A Comparison of Empirical and Modelled Nitrogen Critical Loads for Mediterranean Forests and Shrublands in California

  • Mark E. Fenn
  • Hans-Dieter Nagel
  • Ina Koseva
  • Julian Aherne
  • Sarah E. Jovan
  • Linda H. Geiser
  • Angela Schlutow
  • Thomas Scheuschner
  • Andrzej Bytnerowicz
  • Benjamin S. Gimeno
  • Fengming Yuan
  • Shaun A. Watmough
  • Edith B. Allen
  • Robert F. Johnson
  • Thomas Meixner
Chapter

Abstract

Nitrogen (N) deposition is impacting a number of ecosystem types in California. Critical loads (CLs) for N deposition determined for mixed conifer forests and chaparral/oak woodlands in the Sierra Nevada Mountains of California and the San Bernardino Mountains in southern California using empirical and various modelling approaches were compared. Models used included the Simple Mass Balance (SMB) model for nutrient N and acidification (both site-specific and regional approaches) and the Daycent process-based biogeochemical simulation model. Empirical CLs reported herein were based on responses across N deposition gradients of lichen community functional groups and streamwater nitrate (NO3) leaching. Broad scale CL mapping for the San Bernardino Mountains using the SMB model resulted in nutrient N CL values that were on average approximately 50 % lower than the empirical CL value for NO3 leaching (17 kg ha−1 year−1) in California mixed conifer forests. Over the range of elevations and vegetation types in the San Bernardino Mountains, SMB CL values ranged from 5.1 to 13.0 kg ha−1 year−1 for nutrient N. For both the empirical NO3 leaching CL and the SMB estimate, the CL was generally lower for chaparral vegetation than for forests. The estimated CL for NO3 leaching derived from the Daycent model was equal to the empirical CL (17 kg ha−1 year−1), but the severity and frequency of elevated NO3 leaching was underestimated by Daycent. Statewide empirical CL exceedance maps indicate that 3.3 and 4.5 % of the chaparral and forested areas in California are in excess of the NO3 leaching CL. Likewise, 23.4, 41.2 and 52.9 % of the mixed conifer forest, oak woodland and chaparral areas are in excess of the empirical N CL for epiphytic lichen community effects, respectively. Eutrophication effects in terrestrial ecosystems of California are widespread, while significant acidification effects are limited to the more polluted sites in southern California.

Keywords

Biogeochemical models Critical load exceedance Epiphytic lichen communities Nitrate leaching Soil acidification 

References

  1. Breiner, J., Gimeno, B. S., & Fenn, M. (2007). Calculation of theoretical and empirical nutrient N critical loads in the mixed-conifer ecosystems of southern California. The Scientific World Journal, 7(S1), 198–205.CrossRefGoogle Scholar
  2. Cape, J. N., van der Eerden, L. J., Sheppard, L. J., Leith, I. D., & Sutton, M. A. (2009). Evidence for changing the critical level for ammonia. Environmental Pollution, 157, 1033–1037.CrossRefGoogle Scholar
  3. Dannenmann, M., Willibald, G., Sippel, S., & Butterbach-Bahl, K. (2011). Nitrogen dynamics at undisturbed and burned Mediterranean shrublands of Salento Peninsula, southern Italy. Plant and Soil, 343, 5–15.CrossRefGoogle Scholar
  4. Fenn, M. E., & Poth, M. A. (2001). A case study of nitrogen saturation in western U.S. forests. In J. Galloway, E. Cowling, J. W. Erisman, J. Wisniewski, & C. Jordan (Eds.), Optimizing nitrogen management in food and energy production and environmental protection: Proceedings of the 2nd International Nitrogen Conference, 14–18 October 2001, pp. 433–439. Potomac, Maryland, USA. A.A. Balkema Publishers, Lisse, The Netherlands and TheScientificWorld, (www.thescientificworld.com).
  5. Fenn, M. E., Sickman, J. O., Bytnerowicz, A., Clow, D. W., Molotch, N. P., Pleim, J. E., Tonnesen, G. S., Weathers, K. C., Padgett, P. E., & Campbell., D.H. (2009). Methods for measuring atmospheric nitrogen deposition inputs in arid and montane ecosystems of western North America. In A. H. Legge (Ed.), Developments in environmental science, Vol. 9: Air quality and ecological impacts: relating sources to effects (pp. 179–228). Amsterdam: Elsevier.CrossRefGoogle Scholar
  6. Fenn, M. E., Allen, E. B., & Geiser, L. H. (2011). Mediterranean California. In L. H. Pardo, M. J. Robin-Abbott, & C. T. Driscoll (Eds.), Assessment of N deposition effects and empirical critical loads of N for ecoregions of the US, (Chap. 13, pp. 143–169). General Technical Report NRS-80. USDA Forest Service. Newtown Square: Northern Research Station.Google Scholar
  7. Fenn, M. E., & Poth, M. A. (1999). Temporal and spatial trends in streamwater nitrate concentrations in the San Bernardino Mountains, southern California. Journal of Environmental Quality, 28, 822–836.CrossRefGoogle Scholar
  8. Fenn, M. E., Jovan, S., Yuan, F., Geiser, L., Meixner, T., & Gimeno, B. S. (2008). Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests. Environmental Pollution, 155, 492–511.CrossRefGoogle Scholar
  9. Fenn, M. E., Allen, E. B., Weiss, S. B., Jovan, S., Geiser, L. H., Tonnesen, G. S., Johnson, R. F., Rao, L. E., Gimeno, B. S., Yuan, F., Meixner, T., & Bytnerowicz, A. (2010). Nitrogen critical loads and management alternatives for N-impacted ecosystems in California. Journal of Environmental Management, 91, 2404–2423.CrossRefGoogle Scholar
  10. Geiser, L. H., Jovan, S. E., Glavich, D. A., & Fenn, M. E. (2014). Predicting lichen-based critical loads for nitrogen deposition in temperate forests. In M. A. Sutton, K. E. Mason, L. J. Sheppard, H. Sverdrup, R. Haeuber, & W. K. Hicks (Eds.), Nitrogen deposition, critical loads and biodiversity (Proceedings of the International Nitrogen Initiative workshop, linking experts of the Convention on Long-range Transboundary Air Pollution and the Convention on Biological Diversity). (Chap. 33: this volume). Springer.Google Scholar
  11. Geiser, L. H., Jovan, S. E., Glavich, D. A., & Porter, M. K. (2010). Lichen-based critical loads for atmospheric nitrogen deposition in western Oregon and Washington forests, USA. Environmental Pollution, 158, 2412–2421.CrossRefGoogle Scholar
  12. Hettelingh, J.-P., Posch, M., & Slootweg, J. (Eds.). (2008). Critical Load, Dynamic Modelling and Impact Assessment in Europe. CCE Status Report 2008, Coordination Centre for Effects. Netherlands Environmental Assessment Agency. http://www.rivm.nl/en/themasites/cce/publications/cce-status-report-2008/index.html.
  13. ICP Modelling & Mapping Manual. (2008). Manual on methodologies and criteria for modelling and mapping critical loads & levels and air pollution effects, risks and trends, Federal Environmental Agency (Umweltbundesamt) Berlin, UBA-Texte 52/04, revised version of 2008 (Updated version available at: www.icpmapping.org).
  14. Jovan, S. (2008). Lichen bioindication of biodiversity, air quality, and climate: Baseline results from monitoring in Washington, Oregon, and California. Gen. Tech. Rep. PNW-GTR-737. Portland: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.Google Scholar
  15. Jovan, S., & McCune, B. (2005). Air-quality bioindication in the greater central valley of California, with epiphytic macrolichen communities. Ecological Applications, 15, 1712–1726.CrossRefGoogle Scholar
  16. MacDonald, J. A., Dise, N. B., Matzner, E., Armbruster, M., Gundersen, P., & Forsius, M. (2002). Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Global Change Biology, 8, 1028–1033.CrossRefGoogle Scholar
  17. Posthumus, A. C. (1988). Critical levels for effects of NH3 and NH4  + . Final Draft Report of the ECE Critical Levels Workshop. 14–18 March 1988, Bad Harzburg, Federal Republic of Germany, pp. 117–127. United Nations - Economic Commission for Europe (UNECE). http://www.unece.org/ru/env/lrtap/workinggroups/wge/documents.html.
  18. Riddell, J., Nash III, T. H., & Padgett, P. (2008). The effect of HNO3 gas on the lichen Ramalina menziesii. Flora, 203, 47–54.CrossRefGoogle Scholar
  19. Sutton, M. A., Wolseley, P. A., Leith, I. D., van Dijk, N., Tang, Y. S., James, P. W., Theobald, M. R., & Whitfield, C. (2009). Estimation of the ammonia critical level for epiphytic lichens based on observations at farm, landscape and national scales. In M.A. Sutton, S. Reis, & S.M.H. Baker (Eds.), Atmospheric ammonia: Detecting emission changes and environmental impacts. Results of an Expert Workshop under the Convention on Long-range Transboundary Air Pollution. (Chapter 6, pp. 71–86). Springer.Google Scholar
  20. Wood, Y. A., Fenn, M., Meixner, T., Shouse, P. J., Breiner, J., Allen, E., & Wu, L. (2007). Smog nitrogen and the rapid acidification of forest soil, San Bernardino Mountains, southern California. The Scientific World Journal, 7(S1), 175–180.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Mark E. Fenn
    • 1
  • Hans-Dieter Nagel
    • 2
  • Ina Koseva
    • 3
    • 4
  • Julian Aherne
    • 5
  • Sarah E. Jovan
    • 6
  • Linda H. Geiser
    • 7
  • Angela Schlutow
    • 8
  • Thomas Scheuschner
    • 8
  • Andrzej Bytnerowicz
    • 1
  • Benjamin S. Gimeno
    • 9
  • Fengming Yuan
    • 10
    • 11
  • Shaun A. Watmough
    • 3
  • Edith B. Allen
    • 12
  • Robert F. Johnson
    • 13
  • Thomas Meixner
    • 13
  1. 1.Pacific Southwest Research StationUSDA Forest ServiceRiversideUSA
  2. 2.National Critical Load Focal CenterOEKO-DATAStrausbergGermany
  3. 3.Department of Environmental and Resource StudiesTrent UniversityPeterboroughCanada
  4. 4.Manitoba Centre for Health PolicyUniversity of ManitobaWinnipegCanada
  5. 5.Department of Environmental and Resource StudiesTrent UniversityPeterboroughCanada
  6. 6.Forest Inventory and Analysis Program, Portland Forestry Sciences LabUSDA Forest ServicePortlandUSA
  7. 7.Pacific Northwest Region Air Resource ManagementUS Forest ServiceCorvallisUSA
  8. 8.National Critical Load Focal CenterOEKO-DATAStrausbergGermany
  9. 9.Ecotoxicology of Air PollutionCIEMAT (Ed. 70)MadridSpain
  10. 10.Institute of Arctic BiologyUniversity of AlaskaFairbanksUSA
  11. 11.Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  12. 12.Department of Botany and Plant Sciences and Center for Conservation BiologyUniversity of CaliforniaRiversideUSA
  13. 13.Department of Hydrology and Water ResourcesUniversity of ArizonaTucsonUSA

Personalised recommendations