Skip to main content

Ubiquitin and Ubiquitin-Like Conjugations in Complex Diseases: A Computational Perspective

  • 1797 Accesses

Part of the Translational Bioinformatics book series (TRBIO,volume 4)

Abstract

As one class of most essential and common post-translational modifications (PTMs), ubiquitin and ubiquitin-like (Ub/UBL) conjugations play an important role in almost all aspects of biological processes, and aberrances in the conjugation systems are highly involved in numerous complex diseases. Identification of the Ub/UBL-associated enzymes, substrates and sites is fundamental for understanding the molecular mechanisms of Ub/UBL conjugations, and provides a potential reservoir for discovering disease biomarkers and drug targets. Besides experimental identifications, computational analysis of Ub/UBL conjugations has also emerged as an attractive field. In this chapter, we first summarized the cutting-edge experimental techniques in the large-scale identification of Ub/UBL conjugation substrates, and further emphasized the importance of computational efforts by introducing online databases and predictors for Ub/UBL conjugations. Although computational analysis of Ub/UBL conjugations is still immature, we believe more and more efforts will be paid in the near future.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aghajan M, Jonai N, Flick K, Fu F, Luo M, Cai X, Ouni I, Pierce N, Tang X, Lomenick B, et al. Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase. Nat Biotechnol. 2010;28:738–42.

    Article  PubMed  CAS  Google Scholar 

  • Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE. Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov. 2011;10:29–46.

    Article  PubMed  CAS  Google Scholar 

  • Bogunovic D, Boisson-Dupuis S, Casanova JL. ISG15: leading a double life as a secreted molecule. Exp Mol Med. 2013;45:e18.

    Article  PubMed  Google Scholar 

  • Bonacci T, Roignot J, Soubeyran P. Protein ubiquitylation in pancreatic cancer. ScientificWorldJournal. 2010;10:1462–72.

    Article  PubMed  CAS  Google Scholar 

  • Bourgeois-Daigneault MC, Thibodeau J. Autoregulation of MARCH1 expression by dimerization and autoubiquitination. J Immunol. 2012;188:4959–70.

    Article  PubMed  CAS  Google Scholar 

  • Bustos D, Bakalarski CE, Yang Y, Peng J, Kirkpatrick DS. Characterizing ubiquitination sites by peptide based immunoaffinity enrichment. Mol Cell Proteomics. 2012.

    Google Scholar 

  • Chasapis CT, Spyroulias GA. RING finger E(3) ubiquitin ligases: structure and drug discovery. Curr Pharm Des. 2009;15:3716–31.

    Article  PubMed  CAS  Google Scholar 

  • Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science. 1989;243:1576–83.

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Frezza M, Schmitt S, Kanwar J, Dou QP. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets. 2011a;11:239–53.

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Xie W, Kuhn DJ, Voorhees PM, Lopez-Girona A, Mendy D, Corral LG, Krenitsky VP, Xu W. Moutouh-de Parseval L et al. Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood. 2008;111:4690–9.

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Qiu JD, Shi SP, Suo SB, Huang SY, Liang RP. Incorporating key position and amino acid residue features to identify general and species-specific ubiquitin conjugation sites. Bioinformatics. 2013.

    Google Scholar 

  • Chen Z, Chen YZ, Wang XF, Wang C, Yan RX, Zhang Z. Prediction of ubiquitination sites by using the composition of k-spaced amino acid pairs. PLoS ONE. 2011b;6:e22930.

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Zhou Y, Song J, Zhang Z. hCKSAAP_UbSite: Improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties. Biochim Biophys Acta. 2013.

    Google Scholar 

  • Chen ZJ, Sun LJ. Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell. 2009;33:275–86.

    Article  PubMed  CAS  Google Scholar 

  • Chernorudskiy AL, Garcia A, Eremin EV, Shorina AS, Kondratieva EV, Gainullin MR. UbiProt: a database of ubiquitylated proteins. BMC Bioinformatics. 2007;8:126.

    Article  PubMed  Google Scholar 

  • Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell. 1994;79:13–21.

    Article  PubMed  CAS  Google Scholar 

  • Cohen P, Tcherpakov M. Will the ubiquitin system furnish as many drug targets as protein kinases? Cell. 2010;143:686–93.

    Article  PubMed  CAS  Google Scholar 

  • Conrad C, Podolsky MJ, Cusack JC. Antiproteasomal agents in rectal cancer. Anticancer Drugs. 2011;22:341–50.

    Article  PubMed  CAS  Google Scholar 

  • Coornaert B, Carpentier I, Beyaert R. A20: central gatekeeper in inflammation and immunity. J Biol Chem. 2009;284:8217–21.

    Article  PubMed  CAS  Google Scholar 

  • Dahlmann B. Role of proteasomes in disease. BMC Biochem. 2007;8 Suppl 1:S3.

    Article  PubMed  Google Scholar 

  • Danielsen JM, Sylvestersen KB, Bekker-Jensen S, Szklarczyk D, Poulsen JW, Horn H, Jensen LJ, Mailand N, Nielsen ML. Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Mol Cell Proteomics. 2011;10:M110 003590.

    Google Scholar 

  • Day IN, Thompson RJ. UCHL1 (PGP 9.5): neuronal biomarker and ubiquitin system protein. Prog Neurobiol. 2010;90:327–62.

    Article  PubMed  CAS  Google Scholar 

  • Deng H, Liang H, Jankovic J. F-box only protein 7 gene in parkinsonian-pyramidal disease. JAMA Neurol. 2013;70:20–4.

    Article  PubMed  Google Scholar 

  • Denis NJ, Vasilescu J, Lambert JP, Smith JC, Figeys D. Tryptic digestion of ubiquitin standards reveals an improved strategy for identifying ubiquitinated proteins by mass spectrometry. Proteomics. 2007;7:868–74.

    Article  PubMed  CAS  Google Scholar 

  • Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem. 2009;78:399–434.

    Article  PubMed  CAS  Google Scholar 

  • Du H, Huang X, Wang S, Wu Y, Xu W, Li M. PSMA7, a potential biomarker of diseases. Protein Pept Lett. 2009a;16:486–9.

    Article  PubMed  CAS  Google Scholar 

  • Du Y, Xu N, Lu M, Li T. hUbiquitome: a database of experimentally verified ubiquitination cascades in humans. Database (Oxford). 2011;2011:bar055.

    Google Scholar 

  • Du Z, Zhou X, Li L, Su Z. plantsUPS: a database of plants’ ubiquitin proteasome system. BMC Genomics. 2009b;10:227.

    Article  PubMed  Google Scholar 

  • Duncan K, Schafer G, Vava A, Parker MI, Zerbini LF. Targeting neddylation in cancer therapy. Future Oncol. 2012;8:1461–70.

    Article  PubMed  CAS  Google Scholar 

  • Escobar M, Velez M, Belalcazar A, Santos ES, Raez LE. The role of proteasome inhibition in nonsmall cell lung cancer. J Biomed Biotechnol. 2011;2011:806506.

    Article  PubMed  Google Scholar 

  • Festa RA, McAllister F, Pearce MJ, Mintseris J, Burns KE, Gygi SP, Darwin KH. Prokaryotic ubiquitin-like protein (Pup) proteome of Mycobacterium tuberculosis [corrected]. PLoS ONE. 2010;5:e8589.

    Article  PubMed  Google Scholar 

  • Flick K, Ouni I, Wohlschlegel JA, Capati C, McDonald WH, Yates JR, Kaiser P. Proteolysis-independent regulation of the transcription factor Met4 by a single Lys 48-linked ubiquitin chain. Nat Cell Biol. 2004;6:634–41.

    Article  PubMed  CAS  Google Scholar 

  • Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, et al. COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2011;39:D945–50.

    Article  PubMed  CAS  Google Scholar 

  • Gao T, Liu Z, Wang Y, Cheng H, Yang Q, Guo A, Ren J, Xue Y. UUCD: a family-based database of ubiquitin and ubiquitin-like conjugation. Nucleic Acids Res. 2013;41:D445–51.

    Article  PubMed  CAS  Google Scholar 

  • Geng F, Wenzel S, Tansey WP. Ubiquitin and proteasomes in transcription. Annu Rev Biochem. 2012;81:177–201.

    Article  PubMed  CAS  Google Scholar 

  • Giannakopoulos NV, Luo JK, Papov V, Zou W, Lenschow DJ, Jacobs BS, Borden EC, Li J, Virgin HW, Zhang DE. Proteomic identification of proteins conjugated to ISG15 in mouse and human cells. Biochem Biophys Res Commun. 2005;336:496–506.

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Lee H, Park JC, Yi GS. E3Net: a system for exploring E3-mediated regulatory networks of cellular functions. Mol Cell Proteomics. 2012;11:O111 014076.

    Google Scholar 

  • Hegde AN, Upadhya SC. The ubiquitin-proteasome pathway in health and disease of the nervous system. Trends Neurosci. 2007;30:587–95.

    Article  PubMed  CAS  Google Scholar 

  • Hicke L. Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol. 2001;2:195–201.

    Article  PubMed  CAS  Google Scholar 

  • Hochrainer K, Lipp J. Ubiquitylation within signaling pathways in- and outside of inflammation. Thromb Haemost. 2007;97:370–7.

    PubMed  CAS  Google Scholar 

  • Hochstrasser M. Origin and function of ubiquitin-like proteins. Nature. 2009;458:422–9.

    Article  PubMed  CAS  Google Scholar 

  • House CM, Hancock NC, Moller A, Cromer BA, Fedorov V, Bowtell DD, Parker MW, Polekhina G. Elucidation of the substrate binding site of Siah ubiquitin ligase. Structure. 2006;14:695–701.

    Article  PubMed  CAS  Google Scholar 

  • Humbard MA, Miranda HV, Lim JM, Krause DJ, Pritz JR, Zhou G, Chen S, Wells L, Maupin-Furlow JA. Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii. Nature. 2010;463:54–60.

    Article  PubMed  CAS  Google Scholar 

  • Hutchins AP, Liu S, Diez D, Miranda-Saavedra D. The repertoires of ubiquitinating and deubiquitinating enzymes in eukaryotic genomes. Mol Biol Evol. 2013;30:1172–87.

    Article  PubMed  CAS  Google Scholar 

  • Irminger-Finger I. BARD1, a possible biomarker for breast and ovarian cancer. Gynecol Oncol. 2010;117:211–5.

    Article  PubMed  CAS  Google Scholar 

  • Iyer LM, Burroughs AM, Aravind L. The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like beta-grasp domains. Genome Biol. 2006;7:R60.

    Article  PubMed  Google Scholar 

  • Jeram SM, Srikumar T, Pedrioli PG, Raught B. Using mass spectrometry to identify ubiquitin and ubiquitin-like protein conjugation sites. Proteomics. 2009;9:922–34.

    Article  PubMed  CAS  Google Scholar 

  • Jones J, Wu K, Yang Y, Guerrero C, Nillegoda N, Pan ZQ, Huang L. A targeted proteomic analysis of the ubiquitin-like modifier nedd8 and associated proteins. J Proteome Res. 2008;7:1274–87.

    Article  PubMed  CAS  Google Scholar 

  • Kaelin WG. Von Hippel-Lindau disease. Annu Rev Pathol. 2007;2:145–73.

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40:D109–14.

    Article  PubMed  CAS  Google Scholar 

  • Kang C, Yi GS. Identification of ubiquitin/ubiquitin-like protein modification from tandem mass spectra with various PTMs. BMC Bioinform. 2011;12 Suppl 14:S8.

    Article  CAS  Google Scholar 

  • Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell. 2011;44:325–40.

    Article  PubMed  CAS  Google Scholar 

  • Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, et al. DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res. 2011;39:D1035–41.

    Article  PubMed  CAS  Google Scholar 

  • Lee KA, Hammerle LP, Andrews PS, Stokes MP, Mustelin T, Silva JC, Black RA, Doedens JR. Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels. J Biol Chem. 2011a;286:41530–8.

    Article  PubMed  CAS  Google Scholar 

  • Lee TY, Chen SA, Hung HY, Ou YY. Incorporating distant sequence features and radial basis function networks to identify ubiquitin conjugation sites. PLoS ONE. 2011b;6:e17331.

    Article  PubMed  CAS  Google Scholar 

  • Lee WC, Lee M, Jung JW, Kim KP, Kim D. SCUD: Saccharomyces cerevisiae ubiquitination database. BMC Genomics. 2008;9:440.

    Article  PubMed  Google Scholar 

  • Lehman NL. The ubiquitin proteasome system in neuropathology. Acta Neuropathol. 2009;118:329–47.

    Article  PubMed  CAS  Google Scholar 

  • Li H, Xing X, Ding G, Li Q, Wang C, Xie L, Zeng R, Li Y. SysPTM: a systematic resource for proteomic research on post-translational modifications. Mol Cell Proteomics. 2009;8:1839–49.

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Lin Q, Liu M, Lin Y, Wang X, Chen H, Xia Z, Lu B, Ding F, Wu Q et al. PKA/Smurf1 signaling-mediated stabilization of Nur77 is required for anticancer drug cisplatin-induced apoptosis. Oncogene. 2013.

    Google Scholar 

  • Linehan WM, Bratslavsky G, Pinto PA, Schmidt LS, Neckers L, Bottaro DP, Srinivasan R. Molecular diagnosis and therapy of kidney cancer. Annu Rev Med. 2010;61:329–43.

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Ma Q, Cao J, Gao X, Ren J, Xue Y. GPS-PUP: computational prediction of pupylation sites in prokaryotic proteins. Mol BioSyst. 2011;7:2737–40.

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yuan F, Ren J, Cao J, Zhou Y, Yang Q, Xue Y. GPS-ARM: computational analysis of the APC/C recognition motif by predicting D-boxes and KEN-boxes. PLoS ONE. 2012;7:e34370.

    Article  PubMed  CAS  Google Scholar 

  • Lu CT, Huang KY, Su MG, Lee TY, Bretana NA, Chang WC, Chen YJ, Huang HD. DbPTM 3.0: an informative resource for investigating substrate site specificity and functional association of protein post-translational modifications. Nucleic Acids Res. 2013;41:D295–305.

    Article  PubMed  CAS  Google Scholar 

  • Magrane M, Consortium U. UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford). 2011;2011:bar009.

    Google Scholar 

  • Mandel SA, Fishman-Jacob T, Youdim MB. Modeling sporadic Parkinson’s disease by silencing the ubiquitin E3 ligase component, SKP1A. Parkinsonism Relat Disord. 2009;15(Suppl 3):S148–51.

    Article  PubMed  Google Scholar 

  • Maor R, Jones A, Nuhse TS, Studholme DJ, Peck SC, Shirasu K. Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants. Mol Cell Proteomics. 2007;6:601–10.

    Article  PubMed  CAS  Google Scholar 

  • Meierhofer D, Wang X, Huang L, Kaiser P. Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J Proteome Res. 2008;7:4566–76.

    Article  PubMed  CAS  Google Scholar 

  • Melino G, Gallagher E, Aqeilan RI, Knight R, Peschiaroli A, Rossi M, Scialpi F, Malatesta M, Zocchi L, Browne G, et al. Itch: a HECT-type E3 ligase regulating immunity, skin and cancer. Cell Death Differ. 2008;15:1103–12.

    Article  PubMed  CAS  Google Scholar 

  • Muller S, Briand JP, Van Regenmortel MH. Presence of antibodies to ubiquitin during the autoimmune response associated with systemic lupus erythematosus. Proc Natl Acad Sci U S A. 1988;85:8176–80.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima H, Fujiwara H, Furuichi Y, Tanaka K, Shimbara N. A novel small-molecule inhibitor of NF-kappaB signaling. Biochem Biophys Res Commun. 2008;368:1007–13.

    Article  PubMed  CAS  Google Scholar 

  • Newton K, Matsumoto ML, Wertz IE, Kirkpatrick DS, Lill JR, Tan J, Dugger D, Gordon N, Sidhu SS, Fellouse FA, et al. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell. 2008;134:668–78.

    Article  PubMed  CAS  Google Scholar 

  • Ohki Y, Funatsu N, Konishi N, Chiba T. The mechanism of poly-NEDD8 chain formation in vitro. Biochem Biophys Res Commun. 2009;381:443–7.

    Article  PubMed  CAS  Google Scholar 

  • Orlicky S, Tang X, Neduva V, Elowe N, Brown ED, Sicheri F, Tyers M. An allosteric inhibitor of substrate recognition by the SCF(Cdc4) ubiquitin ligase. Nat Biotechnol. 2010;28:733–7.

    Article  PubMed  CAS  Google Scholar 

  • Oshikawa K, Matsumoto M, Oyamada K, Nakayama KI. Proteome-wide identification of ubiquitylation sites by conjugation of engineered lysine-less ubiquitin. J Proteome Res. 2012;11:796–807.

    Article  PubMed  CAS  Google Scholar 

  • Osula O, Swatkoski S, Cotter RJ. Identification of protein SUMOylation sites by mass spectrometry using combined microwave-assisted aspartic acid cleavage and tryptic digestion. J Mass Spectrom. 2012;47:644–54.

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol. 2003;21:921–6.

    Article  PubMed  CAS  Google Scholar 

  • Radivojac P, Vacic V, Haynes C, Cocklin RR, Mohan A, Heyen JW, Goebl MG, Iakoucheva LM. Identification, analysis, and prediction of protein ubiquitination sites. Proteins. 2010;78:365–80.

    Article  PubMed  CAS  Google Scholar 

  • Rape M, Reddy SK, Kirschner MW. The processivity of multiubiquitination by the APC determines the order of substrate degradation. Cell. 2006;124:89–103.

    Article  PubMed  CAS  Google Scholar 

  • Ren J, Gao X, Jin C, Zhu M, Wang X, Shaw A, Wen L, Yao X, Xue Y. Systematic study of protein sumoylation: Development of a site-specific predictor of SUMOsp 2.0. Proteomics. 2009;9:3409–12.

    Article  PubMed  CAS  Google Scholar 

  • Rufini A, Fortuni S, Arcuri G, Condo I, Serio D, Incani O, Malisan F, Ventura N, Testi R. Preventing the ubiquitin-proteasome-dependent degradation of frataxin, the protein defective in Friedreich’s ataxia. Hum Mol Genet. 2011;20:1253–61.

    Article  PubMed  CAS  Google Scholar 

  • Sadowski M, Sarcevic B. Mechanisms of mono- and poly-ubiquitination: Ubiquitination specificity depends on compatibility between the E2 catalytic core and amino acid residues proximal to the lysine. Cell Div. 2010;5:19.

    Article  PubMed  Google Scholar 

  • Scheffner M, Staub O. HECT E3 s and human disease. BMC Biochem. 2007;8(Suppl 1):S6.

    Article  PubMed  Google Scholar 

  • Shi Y, Chan DW, Jung SY, Malovannaya A, Wang Y, Qin J. A data set of human endogenous protein ubiquitination sites. Mol Cell Proteomics. 2011;10:M110 002089.

    Google Scholar 

  • Shi Y, Xu P, Qin J. Ubiquitinated proteome: ready for global? Mol Cell Proteomics. 2011;10:R110 006882.

    Google Scholar 

  • Singhal S, Taylor MC, Baker RT. Deubiquitylating enzymes and disease. BMC Biochem. 2008;9(Suppl 1):S3.

    Article  PubMed  Google Scholar 

  • Sohns W, van Veen TA, van der Heyden MA. Regulatory roles of the ubiquitin-proteasome system in cardiomyocyte apoptosis. Curr Mol Med. 2010;10:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Starita LM, Lo RS, Eng JK, von Haller PD, Fields S. Sites of ubiquitin attachment in Saccharomyces cerevisiae. Proteomics. 2012;12:236–40.

    Article  PubMed  CAS  Google Scholar 

  • Striebel F, Imkamp F, Sutter M, Steiner M, Mamedov A, Weber-Ban E. Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nat Struct Mol Biol. 2009;16:647–51.

    Article  PubMed  CAS  Google Scholar 

  • Teng S, Luo H, Wang L. Predicting protein sumoylation sites from sequence features. Amino Acids. 2012;43:447–55.

    Article  PubMed  CAS  Google Scholar 

  • Tung CW. PupDB: a database of pupylated proteins. BMC Bioinformatics. 2012;13:40.

    Article  PubMed  CAS  Google Scholar 

  • Tung CW, Ho SY. Computational identification of ubiquitylation sites from protein sequences. BMC Bioinform. 2008;9:310.

    Article  Google Scholar 

  • Udeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, Hacohen N, Carr SA. Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition. Mol Cell Proteomics. 2012;11:148–59.

    Article  PubMed  CAS  Google Scholar 

  • Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, Carr SA. Refined preparation and use of anti-diglycine remnant (K-epsilon-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments. Mol Cell Proteomics. 2013;12:825–31.

    Article  PubMed  CAS  Google Scholar 

  • Ulrich HD. The fast-growing business of SUMO chains. Mol Cell. 2008;32:301–5.

    Article  PubMed  CAS  Google Scholar 

  • van der Veen AG, Ploegh HL. Ubiquitin-like proteins. Annu Rev Biochem. 2012;81:323–57.

    Article  PubMed  Google Scholar 

  • Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics. 2011;10:M111 013284.

    Google Scholar 

  • Wagner SA, Beli P, Weinert BT, Scholz C, Kelstrup CD, Young C, Nielsen ML, Olsen JV, Brakebusch C, Choudhary C. Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues. Mol Cell Proteomics. 2012;11:1578–85.

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Xu W, McGrath SC, Patterson C, Neckers L, Cotter RJ. Direct identification of ubiquitination sites on ubiquitin-conjugated CHIP using MALDI mass spectrometry. J Proteome Res. 2005;4:1554–60.

    Article  PubMed  CAS  Google Scholar 

  • Wang J. Cardiac function and disease: emerging role of small ubiquitin-related modifier. Wiley Interdiscip Rev Syst Biol Med. 2011;3:446–57.

    Article  PubMed  CAS  Google Scholar 

  • Wong CS, Moller A. Siah: a promising anticancer target. Cancer Res. 2013;73:2400–6.

    Article  PubMed  CAS  Google Scholar 

  • Xu J, He Y, Qiang B, Yuan J, Peng X, Pan XM. A novel method for high accuracy sumoylation site prediction from protein sequences. BMC Bioinform. 2008;9:8.

    Article  Google Scholar 

  • Xue Y, Ren J, Gao X, Jin C, Wen L, Yao X. GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics. 2008;7:1598–608.

    Article  PubMed  CAS  Google Scholar 

  • Xue Y, Zhou F, Fu C, Xu Y, Yao X. SUMOsp: a web server for sumoylation site prediction. Nucleic Acids Res. 2006;34:W254–7.

    Article  PubMed  CAS  Google Scholar 

  • Xue Y, Zhou F, Zhu M, Ahmed K, Chen G, Yao X. GPS: a comprehensive www server for phosphorylation sites prediction. Nucleic Acids Res. 2005;33:W184–7.

    Article  PubMed  CAS  Google Scholar 

  • Yunus AA, Lima CD. Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway. Nat Struct Mol Biol. 2006;13:491–9.

    Article  PubMed  CAS  Google Scholar 

  • Zhao C, Collins MN, Hsiang TY, Krug RM. Interferon-induced ISG15 pathway: an ongoing virus-host battle. Trends Microbiol. 2013;21:181–6.

    Article  PubMed  CAS  Google Scholar 

  • Zhong Q, Gao W, Du F, Wang X. Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell. 2005;121:1085–95.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Basic Research Program (973 project) (2012CB910101, and 2013CB933903), Natural Science Foundation of China (31171263 and 81272578), and International Science and Technology Cooperation Program of China (0S2013ZR0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gao, T., Liu, Z., Wang, Y., Xue, Y. (2013). Ubiquitin and Ubiquitin-Like Conjugations in Complex Diseases: A Computational Perspective. In: Shen, B. (eds) Bioinformatics for Diagnosis, Prognosis and Treatment of Complex Diseases. Translational Bioinformatics, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7975-4_9

Download citation

Publish with us

Policies and ethics