Advertisement

Biodiversity of Acid Grasslands in the Atlantic Regions of Europe: The Impact of Nitrogen Deposition

  • Carly J. StevensEmail author
  • Cecilia Duprè
  • Edu Dorland
  • Cassandre Gaudnik
  • David J. G. Gowing
  • Albert Bleeker
  • Martin Diekmann
  • Didier Alard
  • Roland Bobbink
  • David Fowler
  • Emmanuel Corcket
  • J. Owen Mountford
  • Vigdis Vandvik
  • Per Arild Aarrestad
  • Serge Muller
  • Nancy B. Dise
Chapter

Abstract

Reduction in the species richness of acid grasslands along a gradient of atmospheric nitrogen (N) deposition has previously been demonstrated in the UK (Stevens, Dise, Mountford, Gowing, Science 303:1876–1879, 2004). Further surveys of acid grasslands in the UK confirm this relationship. This chapter reports an examination of the relationship across the Atlantic region of Europe. Examining the cover of functional groups across this gradient reveals that forb cover is strongly reduced along the gradient of N deposition.

Keywords

Atmospheric nitrogen deposition Functional group cover Grass: forb ratio Plant species richness Violion caninae grassland 

Notes

Acknowledgments

This project was funded by the European Science Foundation through the EuroDiversity programme, and national funds were provided by DfG (Germany), NERC (United Kingdom), NWO (The Netherlands) and INRA, ADEME and Aquitaine Region (France). We are grateful to everyone who assisted with field and laboratory work, and to the conservation agencies and land owners who gave permission for sampling.

References

  1. Asman, W. A. H., & van Jaarsveld, J. A. (1992). A variable-resolution transport model applied for NHx in Europe. Atmospheric Environment, 26A, 445–464.Google Scholar
  2. Bobbink, R., Hornung, M., & Roelofs, J. G. M. (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86, 717–738.CrossRefGoogle Scholar
  3. Brunsting, A. M. H., & Heil, G. W. (1985). The role of nutrients in the interactions between a herbivorous beetle and some competing plant species in heathlands. Oikos, 44, 23–26.CrossRefGoogle Scholar
  4. Carroll, J. A., Caporn, S. J. M., Cawley, L., Read, D. J., & Lee, J. A. (1999). The effect of increased atmospheric nitrogen on Calluna vulgaris in upland Britain. New Phytologist, 141, 423–431.CrossRefGoogle Scholar
  5. Clark, C. M., & Tilman, D. (2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, 712–715.CrossRefGoogle Scholar
  6. Gauger, T., Anshelm, F., Schuster, H., Erisman, J. W., Vermeulen, A. T., Draaijers, G. P. J., Bleeker, A., & Nagel, H.-D. (2002). Mapping of ecosystems specific long-term trends in deposition loads and concentrations of air pollutants in Germany and their comparison with critical loads and critical levels. Report No. 299 42 210, Institut fur Navigation, University of Stuttgart.Google Scholar
  7. Maskell, L. C., Smart, S. M., Bullock, J. M., Thompson, K., & Stevens, C. J. (2010). Nitrogen deposition causes widespread species loss in British habitats. Global Change Biology, 16, 671–679.CrossRefGoogle Scholar
  8. Mountford, J. O., Lakhani, K. H., & Kirkham, F. W. (1993). Experimental assessment of the effects of nitrogen addition under hay-cutting and aftermath grazing on the vegetation of meadows on a Somerset peat moor. Journal of Applied Ecology, 30, 321–332.CrossRefGoogle Scholar
  9. NEGTAP. (2001). Transboundary air pollution: Acidification, eutrophication and ground-level ozone in the UK. UK: Centre for Ecology & Hydrology.Google Scholar
  10. Pieterse, G., Bleeker, A., Vermeulen, A. T., Wu, Y., & Erisman, J. W. (2007). High resolution modelling of atmosphere-canopy exchange of acidifying and eutrophying components and carbon dioxide for European forests. Tellus, 59B, 412–424.Google Scholar
  11. Smith, R. I., Fowler, D., Sutton, M. A., Flechard, C., & Coyle, M. (2000). Regional estimation of pollutant gas dry deposition in the UK: Model description, sensitivity analyses and outputs. Atmospheric Environment, 34, 3757–3777.CrossRefGoogle Scholar
  12. Stevens, C. J., Dise, N. B., Mountford, J. O., & Gowing, D. J. (2004). Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876–1879.CrossRefGoogle Scholar
  13. Stevens, C. J., Dise, N. B., Gowing, D. J., & Mountford, J. O. (2006). Loss of forb diversity in relation to nitrogen deposition in the UK: Regional trends and potential controls. Global Change Biology, 12, 1823–1833.CrossRefGoogle Scholar
  14. Stevens, C. J., Maskell, L. C., Smart, S. M., Caporn, S. J. M., Dise, N. B., & Gowing, D. J. (2009). Identifying indicators of atmospheric nitrogen deposition impacts in acid grasslands. Global Change Biology, 142, 2069–2075.Google Scholar
  15. Stevens, C. J., Duprè, C., Dorland, E., Gaudnik, C., Gowing, D. J. G., Bleeker, A., Diekmann, M., Alard, D., Bobbink, R., Fowler, D., Corcket, E., Mountford, J. O., Vandvik, V., Aarrestad, P. A., Muller, S., & Dise, N. B. (2010). Nitrogen deposition threatens species richness of grasslands across Europe. Environmental Pollution, 158(9), 2940–2945.CrossRefGoogle Scholar
  16. Tyler, G. (2003). Some ecophysiological and historical approaches to species richness and calcicole/calcifuge behaviour—contribution to a debate. Folia Geobotanica , 38, 419–428.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Carly J. Stevens
    • 1
    • 2
    Email author
  • Cecilia Duprè
    • 3
  • Edu Dorland
    • 4
    • 5
  • Cassandre Gaudnik
    • 6
  • David J. G. Gowing
    • 7
  • Albert Bleeker
    • 8
  • Martin Diekmann
    • 9
  • Didier Alard
    • 10
  • Roland Bobbink
    • 11
  • David Fowler
    • 12
  • Emmanuel Corcket
    • 13
  • J. Owen Mountford
    • 14
  • Vigdis Vandvik
    • 15
  • Per Arild Aarrestad
    • 16
  • Serge Muller
    • 17
  • Nancy B. Dise
    • 18
    • 19
  1. 1.Department of Life ScienceThe Open UniversityWalton HallUK
  2. 2.Lancaster Environment CentreLancaster UniversityLancasterUK
  3. 3.Institute of Ecology, FB 2University of BremenBremenGermany
  4. 4.Section of Landscape Ecology, Department of GeobiologyUtrecht UniversityUtrechtThe Netherlands
  5. 5.StaatsbosbeheerDriebergenThe Netherlands
  6. 6.UMR INRA 1202 Biodiversity, Genes and Communities (BIOGECO), Equipe Ecologie des CommunautésUniversity of Bordeaux 1TalenceFrance
  7. 7.Environment, Earth and EcosystemsThe Open UniversityWalton HallUK
  8. 8.Department of Air Quality and Climate ChangeEnergy Research Centre of the Netherlands (ECN)PettenThe Netherlands
  9. 9.Institute of Ecology, FB 2University of BremenBremenGermany
  10. 10.UMR INRA 1202 Biodiversity, Genes and Communities (BIOGECO), Equipe Ecologie des CommunautésUniversity of Bordeaux 1TalenceFrance
  11. 11.B-WARE Research CentreRadboud UniversityNijmegenThe Netherlands
  12. 12.Centre for Ecology and HydrologyPenicuik, MidlothianUK
  13. 13.UMR INRA 1202 Biodiversity, Genes and Communities, Equipe Ecologie des CommunautésUniversity of Bordeaux 1TalenceFrance
  14. 14.Centre for Ecology and HydrologyCrowmarsh Gifford, WallingfordUK
  15. 15.Department of BiologyUniversity of BergenBergenNorway
  16. 16.Norwegian Institute for Nature ResearchTrondheimNorway
  17. 17.Laboratoire des Interactions Ecotoxicologie, Biodiversité et Ecosystèmes (LIEBE), UMR CNRS 7146, U.F.R. Sci. F.A., Campus BridouxUniversité Paul VerlaineMetzFrance
  18. 18.Department of Environmental and Geographical ScienceManchester Metropolitan UniversityManchesterUK
  19. 19.Centre for Ecology and HydrologyBush EstatePenicuikUK

Personalised recommendations