Skip to main content

Adapting Apple Ideotypes to Low-Input Fruit Production Agro-Ecosystems

Abstract

Current commercial apple growing is highly dependent on off-farm inputs and it is urgent to develop new strategies to remedy this situation. The challenge for the future is to achieve lower-input apple orchards, whether under Integrated Fruit Production (IFP) or Organic Fruit Production (OFP) systems. This paper analyses the different agronomic factors that play key roles both in the current and future ‘More Sustainable Orchard’, with particular attention on plant protection. Firstly, the concept of ‘ideotype’ is developed, emphasizing the most important characteristics of optimal ideotypes for apple. Secondly, current knowledge on the relationships between genotype, cultural practices and the environment is presented and discussed. This paper deals with properties that need to be combined at plant material and orchard levels to optimise the IFP and OFP low-input systems. The focus is on: (a) the main characteristics of apple ideotypes; (b) breeding strategies; and (c) adapted cultural practices and control measures in the orchards.

Keywords

  • Apple breeding
  • Cultural practices
  • Pest and disease control
  • Integrated fruit production (IFP)
  • Low-input systems
  • Malus x domestica
  • Organic fruit production (OFP)
  • Sustainable orchard

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-7927-3_7
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-7927-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 7.1

References

  • Alaphilippe A, Simon S, Brun L, Hayer F, Gaillard G (2013) Life cycle analysis reveals higher agroecological benefits of organic and low-input apple production. Agron Sustain Dev 33:581–592

    Google Scholar 

  • Altieri MA, Nicholls C (2003) Soil fertility and insect pests: harmonizing soil and plant health in agroecosystems. Soil Tillage Res 72:203–211

    CrossRef  Google Scholar 

  • Anderson NO, Gomez NA, Galatowitsch SM (2006) A non-invasive crop ideotype to reduce invasive potential. Euphytica 148:185–202

    CrossRef  Google Scholar 

  • Arús P, Gardiner S (2007) Genomics for improvement of Rosaceae temperate tree fruit. In: Varshney RK, Tuberosa R (eds) Genomics-Assited Crop Improvement, vol 2. Genomics applications in Crops. Springer, Dordrecht, pp 357–397

    CrossRef  Google Scholar 

  • Aylor DE (1998) The aerobiology of apple scab. Plant Dis 82:838–849

    CrossRef  Google Scholar 

  • Bockstaller C, Guichard L, Makowski D, Aveline A, Girardin P, Plantureux S (2008) Agri-environmental indicators to assess cropping and farming systems. A review. Agron Sustain Dev 28(1):139–49

    Google Scholar 

  • Bousset L, Blaise P, Kellerhals M, Gessler C (1997) Mixtures of apple cultivars in orchards: effect on the scab epidemics. IOBC/WPRS Bull 20:42–48

    Google Scholar 

  • Brauwer G, Balkhoven H (2000) Biologische telere gaan de uitdaging aan. Fruitteelt 29:12–13

    Google Scholar 

  • Brun L, Didelot F, Parisi L (2008). Effects of apple cultivar susceptibility to Venturia inaequalis on scab epidemics in apple orchards. Crop Prot 27(6):1009–1019

    Google Scholar 

  • Brun L, Guinaudeau J, Gros C, Parisi L, Simon S (2010) Assessment of fungicide protection strategies in experimental apple orchards. IOBC/WPRS Bull 54:103–107

    Google Scholar 

  • Bus VGM, Esmenjaud D, Buck E, Laurens F (2009) Application of genetic markers in rosaceous crop. In: Folta KM, Gardiner SE (eds) Genetics and Genomics of Rosaceae, Plant Genetics and Genomics: Crops and Models 6:563–599

    Google Scholar 

  • Calenge F, Faure A, Goerre M, Gebhardt C, Van De Weg WE, Parisi L, Durel CE (2004) Quantitative Trait Loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathol 94:370–379

    CrossRef  CAS  Google Scholar 

  • Chable V, Dawson J, Bocci R, Goldringer I (2014) Seed for Organic Agriculture: the Development of the Participatory Plant Breeding and the Farmers’ Networks in France. In: Penvern S, Bellon S (eds) Organic farming, prototype for sustainable agricultures. Springer, Chap. 21, pp 383–400

    Google Scholar 

  • Costes E, Lauri PÉ, Regnard JL (2006) Analysing fruit tree architecture. Implication for tree management and fruit production. Horticultural Reviews, 32:1–61

    Google Scholar 

  • Demeyere A, de Turck R (2002) Use of crop protection products in Belgium’s main crops over the period 1991–2000. Ministère des Classes Moyennes et de l’Agriculture, Bruxelles, pp. 39

    Google Scholar 

  • Desclaux D, Nolot JM (2014) Seed sector and breeding methods: challenges for crop organic varieties. In: Penvern S, Bellon S (eds) Organic farming, prototype for sustainable agricultures. Springer, Chap. 20, pp 367–382

    Google Scholar 

  • Dickman DI, Gold MA, Flore JA (1994) The ideotype concept and the genetic improvement of tree crops. Plant Breed Rev 12:163–193

    Google Scholar 

  • Didelot F, Brun L, Parisi L (2007) Effects of cultivar mixtures on scab control in apple orchards. Plant Pathol 56:1014–1022

    CrossRef  Google Scholar 

  • Didelot F, Caffier V, Baudin M, Orain G, Lemarquand, Parisi L (2010) Integrating scab control methods with partial effects in apple orchards: the association of cultivar resistance, sanitation and reduced fungicide schedules. IOBC/WPRS Bull 54:525–528

    Google Scholar 

  • Donald CM (1968) The breeding of crop ideotypes. Euphytica 17:385–403

    CrossRef  Google Scholar 

  • Durel CE, Parisi L, Laurens F, Van De Weg WE, Liebhard R, Jourjon MF (2003) Genetic dissection of partial resistance to race 6 of Venturia inaequalis in apple. Genome 46:224–23

    PubMed  CrossRef  CAS  Google Scholar 

  • Eurostat (2007) Eurostat Statistical Book: the use of plant protection products in the European Union, Data 1992–2003. http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-76–06-669/EN/KS-76–06-669-EN.PDF

    Google Scholar 

  • FAO (1998) Evaluating the potential contribution of organic agriculture to sustainability goals. FAO’s technical contribution to IFOAM’s Scientific Conference Mar del Plata, Argentina, 16–19 November 1998. ftp://ftp.fao.org/docrep/fao/003/ac116e/ac1116e00.pdf

    Google Scholar 

  • Forshey CG, Elfving DC, Stebbins RL (1992) Training and pruning apple and pear trees. Am Soc Hort Sci, Alexandria

    Google Scholar 

  • Gardiner SE, Bus VGM, Rusholme RL, Chagné D, Rikkerink EHA (2007) Apple. In: Kole C (ed) Genome mapping and molecular breeding in plants. Fruits and Nuts, vol 4. Springer, Berlin, pp 1–62

    Google Scholar 

  • Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Crit Rev Plant Sci 25:473–503

    CrossRef  CAS  Google Scholar 

  • Gomez C, Brun L, Chauffour D, De Le Vallée D (2007) Effect of leaf litter management on scab development in an organic apple orchard. Agric Ecosys Environ 118:249–255

    CrossRef  Google Scholar 

  • Holb IJ (2005) Effect of pruning on apple scab in organic apple production. Plant Dis 89:611–618

    CrossRef  Google Scholar 

  • IOBC (2004) Integrated Production: principles and Technical Guidelines. IOBC/wprs Bull 27:2

    Google Scholar 

  • Jamar L, Lefrancq B, Fassotte C, Lateur M (2008). A ‘during-infection’ spray strategy using sulphur compounds, copper, silicon and a new formulation of potassium bicarbonate for primary scab control in organic apple production. Eur J Pl Pathol 122:481–492

    CrossRef  CAS  Google Scholar 

  • Jamar L, Cavelier M, Lateur M (2010) Primary scab control using a ‘during-infection’ spray timing and the effect on fruit quality and yield in organic apple production. Biotechnol Agron Soc Environ 14:423–439

    Google Scholar 

  • Jamar L (2011) Innovative strategies for the control of apple scab (Venturia inaequalis [Cke.] Wint.) in organic apple production (PhD thesis). 188 p. http://orbi.ulg.ac.be. University of Liege—Gembloux Agro-Bio Tech, Belgium

    Google Scholar 

  • Jackson DJ (1999) Grapevines. In: Jackson DJ, Looney NE (eds) Temperate and subtropical fruit production, 2nd edn. CABI Publishing, London, pp 70–77

    Google Scholar 

  • Lateur M, Populer C (1994) Screening fruit tree genetic resources in Belgium for disease resistance and other desirable characters. Euphytica 77:147–153

    CrossRef  Google Scholar 

  • Lateur M, Wagemens C, Populer C (1999) Evaluation of fruit tree genetic resources: use of the better performing cultivars as sources of polygenic scab resistance in an apple breeding programme. Acta Hortic 484:35–42

    Google Scholar 

  • Lateur M (2000) Fruit tree genetic resources and integrated fruit production. Acta Hortic 525:317–323

    Google Scholar 

  • Lateur M (2003) The integration of different sectors is a key factor for the conservation, the evaluation and the utilisation of our Belgian fruit tree biodiversity. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique—Biologie, 73-SUPPL:85–95

    Google Scholar 

  • Laurens F, Chevalier M, Dolega E, Gennari F, Goerre M, Fischer C, Kellerhals M, Lateur M, Lefrancq B, Parisi L, Shouten HJ, Tartarini S (2004) Local European cultivars as sources of durable scab resistance in apple. Acta Hortic 663:115–122

    Google Scholar 

  • Laurens F, Durel CE, Patocchi A, Peil A, Salvi S, Tartarini S, Velasco R, Van de Weg E (2010) Review on apple genetics and breeding programmes and presentation of a new European initiative to increase fruit breeding efficiency. J Fruit Sci 27:102–107

    Google Scholar 

  • Lauri PÉ (2002) From tree architecture to tree training—an overview of recent concepts developed in apple in France. J Korean Soc Hort Sci 43:782–788

    Google Scholar 

  • Lauri PÉ, Trottier C (2004) Patterns of size and fate relationships of contiguous organs in the apple (Malus domestica Borkh.) crown. New Phytol 163:533–546

    CrossRef  Google Scholar 

  • Lauri PÉ, Willaume M, Larrive G, Lespinasse JM (2004) The concept of centrifugal training in apple aimed at optimizing the relationship between growth and fruiting. Acta Hortic 636:35–42

    Google Scholar 

  • Lauri PÉ, Costes E (2005) Progress in Whole-Tree Architectural Studies for Apple Cultivar Characterization at INRA, France – Contribution to the Ideotype approach. Acta Hortic 663:357–362

    Google Scholar 

  • Lauri PÉ, Laurens F (2005) Architectural types in apple (Malus X domestica Borkh.). In: Dris R (ed) Crops: growth, quality and biotechnology. World Food Limited, Helsinki, pp 1300–1314

    Google Scholar 

  • Lauri PÉ, Costes E, Regnard JL, Brun L, Simon S, Monney, Sinoquet H (2009) Does knowledge on fruit tree architecture and its implications for orchard management improve horticultural sustainability? An overview of recent advances in the apple. Acta Hortic 817:243–249

    Google Scholar 

  • Lauri PÉ, Hucbourg B, Ramonguilhem M, Méry D (2011) An Architectural-based tree training and pruning—identification of key features in the apple. Acta Hortic 903:589–596

    Google Scholar 

  • Lefrancq B, Lateur M, Rondia A (2004) Screening method for polygenic scab resistance within an apple breeding programme: relationship between early greenhouse screening test on young seedlings and their scab susceptibility in natural field conditions. Acta Hortic 663:793–798

    Google Scholar 

  • Leser C, Treutter D (2005) Effects of nitrogen supply on growth, contents of phenolic compounds and pathogen (scab) resistance of apple trees. Physiol Plant 123:49–56

    CrossRef  CAS  Google Scholar 

  • Lespinasse JM, Delort F (1986) Apple tree management in vertical axis: appraisal after ten years of experiments. Acta Hortic 160:120–125

    Google Scholar 

  • Lespinasse Y (1992) Breeding apple tree: aims and methods. Proc. Joint Conf. of the EAPR Breeding and varietal assessment section and the Eucarpia Potato section:103–11

    Google Scholar 

  • MacHardy WE (1996) Apple Scab Biology, Epidemiology, and Management. APS Press, St Paul, Minnesota

    Google Scholar 

  • MacHardy WE, Gadoury DM, Gessler C (2001) Parasitic and Biological Fitness of Venturia inaequalis: Relationship to Disease Management Strategies. Plant Dis 85:1036–1051

    CrossRef  Google Scholar 

  • Neilsen GH, Neilsen D (2003) Nutritional requierements of apple. In: Ferree DC, Warrington IJ (eds) Apples, botany, production and uses. CABI publishing

    Google Scholar 

  • Normand F, Pambo Bello AK, Trottier C, Lauri PÉ (2009) Is axis position within tree architecture a determinant of axis morphology, branching, flowering and fruiting? An essay in mango. Ann Bot 103:1325–1336

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Parisi L, Lespinasse Y, Guillaumes J, Kruger J (1993) A new race of Venturia inaequalis virulent to apples with resistance due to the Vf gene. Phytopathol 83(5):533–537

    CrossRef  Google Scholar 

  • Parisi L, Fouillet V, Schouten HJ, Groenwold R, Laurens F, Didelot F, Evans K, Fischer C, Gennari F, Kemp H, Lateur M, Patocchi A, Thissen J, Tsipouridis C (2004) Variability of the pathogenicity of Venturia inaequalis in Europe. Acta Hortic 107–113

    Google Scholar 

  • Parisi L, Gros C, Combe F, Parveaud CE, Gomez C, Brun L (2013) Impact of cultivar mixture on scab, powdery mildew and rosy aphid in an organic apple orchard. Crop Prot 43:207–212

    Google Scholar 

  • Parr JF, Papendick RI, Youngberg IG, Meyer RE (1990) “Sustainable Agriculture in the United States” in Sustainable Agricultural Systems. In: Clive A. Edwards et al. (Ankeny, Iowa: Soil and Water Conservation Society, 1990), p. 52

    Google Scholar 

  • Penvern S, Jamar L, Dapena E, Lateur M, Simon S, Bellon S. (2012) Sustainable orcharding through eco-design and co-design. Symposium of the European Society for Horticultural Science, Angers, July 2012

    Google Scholar 

  • Populer C, Lateur M, Wagemans C (1998) Ressources génétiques et résistance aux maladies des arbres fruitiers. Biotechnol Agron Soc Environ 2 (1):46–58

    Google Scholar 

  • Schafer JF (1971) Tolerance to plant disease. Annu Rev Phytopathol 9:235–52.

    CrossRef  Google Scholar 

  • Simon S, Lauri PÉ, Brun L, Defrance H, Sauphanor B (2006) Does fruit-tree architecture manipulation affect the development of pests and pathogens? – a case study in apple orchard. J Hortic Sci Biotechnol 81(4):765–773

    Google Scholar 

  • Simon S, Sauphanor B, Lauri PÉ (2007a) Control of fruit tree pests through manipulation of tree architecture. Pest Technol 1(1):33–37

    Google Scholar 

  • Simon S, Miranda C, Brun L, Defrance H, Lauri PÉ, Sauphanor B (2007b) Effect of centrifugal tree training on pests and pathogens in apple orchards. IOBC/wprs Bull 30(4):237–245.

    Google Scholar 

  • Simon S, Brun L, Guinaudeau J, Sauphanor B (2011). Pesticide use in current and innovative apple orchard systems. Agron Sust Dev 31:541–555

    CrossRef  CAS  Google Scholar 

  • Simon S, Morel K, Durand E, Brevalle G, Girard T, Lauri PÉ. (2012) Aphids at crossroads: when branch architecture alters aphid infestation patterns in the apple tree. Trees Struct Funct 26:273–282

    CrossRef  Google Scholar 

  • Speiser B, Tamm L, Weibel FP (2014) Regulatory framework for plant protection in organic farming. In: Penvern S, Bellon S (Eds) Organic farming, prototype for sustainable agricultures.Springer, Chap. 4, pp 65–82

    Google Scholar 

  • Spruijt-Verkerke J, Schoorlemmer H, van Woerden S, Peppelman G, de Visser M, Vermeij I (2004) Duurzaamheid van de biologische landbouw. Wageningen, Praktijkonderzoek Plant & Omgeving, pp.118

    Google Scholar 

  • Stoeckli S, Mody K, Dorn S (2008) Influence of canopy aspect and height on codling moth (Lepidoptera: Tortricidae) larval infestation in apple, and relationship between infestation and fruit size. J Econ Entomol 101:81–89

    PubMed  CrossRef  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, et al (2010) The apple genome: emergence of the species and its domestication [J]. Nat Genet 42:833–839

    PubMed  CrossRef  CAS  Google Scholar 

  • Visser T, Verhaegh JJ, De Vries DP (1974) Resistance to scab (Venturia inaequalis) and mildew (Podosphaera leucotricha) and fruiting properties of the offspring of the apple cultivar Antonovka. Euphytica 23:353–364

    CrossRef  Google Scholar 

  • Warlop F, Dapena E, Lateur M, Bastiaanse H, Blázquez MD, Fillatre JY, Gomez C, Jamar L, Leterme E., Libourel G, Miñarro M, Parveaud CE, Pissard A, Rondia A, Stievenard R (2010) Urgent need for new apple breeding methods better adapted to low-input agro ecosystems. In: Breeding for Resilience: a strategy for Organic and low-input farming systems? Eucarpia 2nd Conference of the “Organic & Low-input Agriculture” Section. Paris, p 106–110

    Google Scholar 

  • Weibel F, Häseli A (2003) Organic apple production—with emphasis on European Experiences. In: Ferree DC, Warrington IJ (eds) Apples, botany, production and uses. CABI publishing

    Google Scholar 

  • Zehnder G, Gurr GM, Kuhne S, Wade MR, Wratten S, Wyss E (2007) Arthropod pest management in organics crops. Annu revi Entomol 52:57–80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Parisi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Parisi, L., Jamar, L., Lateur, M., Laurens, F., Lauri, PE. (2014). Adapting Apple Ideotypes to Low-Input Fruit Production Agro-Ecosystems. In: Bellon, S., Penvern, S. (eds) Organic Farming, Prototype for Sustainable Agricultures. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7927-3_7

Download citation