Skip to main content

Identification of Cancer MicroRNA Biomarkers Based on miRNA–mRNA Network

  • Chapter
  • First Online:
Bioinformatics for Diagnosis, Prognosis and Treatment of Complex Diseases

Part of the book series: Translational Bioinformatics ((TRBIO,volume 4))

Abstract

It has been previously reported that miRNA regulations were involved in various biological processes. The deregulation activities of microRNA regulators potentially contribute to the pathopoiesis of various kinds of human cancers, and are candidate biomarkers for cancer diagnosis and prognosis. Until now, enormous studies have been conducted to explore potential miRNA biomarkers for different types of cancers. In this chapter, we will first provide a brief introduction about miRNAs biogenesis and their involvement in cancer pathopoiesis, and then reviewed the advances on current available miRNA profiling technologies. Then concise text will be exploited to describe the traditional experiment-dominate approaches for miRNA biomarker discovery. In the next part, intensive efforts are made on the review and summarization of miRNA–mRNA network based computational methods for the discovery of potential miRNA biomarkers. Afterwards, collect and list exsiting online databases relating to cancer miRNA biomarker discovery. Finally, we propose the perspective directions on this research area, and conclude the main context in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed FE. Role of miRNA in carcinogenesis and biomarker selection: a methodological view. Expert Rev Mol Diagn. 2007;7(5):569–603.

    Article  PubMed  CAS  Google Scholar 

  • Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5.

    Article  PubMed  CAS  Google Scholar 

  • Arora A, Simpson DA. Individual mRNA expression profiles reveal the effects of specific microRNAs. Genome Biol. 2008;9(5):R82.

    Article  PubMed  Google Scholar 

  • Babak T, Zhang W, Morris Q, Blencowe BJ, Hughes TR. Probing microRNAs with microarrays: tissue specificity and functional inference. RNA. 2004;10(11):1813–9.

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  PubMed  CAS  Google Scholar 

  • Bielekova B, Martin R. Development of biomarkers in multiple sclerosis. Brain J Neurol. 2004;127(Pt 7):1463–78.

    Article  Google Scholar 

  • Bonnet E, Tatari M, Joshi A, Michoel T, Marchal K, Berx G, Van de Peer Y. Module network inference from a cancer gene expression data set identifies microRNA regulated modules. PLoS One. 2010;5(4):e10162.

    Article  PubMed  Google Scholar 

  • Cheng C, Li LM. Inferring microRNA activities by combining gene expression with microRNA target prediction. PLoS One. 2008;3(4):e1989.

    Article  PubMed  Google Scholar 

  • Doledec S, Chessel D. Co-inertia analysis: an alternative method for studying species environment relationships. Freshw Biol. 1994;31(3):277–94.

    Article  Google Scholar 

  • Dray S, Chessel D, Thioulouse J. Co-inertia analysis and the linking of ecological data tables. Ecol. 2003;84(11):3078–89.

    Article  Google Scholar 

  • Dugas DV, Bartel B. MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol. 2004;7(5):512–20.

    Article  PubMed  CAS  Google Scholar 

  • Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome Biol. 2003;5(1):R1.

    Article  PubMed  Google Scholar 

  • Gall JG, Pardue ML. Formation and detection of RNA–DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA. 1969;63(2):378–83.

    Article  PubMed  CAS  Google Scholar 

  • Gao W, Lu X, Liu L, Xu J, Feng D, Shu Y. MiRNA-21: a biomarker predictive for platinum-based adjuvant chemotherapy response in patients with non-small cell lung cancer. Cancer Biol Ther. 2012;13(5):330–40.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S. The microRNA registry. Nucleic acids Res. 2004;32(Database issue):D109–11.

    Google Scholar 

  • Guerau-de-Arellano M, Alder H, Ozer HG, Lovett-Racke A, Racke MK. miRNA profiling for biomarker discovery in multiple sclerosis: from microarray to deep sequencing. J Neuroimmunol. 2012;248(1–2):32–9.

    Article  PubMed  CAS  Google Scholar 

  • Heneghan HM, Miller N, Kelly R, Newell J, Kerin MJ. Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist. 2010;15(7):673–82.

    Article  PubMed  Google Scholar 

  • Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ, Lee CJ, Chiu CM et al. miRTarBase: a database curates experimentally validated microRNA–target interactions. Nucleic Acids Res. 2011;39(Database issue):D163–D169.

    Google Scholar 

  • Jay C, Nemunaitis J, Chen P, Fulgham P, Tong AW. miRNA profiling for diagnosis and prognosis of human cancer. DNA Cell Biol. 2007;26(5):293–300.

    Article  PubMed  CAS  Google Scholar 

  • Jayaswal V, Lutherborrow M, Ma DD, Yang YH. Identification of microRNA–mRNA modules using microarray data. BMC genomics. 2011;12:138.

    Article  PubMed  CAS  Google Scholar 

  • Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 2009;37(Database issue): D98–104.

    Google Scholar 

  • Joung JG, Hwang KB, Nam JW, Kim SJ, Zhang BT. Discovery of microRNA–mRNA modules via population-based probabilistic learning. Bioinformatics. 2007;23(9):1141–7.

    Article  PubMed  CAS  Google Scholar 

  • Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):495–500.

    Article  PubMed  CAS  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438(7068):685–9.

    Article  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–60.

    Article  PubMed  CAS  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.

    Article  PubMed  CAS  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115(7):787–98.

    Article  PubMed  CAS  Google Scholar 

  • Li C, Li JF, Cai Q, Qiu QQ, Yan M, Liu BY, Zhu ZG. MiRNA-199a-3p in plasma as a potential diagnostic biomarker for gastric cancer. Annals Surg Oncol. 2012.

    Google Scholar 

  • Li C, Li JF, Cai Q, Qiu QQ, Yan M, Liu BY, Zhu ZG. MiRNA-199a-3p: a potential circulating diagnostic biomarker for early gastric cancer. J Surg Oncol. 2013;108(2):89–92.

    Article  PubMed  CAS  Google Scholar 

  • Lian H. MOST: detecting cancer differential gene expression. Biostatistics. 2008;9(3):411–8.

    Article  PubMed  Google Scholar 

  • Lin SL, Kim H, Ying SY. Intron-mediated RNA interference and microRNA (miRNA). Front Biosci : J Virtual Libr. 2008;13:2216–30.

    Article  CAS  Google Scholar 

  • Liu B, Liu L, Tsykin A, Goodall GJ, Green JE, Zhu M, Kim CH, Li J. Identifying functional miRNA-mRNA regulatory modules with correspondence latent dirichlet allocation. Bioinformatics. 2010;26(24):3105–11.

    Article  PubMed  CAS  Google Scholar 

  • Long M. Side effects of Tamiflu: clues from an Asian single nucleotide polymorphism. Cell Res. 2007;17(4):309–10.

    Article  PubMed  CAS  Google Scholar 

  • Lu L, Li Y, Li S. Computational identification of potential microRNA network biomarkers for the progression stages of gastric cancer. Int J Data Min Bioinform. 2011;5(5):519–31.

    PubMed  Google Scholar 

  • MacDonald JW, Ghosh D. COPA–cancer outlier profile analysis. Bioinformatics. 2006;22(23):2950–1.

    Article  PubMed  CAS  Google Scholar 

  • Madden SF, Carpenter SB, Jeffery IB, Bjorkbacka H, Fitzgerald KA, O’Neill LA, Higgins DG. Detecting microRNA activity from gene expression data. BMC Bioinform. 2010;11:257.

    Article  Google Scholar 

  • Maute RL, Schneider C, Sumazin P, Holmes A, Califano A, Basso K, Dalla-Favera R. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc Natl Acad Sci USA. 2013;110(4):1404–9.

    Article  PubMed  CAS  Google Scholar 

  • Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA. 2008;105(5):1608–13.

    Article  PubMed  CAS  Google Scholar 

  • Ramshankar V, Krishnamurthy A. Lung cancer detection by screening—presenting circulating miRNAs as a promising next generation biomarker breakthrough. Asian Pac J Cancer Prev: APJCP. 2013;14(4):2167–72.

    Article  PubMed  Google Scholar 

  • Raponi M, Dossey L, Jatkoe T, Wu X, Chen G, Fan H, Beer DG. MicroRNA classifiers for predicting prognosis of squamous cell lung cancer. Cancer Res. 2009;69(14):5776–83.

    Article  PubMed  CAS  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6.

    Article  PubMed  CAS  Google Scholar 

  • Ruepp A, Kowarsch A, Schmidl D, Buggenthin F, Brauner B, Dunger I, Fobo G, Frishman G, Montrone C, Theis FJ. PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes. Genome Biol. 2010;11(1):R6.

    Article  PubMed  Google Scholar 

  • Ruepp A, Kowarsch A, Theis F. PhenomiR: microRNAs in human diseases and biological processes. Methods Mol Biol. 2012;822:249–60.

    Article  PubMed  CAS  Google Scholar 

  • Sarver AL, French AJ, Borralho PM, Thayanithy V, Oberg AL, Silverstein KA, Morlan BW, Riska SM, Boardman LA, Cunningham JM, et al. Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states. BMC Cancer. 2009;9:401.

    Article  PubMed  Google Scholar 

  • Sarver AL, Phalak R, Thayanithy V, Subramanian S. S-MED: sarcoma microRNA expression database. Lab Inv; J Tech Methods Pathol. 2010;90(5):753–61.

    Article  CAS  Google Scholar 

  • Schopman NC, Heynen S, Haasnoot J, Berkhout B. A miRNA–tRNA mix-up: tRNA origin of proposed miRNA. RNA Biol. 2010;7(5):573–6.

    Article  PubMed  CAS  Google Scholar 

  • Sethupathy P, Corda B, Hatzigeorgiou AG. TarBase: a comprehensive database of experimentally supported animal microRNA targets. RNA. 2006;12(2):192–7.

    Article  PubMed  CAS  Google Scholar 

  • Tibshirani R, Hastie T. Outlier sums for differential gene expression analysis. Biostatistics. 2007;8(1):2–8.

    Article  PubMed  Google Scholar 

  • Tran DH, Satou K, Ho TB. Finding microRNA regulatory modules in human genome using rule induction. BMC Bioinform. 2008;9(Suppl 12):S5.

    Article  Google Scholar 

  • Tran DH, Satou K, Ho TB, Pham TH. Computational discovery of miR-TF regulatory modules in human genome. Bioinformation. 2010;4(8):371–7.

    Article  PubMed  Google Scholar 

  • Wang X, Wang X. Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res. 2006;34(5):1646–52.

    Article  PubMed  CAS  Google Scholar 

  • Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–62.

    Article  PubMed  CAS  Google Scholar 

  • Wu B. Cancer outlier differential gene expression detection. Biostatistics. 2007;8(3):566–75.

    Article  PubMed  Google Scholar 

  • Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 2009;37(Database issue):D105–110.

    Google Scholar 

  • Xie B, Ding Q, Han H, Wu D. miRCancer: a microRNA-cancer association database constructed by text mining on literature. Bioinformatics. 2013;29(5):638–44.

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Li CX, Lv JY, Li YS, Xiao Y, Shao TT, Huo X, Li X, Zou Y, Han QL, et al. Prioritizing candidate disease miRNAs by topological features in the miRNA target-dysregulated network: case study of prostate cancer. Mol Cancer Ther. 2011;10(10):1857–66.

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Ren F, Liu C, He S, Sun G, Gao Q, Yao L, Zhang Y, Miao R, Cao Y, et al. dbDEMC: a database of differentially expressed miRNAs in human cancers. BMC Genomics. 2010;11(Suppl 4):S5.

    Article  PubMed  CAS  Google Scholar 

  • Yoon S, De Micheli G. Prediction and analysis of human microRNA regulatory modules. In: Conference proceedings: annual international conference of the IEEE Engineering in Medicine and Biology Society conference; 2005a, vol 5, p. 4799–802.

    Google Scholar 

  • Yoon S, De Micheli G . Prediction of regulatory modules comprising microRNAs and target genes. Bioinformatics. 2005b;21 Suppl 2:ii93–100.

    Google Scholar 

  • Zhang S, Li Q, Liu J, Zhou XJ. A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics. 2011;27(13):i401–9.

    Article  PubMed  CAS  Google Scholar 

  • Zhang WY, Zang J, Jing XH, Sun ZD, Yang DR, Guo F, Shen BR. Identification of candidate cancer miRNA biomarkers from miRNA regulatory network: with application to prostate cancer. RNA. 2013 (submitted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, W., Shen, B. (2013). Identification of Cancer MicroRNA Biomarkers Based on miRNA–mRNA Network. In: Shen, B. (eds) Bioinformatics for Diagnosis, Prognosis and Treatment of Complex Diseases. Translational Bioinformatics, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7975-4_8

Download citation

Publish with us

Policies and ethics