Skip to main content

The ISAC post-accelerator

  • Chapter
  • First Online:
  • 760 Accesses

Abstract

The acceleration chain of the ISAC facility boosts the energy of both radioactive and stable light and heavy ions for beam delivery to both a medium energy area in ISAC-I and a high energy area in ISAC-II. The post-accelerator comprises a 35.4 MHz RFQ to accelerate beams of A/q ≤ 30 from 2 keV/u to 150 keV/u and a post stripper, 106.1 MHz variable energy drift tube linac (DTL) to accelerate ions of A/q ≤ 6 to a final energy between 0.15 MeV/u to 1.5 MeV/u. A 40 MV superconducting linac further accelerates beam from 1.5 MeV/u to energies above the Coulomb barrier. All linacs operate cw to preserve beam intensity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Laxdal, R.E., et al.: RNB post-accelerator for ISAC at TRIUMF—present and future. Nucl. Phys. A 701, 647c–650c (2002)

    Google Scholar 

  2. Schmor, P.W., et al.: Status of the TRIUMF ISAC-facility for accelerating radioactive beams. In: Proceedings of PAC97 (1997)

    Google Scholar 

  3. Laxdal, R.E.: Acceleration of radioactive ions. Nucl. Inst. Methods Phys. Res. B 204, 400–409 (2003)

    Article  ADS  Google Scholar 

  4. Ames, F., et al.: Commissioning of the ECRIS charge state breeder at TRIUMF. In: ECRIS 2010, p. 178. Grenoble, France (2010)

    Google Scholar 

  5. Poirier, R.L., et al.: CW performance of the TRIUMF 8 meter long RFQ for exotic ions. In: LINAC 2000, pp. 1023. Monterey, California, USA (2000)

    Google Scholar 

  6. Laxdal, R.E., et al.: Beam commissioning and first operation of the ISAC DTL at TRIUMF. In: PAC 2001, pp. 3942. Chicago, Illinoois, USA (2001)

    Google Scholar 

  7. Laxdal, R.E.: Initial commissioning results from the ISAC-II SC Linac. In: LINAC 2006. Knoxville, USA (2006)

    Google Scholar 

  8. Laxdal, R.E., et al. Operating experience of the 20 MV upgrade Linac. In: Proceedings of LINAC2010. Tsukuba, Japan (2010)

    Google Scholar 

  9. Laxdal, R.E., et al.: First beam test with the ISAC RFQ. In: LINAC98. Chicago, USA (1998)

    Google Scholar 

  10. Laxdal, R.E., et al.: Beam test results with the ISAC 35 MHz RFQ. In: PAC99. New York, USA (1999)

    Google Scholar 

  11. http://laacg.lanl.gov/laacg/services/serv_codes.phtml

  12. Laxdal, R.E., et al.: A separated function drift-tube Linac for the ISAC project at TRIUMF. In: PAC97. Vancouver, Canada (1997)

    Google Scholar 

  13. Laxdal, R.E., et al.: First beam test with the ISAC separated function DTL. In: LINAC 2000. Monterey, California, USA (2000)

    Google Scholar 

  14. Wie, J., et al.: FRIB accelerator status and challenges. In: Linac 2012. Tel Aviv, Israel (2012)

    Google Scholar 

  15. Bernaudin, P.E.: Status of the SPIRAL-II superconducting LINAC. In: IPAC 2010. Kyoto, Japan (2010)

    Google Scholar 

  16. Berkovits, D.: Operational experience and future goals of the SARAF Proton/Deuteron Linac. In: LINAC 2012. Tel Aviv, Israel (2012)

    Google Scholar 

  17. Mosnier, A.: The IFMIF 5 MW Linacs. In: LINAC 2008. Victoria, Canada (2008)

    Google Scholar 

  18. Kadi, Y.: Status and future perspectives of the HIE-ISOLDE project at CERN. In: IPAC 2012. New Orleans, USA (2012)

    Google Scholar 

  19. Bollinger, L.M.: The Argonne Tandem-Linac accelerator system. IEEE Trans. Nucl. Sci. NS-30, 2065 (1983)

    Article  ADS  Google Scholar 

  20. Fortuna, G., et al.: Status of ALPI and related developments of superconducting structures. In: LINAC96. Geneva, Switzerland (1996)

    Google Scholar 

  21. Takeuchi, S., Matsuda, M.: Status of the superconducting heavy-ion tandem-booster Linac at Jaeri. In: LINAC98. Chicago, USA (1998)

    Google Scholar 

  22. Laxdal, R.E.: Commissioning and early experiments with ISACII. In: PAC2007, pp. 2593. Albuquerque, New Mexico, USA (2007)

    Google Scholar 

  23. Laxdal, R.E., et al.: ISAC-II QWR cavity characterizations and investigations. Physica C 441, 193–196 (2006)

    Article  ADS  Google Scholar 

  24. Poirier, R., et al.: RF coupler design for the TRIUMF ISAC-II superconducting quarter wave resonators. In: LINAC 2004. Lubeck, Germany (2004)

    Google Scholar 

  25. Ries, T., et al.: A mechanical tuner for the ISAC II quarter wave superconducting cavities. IOn: PAC 2003. Portland, USA (2003)

    Google Scholar 

  26. Laxdal, R.E., et al.: Magnetic field studies in the ISAC-II cryomodule. Physica C 441, 225–228 (2006)

    Article  ADS  Google Scholar 

  27. Stanford, G., et al.: Engineering and cryogenic testing of the ISAC-II medium beta cryomodule. In: LINAC 2004. Lubeck, Germany (2004)

    Google Scholar 

  28. Rawnsley, W., et al.: A wire position monitor system for the ISAC-II cryomodule components alignment. In: LINAC 2004. Lubeck, Germany (2004)

    Google Scholar 

  29. Laxdal, R.E., et al.: Performance and early operating experience with the ISAC-II cryogenic system. In: LINAC 2006. Knoxville, USA (2006)

    Google Scholar 

  30. Sekachev, I., et al.: Recent operating experience for the ISAC-II SC-Linac cryogenic system at TRIUMF. In: Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference—CEC, vol. 52. AIP Conference Proceedings, vol. 985, pp. 1580–1585 (2008)

    Article  ADS  Google Scholar 

  31. Longuevergne, D., et al.: RF cavity performance in the ISAC-II superconducting heavy ion Linac. Tsukuba, Japan (2010)

    Google Scholar 

  32. Marchetto, M., et al.: Beam dynamics study on the ISAC-II superconducting Linac. In: LINAC 2006. Knoxville, USA (2006)

    Google Scholar 

  33. Jayamanna, K., et al.: Off-line ion source terminal for ISAC at TRIUMF. Rev. Sci. Instrum. 79, 02C711 (2008)

    Google Scholar 

  34. Jayamanna, K., et al.: A multicharge ion source (Supernanogan) for the OLIS facility at ISAC/TRIUMF. Rev. Sci. Instrum. 81(2), 02A331 (2010)

    Google Scholar 

  35. Marchetto, M., et al.: In flight ion separation using a Linac chain. In: LINAC 2012. Tel-Aviv, ISRAEL (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Laxdal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Laxdal, R.E., Marchetto, M. (2013). The ISAC post-accelerator. In: Dilling, J., Krücken, R., Merminga, L. (eds) ISAC and ARIEL: The TRIUMF Radioactive Beam Facilities and the Scientific Program. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7963-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7963-1_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7962-4

  • Online ISBN: 978-94-007-7963-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics