Advertisement

Species of Arbuscular Mycorrhizal Fungal Spores can Indicate Increased Nitrogen Availability in Mediterranean-type Ecosystems

Chapter
  • 1.5k Downloads

Abstract

Mycorrhizal fungi form ecologically important connections between plants and soils, and although nitrogen (N) enrichment has been implicated in the decline of ectomycorrhizal fungal diversity, they are rarely considered in studies investigating the effects of increased N availability on plant species diversity. This chapter describes the effects of N enrichment on the soil fungal community and in particular on arbuscular mycorrhizal fungal (AMF) spores, in a Mediterranean ecosystem in a Natura 2000 site in southern Portugal (PTCON0010 Arrábida/Espichel). Soil fungal community structure was affected by the addition of 80 kg N  ha−1 year−1 as NH4NO3 within 2 years. The effects of N addition on AMF diversity (richness and evenness) appear to depend on the form of N, since the addition of 40 kg N  ha−1 year −1 as ammonium increased AMF spore richness and evenness proportionally more than the addition of 40 kg N ha−1 year−1 as ammonium plus nitrate. The composition of AMF species may serve as a sensitive indicator of N enrichment.

Keywords

Arbuscular mycorrhizal fungi Evenness Mediterranean Richness Soil fungi 

Notes

Acknowledgments

This study was supported by the Fundação para a Ciência e Tecnologia (FCT) through the project PTDC/BIA-BEC/099323/2008. Teresa Dias gratefully acknowledges support for her PhD grant BD/25382/2005 (FCT). We are grateful to the Arrábida Natural Park for making available the experimental site and allowing the N manipulation experiment, and to COST 729 for supporting the participation in the Workshop on Nitrogen Deposition, Critical Loads and Biodiversity.

References

  1. Allen, E. B., Padgett, P. E., Bytnerowicz, A., & Minnich, R. A. (1998). Nitrogen deposition effects on coastal sage vegetation of southern California. In Proceedings of the International Symposium on Air Pollution and Climate Change Effects on Forest Ecosystems (pp. 131–140). US Department of Agriculture Forest Service, Pacific Southwest Research Station, Riverside, California.Google Scholar
  2. Atkinson, D. (2009). Soil microbial resources and agricultural policies. In C. Azcón-Aguilar, J. M. Barea, S. Gianinazzi & V. Gianinazzi-Pearson (eds.), Mycorrhizal functional processes and ecological impact (pp. 1–16). Berlin: Springer.CrossRefGoogle Scholar
  3. Bobbink, R., Hornung, M., & Roelofs, J. G. M. (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86, 717–738.CrossRefGoogle Scholar
  4. Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B., Erisman, J.-W., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., & de Vries, W. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20, 30–59.CrossRefGoogle Scholar
  5. Bonanomi, G., Caporaso, S., & Allgrezza, M. (2006). Short-term effects of nitrogen enrichment, litter removal and cutting on a Mediterranean grassland. Acta Oecologica, 30, 419–425.CrossRefGoogle Scholar
  6. Clarisse, L., Clerbaux, C., Dentener, F., Hurtmans, D., & Coheur, P.-F. (2009). Global ammonia distribution derived from infrared satellite observations. Nature Geoscience, 2, 479–483.CrossRefGoogle Scholar
  7. Correia, O. (1988). Contribuição da fenologia e ecofisiologia em estudos da sucessão e dinâmica da vegetação mediterrânica. PhD Dissertation, Universidade de Lisboa, Portugal.Google Scholar
  8. Cruz, C., Bio, A. M. F., Jullioti, A., Tavares, A., Dias, T., & Martins-Loução, M. A. (2008). Heterogeneity of soil surface ammonium concentration and other characteristics, related to plant specific variability in a Mediterranean-type ecosystem. Environmental Pollution, 154, 414–423.CrossRefGoogle Scholar
  9. Dias, T., Malveiro, S., Chaves, S., Tenreiro, R., Branquinho, C., Martins-Loução, M. A., Sheppard, L., & Cruz, C. (2011). Effects of increased N availability on biodiversity of Mediterranean-type ecosystems: A case study in a Natura 2000 site in Portugal. In W. K. Hicks, C. P. Whitfield, W. J. Bealey & M. A. Sutton (Eds.), Nitrogen deposition and Natura 2000: Science and practice in determining environmental impacts. COST729/Nine/ESF/CCW/JNCC/SEI Workshop Proceedings. (Chap. 5.0, pp. 173-181). Cost Office 2011.Google Scholar
  10. Dias, T., Chaves, S., Tenreiro, R., Martins-Loução, M. A., Sheppard, L. J., & Cruz, C. (2014). Effects of increased nitrogen availability in Mediterranean ecosystems: A case study in a Natura 2000 site in Portugal. In M. A. Sutton, K. E. Mason, K. E. Sheppard, H. Sverdrup, R. Haeuber, W. K. Hicks (Eds.), Nitrogen deposition, critical loads and biodiversity (Proceedings of the International Nitrogen Initiative workshop, linking experts of the Convention on Long-range Transboundary Air Pollution and the Convention on Biological Diversity). Chap. 27 (this volume). Springer.Google Scholar
  11. Egerton-Warburton, L. M., & Allen, E. B. (2000). Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecological Applications, 10, 484–496.CrossRefGoogle Scholar
  12. Egerton-Warburton, L. M., Johnson, N. C., & Allen, E. B. (2007). Mycorrhizal community dynamics following nitrogen fertilization: A cross-site test in five grasslands. Ecological Monographs, 77, 527–544.CrossRefGoogle Scholar
  13. Fitter, A. H. (2005). Darkness visible: Reflections on under-ground ecology. Journal of Ecology, 93, 231–243.CrossRefGoogle Scholar
  14. Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., & Sutton, M. A. (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320, 889–892.CrossRefGoogle Scholar
  15. Högberg, M. N., Bååth, E., Nordgren, A., Arnebrant, K., & Högberg, P. (2003). Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs-a hypothesis based on field observations in boreal forest. New Phytologist, 160, 225–238.CrossRefGoogle Scholar
  16. Lilleskov, E. A., Fahey, T. J., Horton, T. R., & Lovett, G. M. (2002). Belowground ectomycorrhizal fungal community change over a nitrogen gradient in Alaska. Ecology, 83, 104–115.CrossRefGoogle Scholar
  17. Phoenix, G. K., Hicks, W. K., Cinderby, S., Kuylenstierna, J. C. I., Stock, W. D., Dentener, F. J., Giller, K. E., Austin, A. T., Lefroy, R. D. B., Gimeno, B. S., Ashmore, M. R., & Ineson, P. (2006). Atmospheric nitrogen deposition in world biodiversity hotspots: The need for a greater global perspective in assessing N deposition impacts. Global Change Biology, 12, 470–476.CrossRefGoogle Scholar
  18. Sala, O. E., Chapin, I. I. I. F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, H. A., Oesterheld, M., Poff, N. L. R., Sykes, M. T., Walker, B. H., Walker, M., & Wall, D. H. (2000). Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774.CrossRefGoogle Scholar
  19. Vourlitis, G. L., Pasquini, S., & Mustard, R. (2009). Effects of dry-season N input on the productivity an N storage of Mediterranean-type shrublands. Ecosystems, 12, 473–488.CrossRefGoogle Scholar
  20. Wallenda, T., & Kottke, I. (1998). Nitrogen deposition and ectomycorrhizas. New Phytologist, 139, 169–187.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Faculdade de Ciências, Centro de Biologia Ambiental (CBA)Universidade de LisboaLisboaPortugal
  2. 2.Departamento de Ciências NaturaisUniversidade Regional de BlumenauBlumenauBrazil
  3. 3.Faculdade de Ciências, Center for Biodiversity, Functional and Integrative Genomics (BioFIG)Universidade de LisboaLisboaPortugal
  4. 4.Centre for Ecology and HydrologyMidlothianUK

Personalised recommendations