Skip to main content

Remote Sensing of Vegetation for Nature Conservation

  • Chapter
  • First Online:
Land Use and Land Cover Mapping in Europe

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 18))

  • 3751 Accesses

Abstract

A rapidly changing environment with land use and climate as the most dynamic components causes new challenges for nature conservation and management of protected areas. Dealing with these changes requires a systematic monitoring. To date, such monitoring programs are mostly backed by expert guess or permanent observation plots. Both have their merits but the plot-based approach is certainly more objective. However, even in the case of appropriate sampling, plots provide only punctual information and changes in the area between plots are easily missed. This gap can be closed by remote sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amici V (2011) Dealing with vagueness in complex forest landscapes: a soft classification approach through a niche-based distribution model. Ecol Inform 6:371–383

    Article  Google Scholar 

  • Andrew ME, Ustin SL (2008) The role of environmental context in mapping invasive plants with hyperspectral image data. Remote Sens Environ 112:4301–4317

    Article  Google Scholar 

  • Asner GP, Martin RE (2008) Spectral and chemical analysis of tropical forests: scaling from leaf to canopy levels. Remote Sens Environ 112:3958–3970

    Article  Google Scholar 

  • Bradley BA, Olsson AD, Wang O, Dickson BG, Pelech L, Sesnie SE, Zachmann LJ (2012) Species detection vs. habitat suitability: are we biasing habitat suitability models with remotely sensed data? Ecol Model 244:57–64

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Carter GA (1993) Responses of leaf spectral reflectance to plant stress. Am J Bot 80:239–243

    Article  Google Scholar 

  • Carter GA, Knapp AK (2001) Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. Am J Bot 88:677–684

    Article  Google Scholar 

  • Castro-Esau KL, Sánchez-Azofeifa GA, Rivard B, Wright SJ, Quesada M (2006) Variability in leaf optical properties of mesoamerican trees and the potential for species classification. Am J Bot 93:517–530

    Article  Google Scholar 

  • Council of the European Communities (1992) Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora

    Google Scholar 

  • Everitt JH, Alaniz MA, Escobar DE, Davis ME (1992) Using remote sensing to distinguish common (Isocoma coronopifolia) and Drummond goldenweed (Isocoma drummondii). Weed Sci 40:621–628

    Google Scholar 

  • Feilhauer H, Schmidtlein S (2011) On variable relations between vegetation patterns and canopy reflectance. Ecol Inform 6:83–92

    Article  Google Scholar 

  • Feilhauer H, Oerke EC, Schmidtlein S (2010) Quantifying empirical relations between planted species mixtures and canopy reflectance with PROTEST. Remote Sens Environ 114:1513–1521

    Article  Google Scholar 

  • Feilhauer H, Faude U, Schmidtlein S (2011) Combining Isomap ordination and imaging spectroscopy to map continuous floristic gradients in a heterogeneous landscape. Remote Sens Environ 115:2513–2524

    Article  Google Scholar 

  • Feilhauer H, Thonfeld F, Faude U, He KS, Rocchini D, Schmidtlein S (2013) Assessing floristic composition with multispectral sensors – a comparison based on monotemporal and multiseasonal field spectra. Int J Appl Earth Obs Geoinf 21:218–229

    Article  Google Scholar 

  • Foody GM (1992) A fuzzy sets approach to the representation of vegetation continua from remotely sensed data: an example from lowland heath. Photogramm Eng Remote Sens 58:221–225

    Google Scholar 

  • Foody GM (1996) Fuzzy modelling of vegetation from remotely sensed imagery. Ecol Model 85:3–12

    Article  Google Scholar 

  • Foody GM (1999) The continuum of classification fuzziness in thematic mapping. Photogramm Eng Remote Sens 65:443–451

    Google Scholar 

  • Foody GM, Trodd NM (1993) Non-classificatory analysis and representation of heathland vegetation from remotely sensed imagery. GeoJournal 29:343–350

    Article  Google Scholar 

  • Förster M, Frick A, Walentowski H, Kleinschmit B (2008) Approaches for utilising QuickBird data for the monitoring of NATURA 2000 habitats. Community Ecol 9:155–168

    Article  Google Scholar 

  • Gausmann HW (1984) Evaluation of factors causing reflectance differences between sun and shade leaves. Remote Sens Environ 15:177–181

    Article  Google Scholar 

  • Ghioca-Robrecht DM, Johnston CA, Tulbure MG (2008) Assessing the use of multiseasonal Quickbird imagery for mapping invasive species in a Lake Erie coastal marsh. Wetlands 28:1028–1039

    Article  Google Scholar 

  • Goetz S, Steinberg D, Dubayah R, Blair B (2007) Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA. Remote Sens Environ 108:254–263

    Article  Google Scholar 

  • Gould W (2000) Remote sensing of vegetation, plant species richness and regional biodiversity hotspots. Ecol Appl 10:1861–1870

    Article  Google Scholar 

  • Gross JE, Goetz SJ, Cihlar J (2009) Application of remote sensing to parks and protected area monitoring: introduction to the special issue. Remote Sens Environ 113:1343–1345

    Article  Google Scholar 

  • Hall K, Reitalu T, Sykes MT, Prentice HC (2012) Spectral heterogeneity of QuickBird satellite data is related to fine-scale plant species spatial turnover in semi-natural grasslands. Appl Veg Sci 15:145–157

    Article  Google Scholar 

  • Hantson W, Kooistra L, Slim PA (2012) Mapping invasive woody species in coastal dunes in the Netherlands: a remote sensing approach using LIDAR and high-resolution aerial photographs. Appl Veg Sci 15:536–547

    Article  Google Scholar 

  • Harris AT, Asner GP, Miller ME (2003) Changes in vegetation structure after long-term grazing in pinyon–juniper ecosystems: integrating imaging spectroscopy and field studies. Ecosystems 6:368–383

    Article  Google Scholar 

  • Hernandez-Stefanoni JL, Ponce-Hernandez R (2004) Mapping the spatial distribution of plant diversity indices in a tropical forest using multi-spectral satellite image classification and field measurements. Biodivers Conserv 13:2599–2621

    Article  Google Scholar 

  • Kennedy RE, Townsend PA, Gross JE, Cohen WB, Bolstad P, Wang YQ, Adams P (2009) Remote sensing change detection tools for natural resource managers: understanding concepts and tradeoffs in the design of landscape monitoring projects. Remote Sens Environ 113:1382–1396

    Article  Google Scholar 

  • Kumar L, Schmidt K, Dury S, Skidmore A (2001) Imaging spectrometry and vegetation science. In: van der Meer FD, de Jong SM (eds) Imaging spectroscopy: basic principles and prospective applications. Kluwer Academic Publishers, Dordrecht, pp 111–155

    Google Scholar 

  • Laba M, Tsai F, Ogurcak D, Smith S, Richmond ME (2005) Field determination of optimal dates for the discrimination of invasive wetland plant species using derivative spectral analysis. Photogramm Eng Remote Sens 71:603–611

    Article  Google Scholar 

  • Laliberte AS, Rango A, Havstad KM, Paris JF, Beck RF, McNeely R, Gonzalez AL (2004) Object-oriented image analysis for mapping shrub encroachment from 1937–2003 in southern New Mexico. Remote Sens Environ 93:198–210

    Article  Google Scholar 

  • Langley SK, Cheshire HM, Humes KS (2001) A comparison of single date and multitemporal satellite image classifications in a semi-arid grassland. J Arid Environ 49:401–411

    Article  Google Scholar 

  • Li W, Guo Q (2010) A maximum entropy approach to one-class classification of remote sensing imagery. Int J Remote Sens 31:2227–2235

    Article  Google Scholar 

  • Nagendra A (2001) Using remote sensing to assess biodiversity. Int J Remote Sens 22:2377–2400

    Article  Google Scholar 

  • Nagendra H, Lucas R, Honrado J, Jongman R, Tarantino C, Adamo M, Mairota P (2013) Remote sensing for conservation monitoring: assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecol Indic 33:45–59

    Google Scholar 

  • Newton AC, Hill RA, Echeverria C, Golicher D, Rey Benayas JM, Cayuela L, Hinsley SA (2009) Remote sensing and the future of landscape ecology. Prog Phys Geogr 33:528–546

    Article  Google Scholar 

  • Noujdina NV, Ustin SL (2008) Mapping Downy Brome (Bromus tectorum) using multidate AVIRIS data. Weed Sci 56:173–179

    Article  Google Scholar 

  • Oldeland J, Dorigo W, Lieckfeld L, Lucier A, Jürgens N (2010) Combining vegetation indices, constrained ordination and fuzzy classification for mapping semi-natural vegetation units from hyperspectral imagery. Remote Sens Environ 114:1155–1166

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Roberts DA, Gardner M, Church R, Ustin S, Scheer G, Green RO (1998) Mapping Chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sens Environ 65:267–279

    Article  Google Scholar 

  • Rocchini D, Chiarucci A, Loiselle SA (2004) Testing the spectral variation hypothesis by using satellite multispectral images. Acta Oecologica 26:117–120

    Article  Google Scholar 

  • Sanchez-Hernandez C, Boyd DS, Foody GM (2007a) Mapping specific habitats from remotely sensed imagery: support vector machine and support vector data description based classification of coastal saltmarsh habitats. Ecol Inform 2:83–88

    Article  Google Scholar 

  • Sanchez-Hernandez C, Boyd DS, Foody GM (2007b) One-class classification of a specific land-cover class: SVDD classification of fenland. IEEE Trans Geosci Remote Sens 45:1061–1073

    Article  Google Scholar 

  • Sanger JE (1971) Quantitative investigation of leaf pigments from their inception in buds through autumn coloration to decomposition in falling leaves. Ecology 52:1075–1089

    Article  Google Scholar 

  • Schmidt KS, Skidmore AK (2003) Spectral discrimination of vegetation types in a coastal wetland. Remote Sens Environ 85:92–108

    Article  Google Scholar 

  • Schmidtlein S, Sassin J (2004) Mapping of continuous floristic gradients in grasslands using hyperspectral imagery. Remote Sens Environ 92:126–138

    Article  Google Scholar 

  • Schmidtlein S, Feilhauer H, Bruelheide H (2012) Mapping plant strategy types using remote sensing. J Veg Sci 23:395–405

    Article  Google Scholar 

  • Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC (2001) Estimating the support of a high-dimensional distribution. Neural Comput 13:1443–1471

    Article  Google Scholar 

  • Schuster C, Ali I, Lohmann P, Frick A, Förster M, Kleinschmit B (2011) Towards detecting swath events in TerraSAR-X time series to establish NATURA 2000 grassland habitat swath management as monitoring parameter. Remote Sens 3:1308–1322

    Article  Google Scholar 

  • Smola AJ, Schölkopf B (2004) A tutorial on Support Vector Regression. Stat Comput 14:199–222

    Article  Google Scholar 

  • Somodi I, Čarni A, Ribeiro D, Podopnikar T (2012) Recognition of the invasive species Robinia pseudoacacia from combines remote sensing and GIS sources. Biol Conserv 150:59–67

    Article  Google Scholar 

  • Sorby HC (1873) On comparative vegetable chromatography. Proc R Soc Lond 21:442–483

    Article  Google Scholar 

  • Spanhove T, Van den Borre J, Delalieux S, Haest B, Paelinckx D (2012) Can remote sensing estimate fine-scale quality indicators of natural habitats? Ecol Indic 18:403–412

    Article  Google Scholar 

  • Tax DMJ, Duin RPW (2004) Support vector data description. Mach Learn 54:45–66

    Article  Google Scholar 

  • Townsend PA, Walsh SJ (2001) Remote sensing of forested wetlands: application of multitemporal and multispectral satellite imagery to determine plant community composition and structure in southeastern USA. Plant Ecol 157:129–149

    Article  Google Scholar 

  • Townsend AR, Asner GP, Cleveland CC (2008) The biochemical heterogeneity of tropical forests. Trends Ecol Evolut 23:424–431

    Article  Google Scholar 

  • Tuanmu MN, Vina A, Bearer S, Xu W, Ouyang Z, Zhang H, Liu J (2010) Mapping understory vegetation using phenological characteristics derived from remotely sensed data. Remote Sens Environ 114:1833–1844

    Article  Google Scholar 

  • Underwood E, Ustin S, DiPietro D (2003) Mapping nonnative plants using hyperspectral imagery. Remote Sens Environ 86:150–161

    Article  Google Scholar 

  • Van den Borre J, Paelinckx D, Mücher CA, Kooistra L, Haest B, De Blust G, Schmidt AM (2011) Integrating remote sensing in Natura 2000 habitat monitoring: prospects on the way forward. J Nat Conserv 19:116–125

    Article  Google Scholar 

  • Walker JS, Briggs JM (2007) An object-oriented approach to urban forest mapping in phoenix. Photogramm Eng Remote Sens 73:577–583

    Article  Google Scholar 

  • Wang F (1990) Improving remote sensing image analysis through fuzzy information representation. Photogramm Eng Remote Sens 56:1163–1169

    Google Scholar 

  • Waser LT, Baltsavias E, Ecker K, Eisenbeiss H, Feldmeyer-Christe E, Ginzler C, Küchler M, Thee P, Zhang L (2008) Assessing changes of forest area and shrub encroachment in a mire ecosystem using digital surface models and CIR-aerial images. Remote Sens Environ 112:1956–1968

    Article  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siksiyou Mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  • Wiens J, Sutter R, Anderson M, Blanchard J, Barnett A, Aguilar-Amuchastegui N, Avery C, Laine S (2009) Selecting and conserving lands for biodiversity: the role of remote sensing. Remote Sens Environ 113:1370–1381

    Article  Google Scholar 

  • Wold S, Sjöström M, Eriksson L (2001) PLS-regression. A basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130

    Article  Google Scholar 

  • Wood TF, Foody GM (1989) Analysis and representation of vegetation continua from Landsat Thematic Mapper data for lowland heaths. Int J Remote Sens 10:181–191

    Article  Google Scholar 

  • Wulder M, Hall RJ, Coops NC, Franklin SE (2004) High spatial resolution remotely sensed data for ecosystem characterization. BioScience 5:511–521

    Article  Google Scholar 

  • Wulder MA, Han T, White JC, Sweda T, Tsuzuki H (2007) Integrating profiling LIDAR with Landsat data for regional boreal forest canopy attribute estimation and change characterization. Remote Sens Environ 110:123–137

    Article  Google Scholar 

  • Xie Y, Sha Z, Yu M (2008) Remote sensing imagery in vegetation mapping: a review. J Plant Ecol 1:9–23

    Article  Google Scholar 

Download references

Acknowledgments

The author’s activities in remote sensing for nature conservation have been or are partly funded by the German Ministry of Economics and Technology, German Space Agency (MSAVE project, DLR FKZ 50EE1032) and by the European Community’s Seventh Framework Programme (MS-MONINA project, grant 263479).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Schmidtlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schmidtlein, S., Faude, U., Stenzel, S., Feilhauer, H. (2014). Remote Sensing of Vegetation for Nature Conservation. In: Manakos, I., Braun, M. (eds) Land Use and Land Cover Mapping in Europe. Remote Sensing and Digital Image Processing, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7969-3_13

Download citation

Publish with us

Policies and ethics