Triggering Conditions and Runout Simulation of the San Mango sul Calore Debris Avalanche, Southern Italy

  • Luigi Guerriero
  • Paola Revellino
  • Aldo De Vito
  • Gerardo Grelle
  • Francesco Maria Guadagno
Chapter
Part of the Advances in Natural and Technological Hazards Research book series (NTHR, volume 39)

Abstract

On the 10th November 2010, a debris avalanche occurred in the San Mango sul Calore municipality (Southern Italy). The event was triggered from the North facing side of Mount Tuoro after a rainstorm, involving pyroclastic and colluvial materials that covered part of the hill-slope. The landslide destroyed and occupied houses and damaged several service lines. Field surveys showed that it affected only the deforested part of the slope and its source area was located downslope a man-made cut. We analyzed rainfall data of the climatic station located about 1 km far from the debris avalanche at about 600 m above the sea level. The landslide was triggered after about 63 h of rainfall. The cumulative rain recorded during the storm was about 235 mm. In the three days of rain, the alert threshold of a rainstorm hazard index used as a reference has been exceeded. In order to obtain information about landslide motion we performed a dynamic analysis using the model DAN3D to simulate the landslide mass. The rheological parameters used to simulate the event have been obtained from laboratory tests and through trial and error site-specific calibration.

Keywords

Debris Flow Source Area Debris Avalanche Landslide Event Pyroclastic Deposit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We wish to thank Armando Guerriero for his support in the GPS survey.

References

  1. D’Argenio B, Pescatore TS, Scandone P (1973) Schema geologico dell’Appennino meridionale (Campania e Lucania). Atti del Convegno Moderne Vedute sulla Geologia dell’Appennino. Accademia Nazionale Dei Lincei 12:49–72 (in Italian)Google Scholar
  2. Del Prete M, Guadagno FM, Hawkins AB (1998) Preliminary report on the landslides of 5 May 1998, Campania, southern Italy. Bull Eng Geol Environ 57:113–129CrossRefGoogle Scholar
  3. Di Nocera S, Matano F, Pescatore TS, Pinto F, Quarantiello R, Senatore MR, Torre M (2006) Schema geologico del transetto Monti Picentini orientali-Monti della Daunia meridionali: Unità stratigrafiche ed evoluzione tettonica del settore esterno dell’Appennino meridionale. Bollettino della Societa Geologica Italiana 125:39–58 (in Italian)Google Scholar
  4. Diodato N, Petrucci O, Bellocchi G (2012) Scale-invariant rainstorm hazard modeling for slope warning. Meteorol Appl 19:279–288CrossRefGoogle Scholar
  5. Fiorillo F, Guadagno FM, Aquino S, De Blasi A (2001) The December 1999 Cervinara landslides: further debris flows in the pyroclastic deposits of Campania (southern Italy). Bull Eng Geol Environ 60:171–184CrossRefGoogle Scholar
  6. Gili JA, Corominas J, Rius J (2000) Using global positioning system techniques in landslide monitoring. Eng Geol 55:167–192CrossRefGoogle Scholar
  7. Guadagno FM, Martino S, Scarascia Mugnozza G (2003) Influence of man-made cuts on the stability of pyroclastic covers (Campania – southern Italy): a numerical modelling approach. Environ Geol 43:371–384Google Scholar
  8. Guadagno FM, Forte R, Revellino P, Fiorillo F, Focareta M (2005) Some aspects of the initiation of debris avalanches in the Campania region: the role of morphological slope discontinuities and the development of failure. Geomorphology 66:237–254CrossRefGoogle Scholar
  9. Guadagno FM, Revellino P, Grelle G (2011) The 1998 Sarno landslides: conflicting interpretation of a natural event. In: International conference on debris-flow hazards mitigation: mechanics, prediction, and assessment, proceedings. Padua, Italy, June 14–17, pp 71–81. doi: 10.4408/IJEGE.2011-03.B-009
  10. Günther A, Reichenbach P, Malet J-P, Van Den Eeckhaut M, Hervás J, Dashwood C, Guzzetti F (2013) Tier-based approaches for landslide susceptibility assessment in Europe. Landslides 10:529–546. doi: 10.1007/s10346-012-0349-1 CrossRefGoogle Scholar
  11. Hervàs J (2003) Lessons learnt from landslide disasters in Europe. European Commission, Joint Research Center, Nedies Project, EUR 20558 EN, Italy, 91 ppGoogle Scholar
  12. Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32:610–623CrossRefGoogle Scholar
  13. Hungr O, Evans SG, Bovis M, Hutchinson JN (2001) Review of the classification of landslides of the flow type. Environ Eng Geosci 7:1–18Google Scholar
  14. Hungr O, Corominas J, Eberhardt E (2005) State of the art paper #4, estimating landslide motion mechanism, travel distance and velocity. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Proceedings, Vancouver conference. Taylor and Francis Group, LondonGoogle Scholar
  15. Ippolito F, D’Argenio B, Pescatore T, Scandone P (1973) Unità stratigrafico strutturali e schema tettonico dell’Appennino meridionale. Institute of Geology and Geophysics, University of Naples, Naples, 33 ppGoogle Scholar
  16. McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41:1084–1097CrossRefGoogle Scholar
  17. Ogniben L (1969) Schema introduttivo alla geologia del confine calabro-lucano. Memorie della Società Geologica Italiana 8:609–622 (in Italian)Google Scholar
  18. Oliver MA, Webster R (2007) Geostatistics for environment. Wiley, Chichester, 330 ppGoogle Scholar
  19. Pescatore T, Sgrosso I, Torre M (1970) Lineamenti di tettonica e sedimentazione nel Miocene dell’Appennino campano-lucano. Largo S. Marcellino, Naples, 72 pp (in Italian)Google Scholar
  20. Revellino P, Hungr O, Guadagno F, Evans SG (2004) Velocity and runout simulation of destructive debris flows and debris avalanches in pyroclastic deposits, Campania region, Italy. Environ Geol 45:295–311CrossRefGoogle Scholar
  21. Revellino P, Guadagno F, Hungr O (2008) Morphological methods and dynamic modelling in landslide hazard assessment of the Campania Appennine carbonate slope. Landslides 5:59–70CrossRefGoogle Scholar
  22. Revellino P, Guerriero L, Grelle G, Hungr O, Fiorillo F, Esposito L, Guadagno FM (2013) Initiation and propagation of the 2005 debris avalanche at Nocera Inferiore (Southern Italy). Ital J Geosci 3:366–379Google Scholar
  23. Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19:47–77CrossRefGoogle Scholar
  24. Rolandi G, Mastrolorenzo G, Barrella AM, Borrelli A (1993) The Avellino plinian eruption of Somma-Vesuvius (3760 y.B.P.): the progressive evolution from magmatic to hydromagmatic style. J Volcanol Geotherm Res 58:67–88CrossRefGoogle Scholar
  25. Voellmy A (1955) Über die Zerstörungskraft von Lawinen (On breaking force of avalanches). Schweizerische Bauzeitung 73:212–285 (in German)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Luigi Guerriero
    • 1
  • Paola Revellino
    • 1
  • Aldo De Vito
    • 1
  • Gerardo Grelle
    • 1
  • Francesco Maria Guadagno
    • 1
  1. 1.Department of Science and TechnologyUniversity of SannioBeneventoItaly

Personalised recommendations