angioplasty. Am J Cardiol 1996;77:649–52.PubMedCrossRefGoogle Scholar
  97. 97.
    Emanuelsson H, Beatt KJ, Bagger JP et al. Long-term effects of angiopeptin treatment in coronary angioplasty. Reduction of clinical events but not angiographic restenosis. European Angiopeptin Study Group. Circulation 1995;91:1689–96.PubMedGoogle Scholar
  98. 98.
    Faxon DP.Effect of high dose angiotensin-converting enzyme inhibition on restenosis: final results of the MARCATOR Study, a multicenter, double-blind, placebo-controlled trial of cilazapril. The Multicenter American Research Trial With Cilazapril After Angioplasty to Prevent Transluminal Coronary Obstruction and Restenosis (MARCATOR) Study Group. J Am Coll Cardiol 1995;25:362-329. PubMedCrossRefGoogle Scholar
  99. 99.
    Lablanche JM, Grollier G, Lusson JR et al. Effect of the direct nitric oxide donors linsidomine and molsidomine on angiographic restenosis after coronary balloon angioplasty. The ACCORD Study. Angioplastic Coronaire Corvasal Diltiazem. Circulation 1997;95:83-89. PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Han J. G. H. Mulder
  • Martin J. Schalij

There are no affiliations available

Personalised recommendations