The Effects of Atmospheric Nitrogen Deposition on Terrestrial and Freshwater Biodiversity



This chapter reports the findings of a Working Group on how atmospheric nitrogen (N) deposition affects both terrestrial and freshwater biodiversity. Regional and global scale impacts on biodiversity are addressed, together with potential indicators. Key conclusions are that: the rates of loss in biodiversity are greatest at the lowest and initial stages of N deposition increase; changes in species compositions are related to the relative amounts of N, carbon (C) and phosphorus (P) in the plant soil system; enhanced N inputs have implications for C cycling; N deposition is known to be having adverse effects on European and North American vegetation composition; very little is known about tropical ecosystem responses, while tropical ecosystems are major biodiversity hotspots and are increasingly recipients of very high N deposition rates; N deposition alters forest fungi and mycorrhyzal relations with plants; the rapid response of forest fungi and arthropods makes them good indicators of change; predictive tools (models) that address ecosystem scale processes are necessary to address complex drivers and responses, including the integration of N deposition, climate change and land use effects; criteria can be identified for projecting sensitivity of terrestrial and aquatic ecosystems to N deposition. Future research and policy-relevant recommendations are identified.


Biodiversity Flora Fauna Ecosystems Nitrogen effects Policy 



The authors thank the COST 729 and NinE programmes of the European Science Foundation (ESF), the Packard Foundation, INI and many other organizations for travel support to attend the workshop.


  1. Abell, R., Thieme, M. L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., Coad, B., Mandrak, N., Balderas, S. C, Bussing, W., Stiassny, M. L. J., Skelton, P., Allen, G. R., Unmack, P., Naseka, A., Ng, R., Sindorf, N., Robertson, J., Armijo, E., Higgins, J. V., Heibel, T. J., Wikramanayake, E., Olson, D., López, H. L., Re is, R. E., Lundberg, J. G., Sabaj Pérez, M. H., & Petry, P. (2008). Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. BioScience, 58, 403–414.CrossRefGoogle Scholar
  2. Allen, E. B., Rao, L. E., Steers, R. J., Bytnerowicz, A., & Fenn, M. E. (2009). Impacts of atmospheric nitrogen deposition on vegetation and soils in Joshua Tree National Park. In R. H. Webb, L. F. Fenstermaker, J. S. Heaton, D. L. Hughson, E. V. McDonald, & D. M. Miller (Eds.), The Mojave Desert: Ecosystem processes and sustainability (pp. 78–100). Las Vegas: University of Nevada Press.Google Scholar
  3. Baron, J. S., Rueth, H. M., Wolfe, A. P., Nydick, K. R., Allstott, E. J., Minear, J. T., & Moraska, B. (2000). Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystems, 3, 352–368.CrossRefGoogle Scholar
  4. Baron, J. S., Schmidt, T. M., & Hartman, M. D. (2009). Climate-induced changes in high elevation stream nitrate dynamics. Global Change Biology, 15, 1777–1789.CrossRefGoogle Scholar
  5. Bergström, A., & Jansson, M. (2006). Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Global Change Biology, 12, 635–643.CrossRefGoogle Scholar
  6. Billen, G., & Garnier, J. (2007). River basin nutrient delivery to the coastal sea: Assessing its potential to sustain new production of nonsiliceous algae. Marine Chemistry, 106, 148–160.CrossRefGoogle Scholar
  7. Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B., Erisman, J.-W., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., & de Vries, W. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20, 30–59.CrossRefGoogle Scholar
  8. Bobrovsky, M. V. (2010). Lesnye pochvy Evropejskoj Rossii: bioticheskie i antropogennye faktory formirovaniya [Forest soil in European Russia: biotic and anthropogenic factors in soil forming process].Moscow: KMK (in Russian).Google Scholar
  9. Bowman, W. D., Gartner, J. R., Holland, K., & Wiedermann, M. (2006). Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: are we there yet? Ecological Applications, 16, 1183–1193.CrossRefGoogle Scholar
  10. Bowman, W. D., Cleveland, C. C., Halada, L., Hresko, J., & Baron, J. S. (2008). Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience, 1, 767–770.CrossRefGoogle Scholar
  11. Britton, A. J., Beale, C. M., Towers, W., & Hewison, R. L. (2009). Biodiversity gains and losses: evidence for homogenisation of Scottish alpine vegetation. Biological Conservation, 142, 1728–1739.CrossRefGoogle Scholar
  12. Clark, C. M., & Tilman, D. (2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, 712–715.CrossRefGoogle Scholar
  13. Dias, T., Chaves, S., Tenreiro, R., Martins-Loução, M. A., Sheppard, L., & Cruz, C. (2014). Effects of increased nitrogen availability in Mediterranean ecosystems: A case study in a Natura 2000 site in Portugal. In M. A. Sutton, K. E. Mason, L. J Sheppard, H. Sverdrup, R. Haeuber, & W. K. Hicks (Eds.), Nitrogen deposition, critical loads and biodiversity (Proceedings of the International Nitrogen Initiative workshop, linking experts of the Convention on Long-range Transboundary Air Pollution and the Convention on Biological Diversity). (Chap. 27; this volume). Springer.Google Scholar
  14. Dise, N. B., Ashmore, M., Belyazid, S., Bleeker, A., Bobbink, R., de Vries, W., Erisman, J. W., Spranger, T., Stevens, C. J., & van den Berg, L. (2011). Nitrogen as a threat to European terrestrial biodiversity. In M. A. Sutton, C. M. Howard, J. W. Erisman, G. Billen, A. Bleeker, P. Grennfelt, H. van Grinsven, & B. Grizzetti (Eds.), The European nitrogen assessment (Chap. 20). Cambridge University Press.Google Scholar
  15. Egerton-Warburton, L., & Allen, E. B. (2000). Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecological Applications, 10, 484–496.CrossRefGoogle Scholar
  16. Elser, J. J., Andersen, T., Baron, J. S., Bergstrom, A.-K., Jansson, M., Kyle, M., Nydick, K. R., Steger, L., & Hessen, D. O. (2009). Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science, 326, 835–837.CrossRefGoogle Scholar
  17. Emmett, B. A. (2007). Nitrogen saturation of terrestrial ecosystems: Some recent findings and their implications for our conceptual framework. Water, Air, & Soil Pollution. Focus, 7, 99–109.CrossRefGoogle Scholar
  18. Feest, A. (2006). Establishing baseline indices for the quality of the biodiversity of restored habitats using a standardized sampling process. Restoration Ecology, 14, 112–122.CrossRefGoogle Scholar
  19. Fenn, M. E., Baron, J. S., Allen, E. B., Rueth, H. M., Nydick, K. R., Geiser, L., Bowman, W. D., Sickman, J. O., Meixner, T., Johnson, D. W., & Neitlich, P. (2003). Ecological effects of nitrogen deposition in the western United States. Bioscience, 53, 404–420.CrossRefGoogle Scholar
  20. Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., & Sutton, M. A. (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320, 889–892.CrossRefGoogle Scholar
  21. Gilliam, F. S. (2006). Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. Journal of Ecology, 94, 1176–1191.CrossRefGoogle Scholar
  22. Goodale, C., Thomas, R. Q., Melvin, A. M., Weiss, M. S., Adams, M. B., Baron, J. S., Emmett, B., Evans, C., Fernandez, I., Gundersen, P., Kulmatski, A., Lovett, G., McNulty, S., Moldan, F., Ollinger, S., & Schleppi, P. (2009). Nitrogen deposition and forest carbon sequestration: A quantitative synthesis from plot to global scales. American Geophysical Union, Fall Meeting 2009, abstract #B23G–01.Google Scholar
  23. Gordon, C., Wynn, J. M., & Woodin, S. J. (2001). Impacts of increased nitrogen supply on high Arctic heath: The importance of bryophytes and phosphorus availability. New Phytologist, 149, 461–471.CrossRefGoogle Scholar
  24. Hames, R. S., Rosenberg, K. V., Lowe, J. D., Barker, S. E., & Dhondt, A. A. (2002). Adverse effects of acid rain on the distribution of the Wood Thrush Hylocichla mustelina in North America. Proceedings of the National Academy of Sciences of the United States of America, 99, 11235–11240.Google Scholar
  25. Hautier, Y., Niklaus, P. A., & Hector, A. (2009). Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636–638.CrossRefGoogle Scholar
  26. Hobbie, S. E. (2008). Nitrogen effects on decomposition: A five-year experiment in eight temperate sites. Ecology, 89, 2633–2644.CrossRefGoogle Scholar
  27. Jeziorski, A., Yan, N. D., Paterson, A. M., DeSellas, A. M., Turner, M. A., Jeffries, D. S., Keller, B., Weeber, R. C., McNicol, D. K., Palmer, M. E., McIver, K., Arseneau, K., Ginn, B. K., Cumming, B. F., & Smol, J. P. (2008). The widespread threat of calcium decline in fresh waters. Science, 322, 1374–1377.CrossRefGoogle Scholar
  28. Johnson, N. C., Rowland, D. L., Corkidi, L., Egerton-Warburton, L. M., & Allen, E. B. (2003). Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology, 84, 1895–1908.CrossRefGoogle Scholar
  29. Keith, S. A., Newton, A. C., Morecroft, M. D., Bealey, C. E., & Bullock, J. M. (2009). Taxonomic homogenization of woodland plant communities over 70 years. Proceedings of the Royal Society B, 276, 3539–3544.Google Scholar
  30. Kerslake, J. E., Woodin, S. J., & Hartley, S. E. (1998). Effects of CO2 and nitrogen enrichment on a plant-insect interaction: The quality of Calluna vulgaris as a host for Opheroptera brumata. New Phytologist, 140, 43–53.CrossRefGoogle Scholar
  31. Knorr, M., Frey, S. D., & Curtis, P. S. (2005). Nitrogen additions and litter decomposition: A meta-analysis. Ecology, 86, 3252–3257.CrossRefGoogle Scholar
  32. Kronzucker, H. J., Siddiqi, M. Y., Glass, A. D. M., & Britto, D. T. (2003). Root ammonium transport efficiency as a determinant in forest colonization patterns: An hypothesis. Physiologia Plantarum, 117, 164–170.CrossRefGoogle Scholar
  33. Lewis, W. M. J., & Wurtsbaugh, W. A. (2008). Control of lacustrine phytoplankton by nutrients: Erosion of the phosphorus paradigm. International Review of Hydrobiology, 93, 446–465.CrossRefGoogle Scholar
  34. Long, R. P., Horsley, S. B., Hallett, R. A., & Bailey, S. W. (2009). Sugar maple growth in relation to nutrition and stress in the northeastern United States. Ecological Applications, 19, 1454–1466.CrossRefGoogle Scholar
  35. Lu, X., Mo, J., Gilliam, F. S., Zhou, G., & Fang, Y. (2010). Effects of experimental nitrogen deposition on plant diversity in an old-growth tropical forest. Global Change Biology, 16(10), 2688–2700.CrossRefGoogle Scholar
  36. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.CrossRefGoogle Scholar
  37. Nydick, K. R., Lafrancois, B. M., Baron, J. S., & Johnson, B. M. (2004). Nitrogen regulation of algal biomass, productivity, and composition in shallow mountain lakes, Snowy Range, Wyoming, USA. Canadian Journal of Fisheries and Aquatic Sciences, 61, 1256–1268.CrossRefGoogle Scholar
  38. Ochoa-Hueso, R., & Manrique, E. (2010). Nitrogen fertilization and water supply affect germination and plant establishment of the soil seed bank present in a semi-arid Mediterranean scrubland. Plant Ecology, 210, 263–273.CrossRefGoogle Scholar
  39. Olson, D. M., & Dinerstein, E. (2002). The Global 200: Priority ecoregions for global conservation. Annals of the Missouri Botanical Garden, 89, 199–224.CrossRefGoogle Scholar
  40. Phoenix, G. K., Hicks, W. K., Cinderby, S., Kuylenstierna, S. C. I., Stock, W. D., Dentener, F. J., Giller, K. E., Austin, A. T., Lefroy, R. D. B., Gimeno, B. S., Ashmore, M. R., & Ineson, P. (2006). Atmospheric nitrogen deposition in world biodiversity hotspots: The need for a greater global perspective in assessing N deposition impacts. Global Change Biology, 12, 470–476.CrossRefGoogle Scholar
  41. Rabalais, N. N. (2002). Nitrogen in aquatic ecosystems. Ambio, 31, 102–112.Google Scholar
  42. Rao, L. E., Allen, E. B., & Meixner, T. (2010). Risk-based determination of critical nitrogen deposition loads for fire spread in southern California deserts. Ecological Applications, 20, 1320–1335.CrossRefGoogle Scholar
  43. Riddell, J., Nash, T. H., III, & Padgett, P. (2008). The effect of HNO3 gas on the lichen Ramalina menziesii. flora - morphology, distribution. Functional Ecology of Plants, 203, 47–54.CrossRefGoogle Scholar
  44. Rockström, J., Steffen, W., Noone, K., Persson, A., Chapin, F. S., Lambin, E. F., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., de Wit, C. A., Hughes, T., van der Leeuw, S., Rodhe, H., Sorlin, S., Snyder, P. K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., & Foley, J. A. (2009). A safe operating space for humanity. Nature, 461, 472–475.CrossRefGoogle Scholar
  45. Stevens, C. J., Thompson, K., Grime, J. P., Long, C. J., & Gowing, D. J. G. (2010). Acidification as opposed to eutrophication is the main cause of declines in species richness seen in calcifuge grasslands impacted by nitrogen deposition. Functional Ecology, 24, 478–484.CrossRefGoogle Scholar
  46. Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H. Grizzetti, B. (Eds.). (2011). The European nitrogen assessment. Cambridge University Press.Google Scholar
  47. Talluto, M. V., & Suding, K. N. (2008). Historical change in coastal sage scrub in southern California in relation to fire frequency and air pollution. Landscape Ecology, 23, 803–815.CrossRefGoogle Scholar
  48. Throop, H. L., & Lerdau, M. L. (2004). Effects of nitrogen deposition on insect herbivory: Implications for community and ecosystem processes. Ecosystems, 7, 109–133.CrossRefGoogle Scholar
  49. Wallace, Z. P., Lovett, G. M., Hart, J. E., & Machona, B. (2007). Effects of nitrogen saturation on tree growth and death in a mixed-oak forest. Forest Ecology and Management, 243, 210–218.CrossRefGoogle Scholar
  50. Weiss, S. B. (1999). Cars, cows, and Checkerspot butterflies: Nitrogen deposition and management of nutrient-poor grasslands for a threatened species. Conservation Biology, 13, 1476–1486.CrossRefGoogle Scholar
  51. Wolfe, A. P., Baron, J. S., & Cornett, R. J. (2001). Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). Journal of Paleolimnology, 25, 1–7.CrossRefGoogle Scholar
  52. Wolfe, A., Cooke, C., & Hobbs, W. (2006). Are Current Rates of Atsmospheric Nitrogen Deposition Influencing Lakes in the Eastern Canadian Arctic? Arctic, Antarctic, and Alpine Research, 38, 465–476.CrossRefGoogle Scholar
  53. Xu, G. L., Schleppi, P., Li, M. H., & Fu, S. L. (2009). Negative responses of Collembola in a forest soil (Alptal, Switzerland) under experimentally increased N deposition. Environmental Pollution, 157, 2030–2036.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.US Geological Survey, Natural Resources Ecology LaboratoryColorado State UniversityFort CollinsUSA
  2. 2.RTI InternationalWashington, DCUSA
  3. 3.Faculty of Agriculture Food and Natural Resources (FAFNR), McMillan BuildingUniversity of SydneySydneyAustralia
  4. 4.Department of FisheriesLagos State UniversityLagosNigeria
  5. 5.Department of Botany and Plant Sciences and Center for Conservation BiologyUniversity of CaliforniaRiversideUSA
  6. 6.Centre for Ecology and HydrologyPenicuikUK
  7. 7.B-WARE Research CentreRadboud UniversityNijmegenThe Netherlands
  8. 8.Institute of Physico-Chemical and Biological Problems in Soil Science of Russian Academy of SciencesPushchinoRussia
  9. 9.Department of Ecology and Evolutionary Biology and Mountain Research Station/INSTAARUniversity of ColoradoBoulderUSA
  10. 10.Centro de Biologia AmbientalFaculdade de Ciências da Universidade de LisboaLisboaPortugal
  11. 11.Departamento de EcologiaUniversidade de BrasíliaBrasília-DFBrazil
  12. 12.Global Change Research Program/Environmental Protection AgencyCrystal CityUSA
  13. 13.Centre for Crop Nitrogen Fixation, School of BiosciencesUniversity of NottinghamNottinghamUK
  14. 14.Centro de Biologia AmbientalFaculdade de Ciências, Universidade de LisboaLisboaPortugal
  15. 15.The Woods Hole Research CenterFalmouthUSA
  16. 16.CSIRO Land and WaterCanberraAustralia
  17. 17.School of Land and EnvironmentThe University of MelbourneMelbourneAustralia
  18. 18.Department of Environmental and Geographical ScienceManchester Metropolitan UniversityManchesterUK
  19. 19.Water and Environmental Management Research CentreUniversity of BristolBristolUK
  20. 20.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleUSA
  21. 21.Pacific Northwest Region Air Resource ManagementUS Forest ServiceCorvallisUSA
  22. 22.Department of Biological SciencesMarshall UniversityHuntingtonUSA
  23. 23.Conservation InternationalArlingtonUSA
  24. 24.Institute of Mathematical Problems in Biology of Russian Academy of SciencesPushchinoRussia
  25. 25.Dinghushan Forest Ecosystem Research Station, South China Botanical GardenChinese Academy of SciencesZhaoqingChina
  26. 26.Instituto de Recursos Naturales, Centro de Ciencias MedioambientalesConsejo Superior de Investigaciones CientíficasMadridSpain
  27. 27.Museo Nacional de Ciencias NaturalesConsejo Superior de Investigaciones CientíficasMadridSpain
  28. 28.Instituto Nacional de Pesquisas Espaciais (CCST/INPE)São José dos CamposBrazil
  29. 29.Department of Environmental and Geographical SciencesManchester Metropolitan UniversityManchesterUK
  30. 30.OEKO-DATANational Critical Load Focal CenterStrausbergGermany
  31. 31.Centre for Ecology and HydrologyPenicuikUK
  32. 32.Geography DepartmentEnvironmental Change Research Centre, University College LondonLondonUK
  33. 33.Indian Agricultural Research Institute, CCUBGA, IARINew DelhiIndia
  34. 34.Department of Life ScienceThe Open UniversityWalton HallUK
  35. 35.Lancaster Environment CentreLancaster UniversityLancasterUK
  36. 36.Scottish Natural HeritageGreat Glen HouseInvernessUSA
  37. 37.Department of Chemical EngineeringLund UniversityLundSweden
  38. 38.Graduate School of AgricultureKyoto University (Yoshida North Campus)KyotoJapan
  39. 39.AlterraWageningen University and Research CentreWageningenThe Netherlands
  40. 40.IBESUniversity of AberdeenAberdeenUK

Personalised recommendations