Skip to main content

The Effects of Atmospheric Nitrogen Deposition on Terrestrial and Freshwater Biodiversity

  • Chapter
  • First Online:
Nitrogen Deposition, Critical Loads and Biodiversity

Abstract

This chapter reports the findings of a Working Group on how atmospheric nitrogen (N) deposition affects both terrestrial and freshwater biodiversity. Regional and global scale impacts on biodiversity are addressed, together with potential indicators. Key conclusions are that: the rates of loss in biodiversity are greatest at the lowest and initial stages of N deposition increase; changes in species compositions are related to the relative amounts of N, carbon (C) and phosphorus (P) in the plant soil system; enhanced N inputs have implications for C cycling; N deposition is known to be having adverse effects on European and North American vegetation composition; very little is known about tropical ecosystem responses, while tropical ecosystems are major biodiversity hotspots and are increasingly recipients of very high N deposition rates; N deposition alters forest fungi and mycorrhyzal relations with plants; the rapid response of forest fungi and arthropods makes them good indicators of change; predictive tools (models) that address ecosystem scale processes are necessary to address complex drivers and responses, including the integration of N deposition, climate change and land use effects; criteria can be identified for projecting sensitivity of terrestrial and aquatic ecosystems to N deposition. Future research and policy-relevant recommendations are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abell, R., Thieme, M. L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., Coad, B., Mandrak, N., Balderas, S. C, Bussing, W., Stiassny, M. L. J., Skelton, P., Allen, G. R., Unmack, P., Naseka, A., Ng, R., Sindorf, N., Robertson, J., Armijo, E., Higgins, J. V., Heibel, T. J., Wikramanayake, E., Olson, D., López, H. L., Re is, R. E., Lundberg, J. G., Sabaj Pérez, M. H., & Petry, P. (2008). Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. BioScience, 58, 403–414.

    Article  Google Scholar 

  • Allen, E. B., Rao, L. E., Steers, R. J., Bytnerowicz, A., & Fenn, M. E. (2009). Impacts of atmospheric nitrogen deposition on vegetation and soils in Joshua Tree National Park. In R. H. Webb, L. F. Fenstermaker, J. S. Heaton, D. L. Hughson, E. V. McDonald, & D. M. Miller (Eds.), The Mojave Desert: Ecosystem processes and sustainability (pp. 78–100). Las Vegas: University of Nevada Press.

    Google Scholar 

  • Baron, J. S., Rueth, H. M., Wolfe, A. P., Nydick, K. R., Allstott, E. J., Minear, J. T., & Moraska, B. (2000). Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystems, 3, 352–368.

    Article  CAS  Google Scholar 

  • Baron, J. S., Schmidt, T. M., & Hartman, M. D. (2009). Climate-induced changes in high elevation stream nitrate dynamics. Global Change Biology, 15, 1777–1789.

    Article  Google Scholar 

  • Bergström, A., & Jansson, M. (2006). Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Global Change Biology, 12, 635–643.

    Article  Google Scholar 

  • Billen, G., & Garnier, J. (2007). River basin nutrient delivery to the coastal sea: Assessing its potential to sustain new production of nonsiliceous algae. Marine Chemistry, 106, 148–160.

    Article  CAS  Google Scholar 

  • Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B., Erisman, J.-W., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., & de Vries, W. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20, 30–59.

    Article  CAS  Google Scholar 

  • Bobrovsky, M. V. (2010). Lesnye pochvy Evropejskoj Rossii: bioticheskie i antropogennye faktory formirovaniya [Forest soil in European Russia: biotic and anthropogenic factors in soil forming process].Moscow: KMK (in Russian).

    Google Scholar 

  • Bowman, W. D., Gartner, J. R., Holland, K., & Wiedermann, M. (2006). Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: are we there yet? Ecological Applications, 16, 1183–1193.

    Article  Google Scholar 

  • Bowman, W. D., Cleveland, C. C., Halada, L., Hresko, J., & Baron, J. S. (2008). Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience, 1, 767–770.

    Article  CAS  Google Scholar 

  • Britton, A. J., Beale, C. M., Towers, W., & Hewison, R. L. (2009). Biodiversity gains and losses: evidence for homogenisation of Scottish alpine vegetation. Biological Conservation, 142, 1728–1739.

    Article  Google Scholar 

  • Clark, C. M., & Tilman, D. (2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, 712–715.

    Article  CAS  Google Scholar 

  • Dias, T., Chaves, S., Tenreiro, R., Martins-Loução, M. A., Sheppard, L., & Cruz, C. (2014). Effects of increased nitrogen availability in Mediterranean ecosystems: A case study in a Natura 2000 site in Portugal. In M. A. Sutton, K. E. Mason, L. J Sheppard, H. Sverdrup, R. Haeuber, & W. K. Hicks (Eds.), Nitrogen deposition, critical loads and biodiversity (Proceedings of the International Nitrogen Initiative workshop, linking experts of the Convention on Long-range Transboundary Air Pollution and the Convention on Biological Diversity). (Chap. 27; this volume). Springer.

    Google Scholar 

  • Dise, N. B., Ashmore, M., Belyazid, S., Bleeker, A., Bobbink, R., de Vries, W., Erisman, J. W., Spranger, T., Stevens, C. J., & van den Berg, L. (2011). Nitrogen as a threat to European terrestrial biodiversity. In M. A. Sutton, C. M. Howard, J. W. Erisman, G. Billen, A. Bleeker, P. Grennfelt, H. van Grinsven, & B. Grizzetti (Eds.), The European nitrogen assessment (Chap. 20). Cambridge University Press.

    Google Scholar 

  • Egerton-Warburton, L., & Allen, E. B. (2000). Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecological Applications, 10, 484–496.

    Article  Google Scholar 

  • Elser, J. J., Andersen, T., Baron, J. S., Bergstrom, A.-K., Jansson, M., Kyle, M., Nydick, K. R., Steger, L., & Hessen, D. O. (2009). Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science, 326, 835–837.

    Article  CAS  Google Scholar 

  • Emmett, B. A. (2007). Nitrogen saturation of terrestrial ecosystems: Some recent findings and their implications for our conceptual framework. Water, Air, & Soil Pollution. Focus, 7, 99–109.

    Article  CAS  Google Scholar 

  • Feest, A. (2006). Establishing baseline indices for the quality of the biodiversity of restored habitats using a standardized sampling process. Restoration Ecology, 14, 112–122.

    Article  Google Scholar 

  • Fenn, M. E., Baron, J. S., Allen, E. B., Rueth, H. M., Nydick, K. R., Geiser, L., Bowman, W. D., Sickman, J. O., Meixner, T., Johnson, D. W., & Neitlich, P. (2003). Ecological effects of nitrogen deposition in the western United States. Bioscience, 53, 404–420.

    Article  Google Scholar 

  • Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., & Sutton, M. A. (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320, 889–892.

    Article  CAS  Google Scholar 

  • Gilliam, F. S. (2006). Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. Journal of Ecology, 94, 1176–1191.

    Article  CAS  Google Scholar 

  • Goodale, C., Thomas, R. Q., Melvin, A. M., Weiss, M. S., Adams, M. B., Baron, J. S., Emmett, B., Evans, C., Fernandez, I., Gundersen, P., Kulmatski, A., Lovett, G., McNulty, S., Moldan, F., Ollinger, S., & Schleppi, P. (2009). Nitrogen deposition and forest carbon sequestration: A quantitative synthesis from plot to global scales. American Geophysical Union, Fall Meeting 2009, abstract #B23G–01.

    Google Scholar 

  • Gordon, C., Wynn, J. M., & Woodin, S. J. (2001). Impacts of increased nitrogen supply on high Arctic heath: The importance of bryophytes and phosphorus availability. New Phytologist, 149, 461–471.

    Article  CAS  Google Scholar 

  • Hames, R. S., Rosenberg, K. V., Lowe, J. D., Barker, S. E., & Dhondt, A. A. (2002). Adverse effects of acid rain on the distribution of the Wood Thrush Hylocichla mustelina in North America. Proceedings of the National Academy of Sciences of the United States of America, 99, 11235–11240.

    Google Scholar 

  • Hautier, Y., Niklaus, P. A., & Hector, A. (2009). Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636–638.

    Article  CAS  Google Scholar 

  • Hobbie, S. E. (2008). Nitrogen effects on decomposition: A five-year experiment in eight temperate sites. Ecology, 89, 2633–2644.

    Article  Google Scholar 

  • Jeziorski, A., Yan, N. D., Paterson, A. M., DeSellas, A. M., Turner, M. A., Jeffries, D. S., Keller, B., Weeber, R. C., McNicol, D. K., Palmer, M. E., McIver, K., Arseneau, K., Ginn, B. K., Cumming, B. F., & Smol, J. P. (2008). The widespread threat of calcium decline in fresh waters. Science, 322, 1374–1377.

    Article  CAS  Google Scholar 

  • Johnson, N. C., Rowland, D. L., Corkidi, L., Egerton-Warburton, L. M., & Allen, E. B. (2003). Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology, 84, 1895–1908.

    Article  Google Scholar 

  • Keith, S. A., Newton, A. C., Morecroft, M. D., Bealey, C. E., & Bullock, J. M. (2009). Taxonomic homogenization of woodland plant communities over 70 years. Proceedings of the Royal Society B, 276, 3539–3544.

    Google Scholar 

  • Kerslake, J. E., Woodin, S. J., & Hartley, S. E. (1998). Effects of CO2 and nitrogen enrichment on a plant-insect interaction: The quality of Calluna vulgaris as a host for Opheroptera brumata. New Phytologist, 140, 43–53.

    Article  Google Scholar 

  • Knorr, M., Frey, S. D., & Curtis, P. S. (2005). Nitrogen additions and litter decomposition: A meta-analysis. Ecology, 86, 3252–3257.

    Article  Google Scholar 

  • Kronzucker, H. J., Siddiqi, M. Y., Glass, A. D. M., & Britto, D. T. (2003). Root ammonium transport efficiency as a determinant in forest colonization patterns: An hypothesis. Physiologia Plantarum, 117, 164–170.

    Article  CAS  Google Scholar 

  • Lewis, W. M. J., & Wurtsbaugh, W. A. (2008). Control of lacustrine phytoplankton by nutrients: Erosion of the phosphorus paradigm. International Review of Hydrobiology, 93, 446–465.

    Article  CAS  Google Scholar 

  • Long, R. P., Horsley, S. B., Hallett, R. A., & Bailey, S. W. (2009). Sugar maple growth in relation to nutrition and stress in the northeastern United States. Ecological Applications, 19, 1454–1466.

    Article  Google Scholar 

  • Lu, X., Mo, J., Gilliam, F. S., Zhou, G., & Fang, Y. (2010). Effects of experimental nitrogen deposition on plant diversity in an old-growth tropical forest. Global Change Biology, 16(10), 2688–2700.

    Article  Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.

    Article  CAS  Google Scholar 

  • Nydick, K. R., Lafrancois, B. M., Baron, J. S., & Johnson, B. M. (2004). Nitrogen regulation of algal biomass, productivity, and composition in shallow mountain lakes, Snowy Range, Wyoming, USA. Canadian Journal of Fisheries and Aquatic Sciences, 61, 1256–1268.

    Article  CAS  Google Scholar 

  • Ochoa-Hueso, R., & Manrique, E. (2010). Nitrogen fertilization and water supply affect germination and plant establishment of the soil seed bank present in a semi-arid Mediterranean scrubland. Plant Ecology, 210, 263–273.

    Article  Google Scholar 

  • Olson, D. M., & Dinerstein, E. (2002). The Global 200: Priority ecoregions for global conservation. Annals of the Missouri Botanical Garden, 89, 199–224.

    Article  Google Scholar 

  • Phoenix, G. K., Hicks, W. K., Cinderby, S., Kuylenstierna, S. C. I., Stock, W. D., Dentener, F. J., Giller, K. E., Austin, A. T., Lefroy, R. D. B., Gimeno, B. S., Ashmore, M. R., & Ineson, P. (2006). Atmospheric nitrogen deposition in world biodiversity hotspots: The need for a greater global perspective in assessing N deposition impacts. Global Change Biology, 12, 470–476.

    Article  Google Scholar 

  • Rabalais, N. N. (2002). Nitrogen in aquatic ecosystems. Ambio, 31, 102–112.

    Google Scholar 

  • Rao, L. E., Allen, E. B., & Meixner, T. (2010). Risk-based determination of critical nitrogen deposition loads for fire spread in southern California deserts. Ecological Applications, 20, 1320–1335.

    Article  Google Scholar 

  • Riddell, J., Nash, T. H., III, & Padgett, P. (2008). The effect of HNO3 gas on the lichen Ramalina menziesii. flora - morphology, distribution. Functional Ecology of Plants, 203, 47–54.

    Article  Google Scholar 

  • Rockström, J., Steffen, W., Noone, K., Persson, A., Chapin, F. S., Lambin, E. F., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., de Wit, C. A., Hughes, T., van der Leeuw, S., Rodhe, H., Sorlin, S., Snyder, P. K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., & Foley, J. A. (2009). A safe operating space for humanity. Nature, 461, 472–475.

    Article  CAS  Google Scholar 

  • Stevens, C. J., Thompson, K., Grime, J. P., Long, C. J., & Gowing, D. J. G. (2010). Acidification as opposed to eutrophication is the main cause of declines in species richness seen in calcifuge grasslands impacted by nitrogen deposition. Functional Ecology, 24, 478–484.

    Article  Google Scholar 

  • Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H. Grizzetti, B. (Eds.). (2011). The European nitrogen assessment. Cambridge University Press.

    Google Scholar 

  • Talluto, M. V., & Suding, K. N. (2008). Historical change in coastal sage scrub in southern California in relation to fire frequency and air pollution. Landscape Ecology, 23, 803–815.

    Article  Google Scholar 

  • Throop, H. L., & Lerdau, M. L. (2004). Effects of nitrogen deposition on insect herbivory: Implications for community and ecosystem processes. Ecosystems, 7, 109–133.

    Article  CAS  Google Scholar 

  • Wallace, Z. P., Lovett, G. M., Hart, J. E., & Machona, B. (2007). Effects of nitrogen saturation on tree growth and death in a mixed-oak forest. Forest Ecology and Management, 243, 210–218.

    Article  Google Scholar 

  • Weiss, S. B. (1999). Cars, cows, and Checkerspot butterflies: Nitrogen deposition and management of nutrient-poor grasslands for a threatened species. Conservation Biology, 13, 1476–1486.

    Article  Google Scholar 

  • Wolfe, A. P., Baron, J. S., & Cornett, R. J. (2001). Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). Journal of Paleolimnology, 25, 1–7.

    Article  Google Scholar 

  • Wolfe, A., Cooke, C., & Hobbs, W. (2006). Are Current Rates of Atsmospheric Nitrogen Deposition Influencing Lakes in the Eastern Canadian Arctic? Arctic, Antarctic, and Alpine Research, 38, 465–476.

    Article  Google Scholar 

  • Xu, G. L., Schleppi, P., Li, M. H., & Fu, S. L. (2009). Negative responses of Collembola in a forest soil (Alptal, Switzerland) under experimentally increased N deposition. Environmental Pollution, 157, 2030–2036.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the COST 729 and NinE programmes of the European Science Foundation (ESF), the Packard Foundation, INI and many other organizations for travel support to attend the workshop.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill S. Baron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baron, J. et al. (2014). The Effects of Atmospheric Nitrogen Deposition on Terrestrial and Freshwater Biodiversity. In: Sutton, M., Mason, K., Sheppard, L., Sverdrup, H., Haeuber, R., Hicks, W. (eds) Nitrogen Deposition, Critical Loads and Biodiversity. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7939-6_49

Download citation

Publish with us

Policies and ethics