Skip to main content

Soil Phosphorus Management in Organic Cropping Systems: From Current Practices to Avenues for a More Efficient Use of P Resources

  • Chapter
  • First Online:

Abstract

Phosphorus (P) is a major nutrient for all living organisms and a key production factor in agriculture. In crop production, it is usually supplied to soils through fertilisers or recycled manure and compost. Organic production guidelines ban the use of highly soluble, manufactured P fertilisers and, thus, recommend recycling P from livestock manure and compost. In this chapter, after an overview of P dynamics in soils, we explore the consequences of such guidelines in terms of field- and farm-gate P budget, soil P availability and crop productivity. Moreover, we propose some avenues for the more effective use of P resources, ranging from rhizosphere-based processes (e.g., soil microorganism manipulation), genotype selection and cropping practices (e.g., intercropping), to farming system design (e.g., a combination of crops and animals at the farm scale). Finally, the potential benefits of these options are compared with respect to soil P status, field- and farm-P budgets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In this chapter, the terms ‘crop’ and ‘cropping’ are considered in their general meaning, i.e., relating to arable crops as well as to grasslands pastures and horticultural crops.

References

  • Achat DL, Morel C, Bakker MR, Augusto L, Pellerin S, Gallet-Budynek A, Gonzalez M (2010) Assessing turnover of microbial biomass phosphorus: Combination of an isotopic dilution method with a mass balance model. Soil Biol Biochem 42:2231–2240

    Article  CAS  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach. 2nd Ed. John Wiley, New York

    Google Scholar 

  • Berry PM, Stockdale EA, Sylvester-Bradley R, Philipps L, Smith KA, Lord EI, Watson CA, Fortune S (2003) N, P and K budgets for crop rotations on nine organic farms in the UK. Soil Use Manag 19:112–118

    Article  Google Scholar 

  • Betencourt E, Duputel M, Colomb B, Desclaux D, Hinsinger P (2011) Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil. Soil Biol. Biochem. 46:181–190

    Google Scholar 

  • Bolland MDA, Lewis DC, Gilkes RJ, Hamilton LJ (1997) Review of Australian phosphate rock research. Aust J Exp Agric 37:845–859

    Article  Google Scholar 

  • Bünemann EK, Prusisz B, Ehlers K (2011) Characterization of Phosphorus forms in soil microorganisms. In: Bünemann EK, Oberson A, Frossard E (eds.) Phosphorus in Action. Springer-Verlag, Berlin

    Chapter  Google Scholar 

  • Capitaine M, Boisdon I, Alvarez G, Vassal N (2009) L’utilisation des engrais de ferme sur prairie de montagne en agriculture bioologique et conventionnelle: des similitudes. Fourrages 197:75–84

    Google Scholar 

  • Cobo JG, Dercon G, Cadisch G (2010) Nutrient balances in African land use systems across different spatial scales: a review of approaches, challenges and progress. Agricu, Ecosys and Environ 136:1–15

    Google Scholar 

  • Colomb B, Aveline A, Carof M (2011) Une évaluation multicritère qualitative de la durabilité des systèmes de grandes cultures biologiques: quels enseignements? Restitution des programmes RotAB et CITODAB. Document d’analyse PSDR3 Midi-Pyrénées-Projet CITODAB et CAS-DAR RotAB

    Google Scholar 

  • Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Global Environ Chan 19(2):292–305

    Article  Google Scholar 

  • Cornish PS (2009) Phosphorus management on extensive organic and low-input farms. Crop Past Sci 60:105–115

    Article  CAS  Google Scholar 

  • Cornish PS, Oberson A (2008) New approaches to Phosphorus regulation and management. In: D. Neuhoff et al. (eds), 16th IFOAM Organic World Congress, Modena, Italy

    Google Scholar 

  • David C, Jeuffroy M-H, Henning J, Meynard JM (2005) Yield variation in organic winter wheat: a diagnostic study in the Southeast of France. Agron Sustain Develop 25:213–223

    Article  Google Scholar 

  • Desclaux D (2005) Participatory plant breeding methods for organic cereals. In: E.T. Lammerts Van Bueren and H. Ostergard (eds.), Proceedings of the COST SUSVAR/ECO-PB workshop on organic plant breeding strategies and the use of molecular markers, Driebergen (NK), pp. 17–23

    Google Scholar 

  • Desclaux D, Nolot JM, Chiffoleau Y, Gozé G, Leclerc C (2008) Changes in the concept of genotype x environment interactions to fit agriculture diversification and participatory plant breeding: pluridisciplinary point of view. Euphytica 163:533–546

    Article  Google Scholar 

  • Devau N, Le Cadre E, Hinsinger P, Colomb B, Gérard F (2011) Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils. Geochim Cosmochim Acta 75:2980–2996

    Article  CAS  Google Scholar 

  • Dunbabin VM, McDermott S, Bengough AG (2006) Upscaling from rhizosphere to whole root system: Modelling the effects of phospholipid surfactants on water and nutrient uptake. Plant Soil 283:57–72

    Article  CAS  Google Scholar 

  • Fardeau J-C, Morel C, Boniface R (1988) Pourquoi choisir la méthode Olsen pour estimer le phosphore “assimilable” des sols? Agronomie 8:577–584

    Article  Google Scholar 

  • Fowler S, Waston CA, Wilman D (1993) N, P and K on organic farms - Herbage and cereal production, purchases and sales. J Agric Sci 120:353–360

    Article  CAS  Google Scholar 

  • Freeman JS, Rowell DL (1981) The adsorption and precipitation of phosphate onto calcite. J Soil Sci 32:75–84

    Article  CAS  Google Scholar 

  • Frossard E, Condron LM, Oberson A, Sinaj S, Fardeau JC (2000) Processes governing phosphorus availability in temperate soils. J Environ Qual 29:12–53

    Article  Google Scholar 

  • Gahoonia TS, Nielsen NE (2004a) Barley genotypes with long root hairs sustain high grain yields in low-P field. Plant Soil 262:55–62

    Article  CAS  Google Scholar 

  • Gahoonia TS, Nielsen NE (2004b) Root traits as tools for creating phosphorus efficient crop varieties. Plant Soil 260:47–57

    Article  Google Scholar 

  • Gahoonia TS, Nielsen NE, Joshi PA, Jahoor A (2001) A root hairless barley mutant for elucidating genetic of root hairs and phosphorus uptake. Plant Soil 235:211–219

    Article  CAS  Google Scholar 

  • Ge Z, Rubio G, Lynch JP (2000) The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: results from a geometric simulation model. Plant Soil 218:159–171

    Article  PubMed  CAS  Google Scholar 

  • Guppy CN, McLaughlin MJ (2009) Options for increasing the biological cycling of phosphorus in low-input and organic agricultural systems. Crops Pasture Sci 60:116–123

    Article  CAS  Google Scholar 

  • Haileslassie A, Priess JA, Veldkamp E, Lesschen JP (2007) Nutrient flows and balances at the field and farm scale: exploring effects of land-use strategies and access to resources. Agric Sys 94:459–470

    Article  Google Scholar 

  • Harmsen J, Rulkens W, Eijsackers H (2005) Bioavailability: concept for understanding or tool for predicting? Land Contamin Reclam 13:161–171

    Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1993) Mycorrhizal dependence of modern wheat cultivars and ancestors—a synthesis. Can J Bot 71:512–518

    Article  Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1996) Mycorrhizal response in wheat cultivars: Relationship to phosphorus. Can J Bot 74:19–25

    Article  CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hinsinger P, Betencourt E, Bernard L, Brauman A, Plassard C, Shen JB, Tang YY, Zhang FS (2011a) P for two, sharing a scarce resource—Soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol 156:1078–1086

    Article  CAS  Google Scholar 

  • Hinsinger P, Brauman A, Devau N, Gerard F, Jourdan C, Laclau JP, Le Cadre E., Jaillard B, Plassard C (2011b) Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail? Plant Soil 348:29–61

    Article  CAS  Google Scholar 

  • Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168:293–303

    Article  PubMed  CAS  Google Scholar 

  • Horst WJ, Kamh M, Jibrin JM, Chude VO (2001) Agronomic measures for increasing P availability to crops. Plant Soil 237:211–223

    Article  CAS  Google Scholar 

  • Ismail AM, Heuer S, Thomson JT, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65:547–570

    Article  PubMed  CAS  Google Scholar 

  • ITAB (2011) Rotations en grandes cultures biologiques sans élevage: 8 fermes types, 11 rotations; repères agronomiques, économiques, techniques et environnementaux., CAS-DAR 7055 RotAB, Paris

    Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum l.1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380

    Article  CAS  Google Scholar 

  • Jasinski SM (2011) Phosphate rock, USGS

    Google Scholar 

  • Kamh M, Horst WJ, Amer F, Mostafa H, Maier P (1999) Mobilization of soil and fertilizer phosphate by cover crops. Plant Soil 211:19–27

    Article  CAS  Google Scholar 

  • Kirchmann H, Kätterer T, Bergström L (2008) Nutrient supply in organic agriculture: plant availability, sources and recycling. In: Kirchmann H, Bergström L (eds.) Organic crop production: ambitions and limitations. Springer, Dordrecht, The Netherlands, pp 89–116

    Chapter  Google Scholar 

  • Kizewski F, Liu YT, Morris A, Hesterberg D (2011) Spectroscopic Approaches for Phosphorus Speciation in Soils and Other Environmental Systems. J Environ Qual 40:751–776

    Article  PubMed  CAS  Google Scholar 

  • Kucey RMN, Janzen, H.H. and Leggett mE (1989) Microbially mediated increases in plant-available phosphorus. Adv Agron 42:199–228

    Article  CAS  Google Scholar 

  • Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci USA 104:11192–11196

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lindsay WL, Vlek PLG, Chien SH (1989) Phosphate minerals. In: J.B. Dixon and S.B. Weed (Editors), Minerals in soil environment, 2nd edn. Soil Science Society of America, Madison, pp. 1089–1130

    Google Scholar 

  • Loes A-K, Ogaard AF (2001) Long-term changes in extractable soil phosphorus (P) in organic dairy farming systems. Plant Soil 237:321–332

    Article  CAS  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  PubMed  Google Scholar 

  • Mäder P, Kaiser F, Adholeya A, Singh R, Uppal HS, Sharma AK, Srivastava R, Sahai V, Aragno M, Wiemken A, Johri BN, Fried PM (2011) Inoculation of root microorganisms for sustainable wheat-rice and wheat-black gram rotations in India. Soil Biol Biochem 43:609–619

    Article  Google Scholar 

  • Malezieux E, CrozatY, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, de Tourdonnet S, Valantin-Morison M (2009) Mixing plant species in cropping systems: concepts, tools and models. A review. Agronomy Sustain Develop 29:43–62

    Article  Google Scholar 

  • McNeill AM, Penfold CM (2009) Agronomic management options for phosphorus in Australian dryland organic and low-input. Crops Pasture Sci 60:163–182

    Article  CAS  Google Scholar 

  • Messiga AJ, Ziadi N, Bélanger G, Morel C (2012) Process-based mass-balance modelling of soil phosphorus availability in a grassland fertilized with N and P. Nutr Cycl Agroecosyst 92:273–287

    Article  CAS  Google Scholar 

  • Modin-Edman A-K, Öborn I, Sverdrup H (2007) FARMFLOW—A dynamic model for phosphorus mass flow, simulating conventional and organic management of a Swedish dairy farm. Agric Syst 94:431–444

    Article  Google Scholar 

  • Mollier A, de Willigen P, Heinen M, Morel C, Schneider A, Pellerin S (2008) A two dimensional simulation model of phosphorus uptake including crop growth and P-response. Ecological Modelling 210:453–464

    Article  Google Scholar 

  • Morel C (2002) Caractérisation de la phytodisponibilité du P du sol par la modélisation du transfert des ions phosphate entre le sol et la solution. HDR Thesis, INPL-ENSAIA, Nancy, France, 80p

    Google Scholar 

  • Nelson NO, Janke RR (2007) Phosphorus sources and management in organic production systems. Hort Technology 17(4):442–454

    CAS  Google Scholar 

  • Nesme T, Toublant M, Mollier A, Morel C, Pellerin S (2012) Assessing phosphorus management among organic farming systems: a farm input, output and budget analysis in Southwestern France. Nutr Cycl Agroecosyst 92:225–236

    Article  Google Scholar 

  • Nielsen AH, Kristensen IS (2005) Nitrogen and phosphorus surpluses on Danish dairy and pig farms in relation to farm characteristics. Livestock Prod Sci 96:97–107

    Article  Google Scholar 

  • Oberson A, Besson JM, Maire N, Sticher H (1996) Microbiological processes in soil organic phosphorus transformations in conventional and biological cropping systems. Biol Fertil Soils 21:138–148

    Article  CAS  Google Scholar 

  • Oehl F, Frossard E, Fliessbach A, Dubois D, Oberson A (2004) Basal organic phosphorus mineralization in soils under different farming systems. Soil Biol Biochem 36:667–675

    Article  CAS  Google Scholar 

  • Oehl F, Oberson A, Tagmann HU, Besson JM, Dubois D, Mader P, Roth HR, Frossard E (2002) Phosphorus budget and phosphorus availability in soils under organic and conventional farming. Nutr Cycl Agroecosyst 62(1):25–35

    Article  CAS  Google Scholar 

  • Oelofse M, Hogh-Jensen H, Abreu LS, Almeida GF, El-Araby A, Hui QY, de Neergaard A (2010) A comparative study of farm nutrient budgets and nutrient flows of certified organic and non-organic farms in China, Brazil and Egypt. Nutr Cycl Agroecosyst 87:455–470

    Article  Google Scholar 

  • Pellerin S, Le Clech B, Morel C, Linères M (2003) Gestion de la fertilité phospho-potassique en agriculture biologique: questions posées et premiers résultats. Compte Rendu de l’Académie d’Agriculture de France, 89(1): 30–34

    Google Scholar 

  • Pierzynski GM, McDowell RW, Sims JT (2005) Chemistry, cycling, and potential movement of inorganic phosphorus in soils. In: J.T. Sims and A.N. Sharpley (Editors), Phosphorus: agriculture and the environment. American Society of Agronomy, Madison, USA, pp. 53–86

    Google Scholar 

  • Raghothama KG, Karthikeyan AS (2005) Phosphate acquisition. Plant Soil 274:37–49

    Article  CAS  Google Scholar 

  • Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol 168:305–312

    Article  PubMed  CAS  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Richardson AE, Barea JM, McNeil AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Richardson SJ, Peltzer DA, Allen RB, McGlone MS, Parfitt RL (2004) Rapid development of P limitation in temperate rainforest along the Franz Joseph soil chronosequence. Oecologia 139:267–276

    Article  PubMed  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Ann. Rev. Plant Physiol. Plant Mol Biol 52:527–560

    CAS  Google Scholar 

  • Smith FA, Smith SE (2011) What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant Soil 348:63–79

    Article  CAS  Google Scholar 

  • Steinshamn H et al (2004) Utilization of nitrogen (N) and phosphorus (P) in an organic dairy farming system in Norway. Agriculture, Ecosystems and. Environment 104:509–522

    CAS  Google Scholar 

  • Thonar C, Schnepf A, Frossard E, Roose T, Jansa J (2011) Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant Soil 339:231–245

    Article  CAS  Google Scholar 

  • Tiessen H (2008) Phosphorus in the global environment. In: P.J. White and J.P. Hammond (eds.), The ecophysiology of plant-Phosphorus interactions. Springer, pp. 1–7

    Google Scholar 

  • Tinker BT, Nye PH (2000) Solute movement in the rhizosphere. Oxford University Press, Oxford

    Google Scholar 

  • Turner BL, Cade-Menun BJ, Westermann DT (2003) Organic phosphorus composition and potential bioavailability in semi-arid arable soils of the Western United States. Soil Sci Soc Am J 67:1168–1179

    Article  CAS  Google Scholar 

  • Van Vuuren DP, Bouwman AF, Beusen AHW (2010) Phosphorus demande for the 1970-2100 period: a scenario analysis of resource depletion. Global Environn Chan 20:428–439

    Article  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Vanlauwe B, Tittonel P, Mukalama J (2006) Within-farm soil fertility gradients affect response of maize to fertiliser application in western Kenya. Nutr Cycl Agroecosyst 76:171–182

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Wakelin SA, Gupta VVSR, Harvey PR, Ryder MH (2007) The effect of Penicillium fungi on plant growth and phosphorus mobilization in neutral to alkaline soils from southern Australia. Can J Microbiol 53:106–115

    Article  PubMed  CAS  Google Scholar 

  • Watson CA, Bengtsson H, Ebbesvik M, Loes AK, Myrbeck A, Salomon E, Schroder J, Stockdale EA (2002) A review of farm-scale nutrient budgets for organic farms as a tool for management of soil fertility. Soil Use Manag 18:264–273

    Article  Google Scholar 

  • Wissuwa M (2005) Combining a modelling with a genetic approach in establishing associations between genetic and physiological effects in relation to phosphorus uptake. Plant Soil 269:57–68

    Article  CAS  Google Scholar 

  • Wissuwa M, Mazzola M, Picard C (2009) Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil 321:409–430

    Article  CAS  Google Scholar 

  • Wivstad M, Salomon E, Spångberg J, Jönsson H (2009) Organic Production - Possibilities to Reduce Eutrophication, Swedish University of Agriculture, Centre for Sustainable Agriculture, Uppsala

    Google Scholar 

  • Wolfe MS, Baresel JP, Desclaux D, Goldringer I, Hoad S, Kovacs G, Loschenberger F, Miedaner T, Ostergard H, van Bueren ETL (2008) Developments in breeding cereals for organic agriculture. Euphytica 163:323–346

    Article  Google Scholar 

  • Yan X, Liao H, Beebe SE, Blair MW, Lynch JP (2004) QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant Soil 265:17–29

    Article  CAS  Google Scholar 

  • Zhu YG, Smith SE, Barritt AR, Smith FA (2001) Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237:249–255

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Nesme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nesme, T., Colomb, B., Hinsinger, P., Watson, C. (2014). Soil Phosphorus Management in Organic Cropping Systems: From Current Practices to Avenues for a More Efficient Use of P Resources. In: Bellon, S., Penvern, S. (eds) Organic Farming, Prototype for Sustainable Agricultures. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7927-3_2

Download citation

Publish with us

Policies and ethics