Skip to main content

Oxidative Modification of Lipoproteins

  • Chapter
  • First Online:
Lipid Hydroperoxide-Derived Modification of Biomolecules

Part of the book series: Subcellular Biochemistry ((SCBI,volume 77))

Abstract

Lipoproteins consist of lipids and apolipoproteins that have functional roles in lipid metabolism. It has been suggested that oxidation of lipoproteins by reactive oxygen species (ROS) may be involved in the inception of various diseases. In particular, the relationship between low-density lipoprotein (LDL) oxidation and atherosclerosis has been studied in great detail. The main target molecules of lipoprotein oxidation are polyunsaturated fatty acid residues of lipids and apolipoproteins. Extensive investigations have characterized oxidative modifications of apolipoprotein B100 (apo B100) in LDL. Furthermore, modifications of apo B100 by oxidized lipids have been confirmed in oxidized LDL and atherosclerotic lesions using immunological techniques. In this chapter, characteristics and oxidation mechanisms of lipoproteins by ROS are described from in vitro and in vivo studies. Oxidative modifications of apo B100 by lipid hydroperoxides, major products of lipid peroxidation at the early stage, are principally reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arai H, Kashiwagi S, Nagasaka Y, Uchida K, Hoshii Y, Nakamura K (1999) Oxidative modification of apolipoprotein E in human very-low-density lipoprotein and its inhibition by glycosaminoglycans. Arch Biochem Biophys 367(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Arai H, Berlett BS, Chock PB, Stadtman ER (2005a) Effect of bicarbonate on iron-mediated oxidation of low-density lipoprotein. Proc Natl Acad Sci U S A 102(30):10472–10477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arai H, Uchida K, Nakamura K (2005b) Effect of ascorbate on acrolein modification of very low density lipoprotein and uptake of oxidized apolipoprotein E by hepatocytes. Biosci Biotechnol Biochem 69(9):1760–1762

    Article  CAS  PubMed  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2010) Biochemistry, 7th edn. W. H. Freeman and Company, New York

    Google Scholar 

  • Bonnefont D, Legrand A, Peynet J, Emerit J, Delattre J, Galli A (1989) Distribution of thiobarbituric acid-reactive substances in lipoproteins and proteins in serum. Clin Chem 35(10):2054–2058

    CAS  PubMed  Google Scholar 

  • Boren J, Lee I, Zhu W, Arnold K, Taylor S, Innerarity TL (1998) Identification of the low density lipoprotein receptor-binding site in apolipoprotein B100 and the modulation of its binding activity by the carboxyl terminus in familial defective apo-B100. J Clin Invest 101(5):1084–1093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Botti H, Trostchansky A, Batthyany C, Rubbo H (2005) Reactivity of peroxynitrite and nitric oxide with LDL. IUBMB Life 57(6):407–412

    Article  CAS  PubMed  Google Scholar 

  • Burkitt MJ (2001) A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin. Arch Biochem Biophys 394(1):117–135

    Article  CAS  PubMed  Google Scholar 

  • Carr AC, McCall MR, Frei B (2000) Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection. Arterioscler Thromb Vasc Biol 20(7):1716–1723

    Article  CAS  PubMed  Google Scholar 

  • Chau LY (2000) Iron and atherosclerosis. Proc Natl Sci Counc Repub China B 24(4):151–155

    CAS  PubMed  Google Scholar 

  • Darley-Usmar VM, Hogg N, O’Leary VJ, Wilson MT, Moncada S (1992) The simultaneous generation of superoxide and nitric oxide can initiate lipid peroxidation in human low density lipoprotein. Free Radic Res Commun 17(1):9–20

    Article  CAS  PubMed  Google Scholar 

  • Ferns GA, Lamb DJ, Taylor A (1997) The possible role of copper ions in atherogenesis: the Blue Janus. Atherosclerosis 133(2):139–152

    Article  CAS  PubMed  Google Scholar 

  • Francis GA (2000) High density lipoprotein oxidation: in vitro susceptibility and potential in vivo consequences. Biochim Biophys Acta 1483(2):217–235

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga K, Yoshida M, Nakazono N (1998) A simple, rapid, highly sensitive and reproducible quantification method for plasma malondialdehyde by high-performance liquid chromatography. Biomed Chromatogr 12(5):300–303

    Article  CAS  PubMed  Google Scholar 

  • Guha M, Gursky O (2010) Effects of oxidation on structural stability and remodeling of human very low density lipoprotein. Biochemistry 49(44):9584–9593

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, New York

    Google Scholar 

  • Harats D, Mulkins MA, Sigal E (1995) A possible role for 15-lipoxygenase in atherogenesis. Trends Cardiovasc Med 5(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Hatch FT (1968) Practical methods for plasma lipoprotein analysis. Adv Lipid Res 6:1–68

    CAS  PubMed  Google Scholar 

  • Hazell LJ, van den Berg JJ, Stocker R (1994) Oxidation of low-density lipoprotein by hypochlorite causes aggregation that is mediated by modification of lysine residues rather than lipid oxidation. Biochem J 302(Pt 1):297–304

    CAS  PubMed  Google Scholar 

  • Heinecke JW (1997) Pathways for oxidation of low density lipoprotein by myeloperoxidase: tyrosyl radical, reactive aldehydes, hypochlorous acid and molecular chlorine. Biofactors 6(2):145–155

    Article  CAS  PubMed  Google Scholar 

  • Heinecke JW (2007) The role of myeloperoxidase in HDL oxidation and atherogenesis. Curr Atheroscler Rep 9(4):249–251

    Article  CAS  PubMed  Google Scholar 

  • Heinecke JW, Baker L, Rosen H, Chait A (1986) Superoxide-mediated modification of low density lipoprotein by arterial smooth muscle cells. J Clin Invest 77(3):757–761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hevonoja T, Pentikainen MO, Hyvonen MT, Kovanen PT, Ala-Korpela M (2000) Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochim Biophys Acta 1488(3):189–210

    Article  CAS  PubMed  Google Scholar 

  • Hirayama S, Miida T (2012) Small dense LDL: an emerging risk factor for cardiovascular disease. Clin Chim Acta 414:215–224

    Article  CAS  PubMed  Google Scholar 

  • Hisaka S, Kato Y, Kitamoto N, Yoshida A, Kubushiro Y, Naito M, Osawa T (2009) Chemical and immunochemical identification of propanoyllysine derived from oxidized n-3 polyunsaturated fatty acid. Free Radic Biol Med 46(11):1463–1471

    Article  CAS  PubMed  Google Scholar 

  • Itabe H (2009) Oxidative modification of LDL: its pathological role in atherosclerosis. Clin Rev Allergy Immunol 37(1):4–11

    Article  CAS  PubMed  Google Scholar 

  • Itabe H, Takeshima E, Iwasaki H, Kimura J, Yoshida Y, Imanaka T, Takano T (1994) A monoclonal antibody against oxidized lipoprotein recognizes foam cells in atherosclerotic lesions. Complex formation of oxidized phosphatidylcholines and polypeptides. J Biol Chem 269(21):15274–15279

    CAS  PubMed  Google Scholar 

  • Itabe H, Yamamoto H, Suzuki M, Kawai Y, Nakagawa Y, Suzuki A, Imanaka T, Takano T (1996) Oxidized phosphatidylcholines that modify proteins. Analysis by monoclonal antibody against oxidized low density lipoprotein. J Biol Chem 271(52):33208–33217

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Osawa T (1998) Detection of oxidized phospholipid-protein adducts using anti-15-hydroperoxyeicosatetraenoic acid-modified protein antibody: contribution of esterified fatty acid-protein adduct to oxidative modification of LDL. Arch Biochem Biophys 351(1):106–114

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Osawa T (2010) Detection of lipid-lysine amide-type adduct as a marker of PUFA oxidation and its applications. Arch Biochem Biophys 501(2):182–187

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Makino Y, Osawa T (1997) Characterization of a specific polyclonal antibody against 13-hydroperoxyoctadecadienoic acid-modified protein: formation of lipid hydroperoxide-modified apoB-100 in oxidized LDL. J Lipid Res 38(7):1334–1346

    CAS  PubMed  Google Scholar 

  • Kato Y, Mori Y, Makino Y, Morimitsu Y, Hiroi S, Ishikawa T, Osawa T (1999) Formation of Nepsilon-(hexanonyl)lysine in protein exposed to lipid hydroperoxide. A plausible marker for lipid hydroperoxide-derived protein modification. J Biol Chem 274(29):20406–20414

    Article  CAS  PubMed  Google Scholar 

  • Kawai Y, Kato Y, Fujii H, Makino Y, Mori Y, Naito M, Osawa T (2003a) Immunochemical detection of a novel lysine adduct using an antibody to linoleic acid hydroperoxide-modified protein. J Lipid Res 44(6):1124–1131

    Article  CAS  PubMed  Google Scholar 

  • Kawai Y, Saito A, Shibata N, Kobayashi M, Yamada S, Osawa T, Uchida K (2003b) Covalent binding of oxidized cholesteryl esters to protein: implications for oxidative modification of low density lipoprotein and atherosclerosis. J Biol Chem 278(23):21040–21049

    Article  CAS  PubMed  Google Scholar 

  • Kawai Y, Fujii H, Kato Y, Kodama M, Naito M, Uchida K, Osawa T (2004) Esterified lipid hydroperoxide-derived modification of protein: formation of a carboxyalkylamide-type lysine adduct in human atherosclerotic lesions. Biochem Biophys Res Commun 313(2):271–276

    Article  CAS  PubMed  Google Scholar 

  • Kawai Y, Fujii H, Okada M, Tsuchie Y, Uchida K, Osawa T (2006) Formation of Nepsilon-(succinyl)lysine in vivo: a novel marker for docosahexaenoic acid-derived protein modification. J Lipid Res 47(7):1386–1398

    Article  CAS  PubMed  Google Scholar 

  • Keidar S, Kaplan M, Rosenblat M, Brook GJ, Aviram M (1992) Apolipoprotein E and lipoprotein lipase reduce macrophage degradation of oxidized very-low-density lipoprotein (VLDL), but increase cellular degradation of native VLDL. Metabolism 41(11):1185–1192

    Article  CAS  PubMed  Google Scholar 

  • Kim JG, Sabbagh F, Santanam N, Wilcox JN, Medford RM, Parthasarathy S (1997) Generation of a polyclonal antibody against lipid peroxide-modified proteins. Free Radic Biol Med 23(2):251–259

    Article  CAS  PubMed  Google Scholar 

  • Levine RL, Wehr N, Williams JA, Stadtman ER, Shacter E (2000) Determination of carbonyl groups in oxidized proteins. Methods Mol Biol 99:15–24

    CAS  PubMed  Google Scholar 

  • Levitan I, Volkov S, Subbaiah PV (2010) Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal 13(1):39–75

    Article  CAS  PubMed  Google Scholar 

  • Malle E, Marsche G, Panzenboeck U, Sattler W (2006) Myeloperoxidase-mediated oxidation of high-density lipoproteins: fingerprints of newly recognized potential proatherogenic lipoproteins. Arch Biochem Biophys 445(2):245–255

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa T, Fujimoto K, Oikawa S (1990) Determination of lipid hydroperoxides in low density lipoprotein from human plasma using high performance liquid chromatography with chemiluminescence detection. Biomed Chromatogr 4(3):131–134

    Article  CAS  PubMed  Google Scholar 

  • Nordestgaard BG, Chapman MJ, Ray K, Boren J, Andreotti F, Watts GF, Ginsberg H, Amarenco P, Catapano A, Descamps OS, Fisher E, Kovanen PT, Kuivenhoven JA, Lesnik P, Masana L, Reiner Z, Taskinen MR, Tokgozoglu L, Tybjaerg-Hansen A (2010) Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J 31(23):2844–2853

    Article  CAS  PubMed  Google Scholar 

  • Palinski W, Horkko S, Miller E, Steinbrecher UP, Powell HC, Curtiss LK, Witztum JL (1996) Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. J Clin Invest 98(3):800–814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patel RP, Darley-Usmar VM (1999) Molecular mechanisms of the copper dependent oxidation of low-density lipoprotein. Free Radic Res 30(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Podrez EA, Abu-Soud HM, Hazen SL (2000) Myeloperoxidase-generated oxidants and atherosclerosis. Free Radic Biol Med 28(12):1717–1725

    Article  CAS  PubMed  Google Scholar 

  • Requena JR, Levine RL, Stadtman ER (2003) Recent advances in the analysis of oxidized proteins. Amino Acids 25(3–4):221–226

    Article  CAS  PubMed  Google Scholar 

  • Rubbo H, Trostchansky A, Botti H, Batthyany C (2002) Interactions of nitric oxide and peroxynitrite with low-density lipoprotein. Biol Chem 383(3–4):547–552

    CAS  PubMed  Google Scholar 

  • Sayre LM, Lin D, Yuan Q, Zhu X, Tang X (2006) Protein adducts generated from products of lipid oxidation: focus on HNE and one. Drug Metab Rev 38(4):651–675

    Article  CAS  PubMed  Google Scholar 

  • Segrest JP, Jones MK, De Loof H, Dashti N (2001) Structure of apolipoprotein B-100 in low density lipoproteins. J Lipid Res 42(9):1346–1367

    CAS  PubMed  Google Scholar 

  • Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25(3–4):207–218

    Article  CAS  PubMed  Google Scholar 

  • Stanbro WD (2000) Modeling the interaction of peroxynitrite with low-density lipoproteins. II: reaction/diffusion model of peroxynitrite in low-density lipoprotein particles. J Theor Biol 205(3):465–471

    Article  CAS  PubMed  Google Scholar 

  • Steinberg D (2009) The LDL modification hypothesis of atherogenesis: an update. J Lipid Res 50(Suppl):S376–S381

    PubMed  Google Scholar 

  • Steinbrecher UP (1988) Role of superoxide in endothelial-cell modification of low-density lipoproteins. Biochim Biophys Acta 959(1):20–30

    Article  CAS  PubMed  Google Scholar 

  • Thomas JP, Kalyanaraman B, Girotti AW (1994) Involvement of preexisting lipid hydroperoxides in Cu(2+)-stimulated oxidation of low-density lipoprotein. Arch Biochem Biophys 315(2):244–254

    Article  CAS  PubMed  Google Scholar 

  • Uchida K (2003) Histidine and lysine as targets of oxidative modification. Amino Acids 25(3–4):249–257

    Article  CAS  PubMed  Google Scholar 

  • Uchida K, Toyokuni S, Nishikawa K, Kawakishi S, Oda H, Hiai H, Stadtman ER (1994) Michael addition-type 4-hydroxy-2-nonenal adducts in modified low-density lipoproteins: markers for atherosclerosis. Biochemistry 33(41):12487–12494

    Article  CAS  PubMed  Google Scholar 

  • Uchida K, Sakai K, Itakura K, Osawa T, Toyokuni S (1997) Protein modification by lipid peroxidation products: formation of malondialdehyde-derived N(epsilon)-(2-propenol)lysine in proteins. Arch Biochem Biophys 346(1):45–52

    Article  CAS  PubMed  Google Scholar 

  • Uchida K, Kanematsu M, Morimitsu Y, Osawa T, Noguchi N, Niki E (1998) Acrolein is a product of lipid peroxidation reaction. Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins. J Biol Chem 273(26):16058–16066

    Article  CAS  PubMed  Google Scholar 

  • Vance DE, Vance JE (2008) Biochemistry of lipids, lipoproteins and membranes, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  • Wang M, Briggs MR (2004) HDL: the metabolism, function, and therapeutic importance. Chem Rev 104(1):119–137

    Article  CAS  PubMed  Google Scholar 

  • Wittwer J, Hersberger M (2007) The two faces of the 15-lipoxygenase in atherosclerosis. Prostaglandins Leukot Essent Fatty Acids 77(2):67–77

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Kagota S, Kunitomo M, Haginaka J (1999) High-performance liquid chromatographic assay of hydroperoxide levels in oxidatively modified lipoproteins. J Chromatogr B 731(2):223–229

    Article  CAS  Google Scholar 

  • Yamaguchi Y, Kunitomo M, Haginaka J (2002) Assay methods of modified lipoproteins in plasma. J Chromatogr B 781(1–2):313–330

    Article  CAS  Google Scholar 

  • Yamashita H, Nakamura A, Noguchi N, Niki E, Kuhn H (1999) Oxidation of low density lipoprotein and plasma by 15-lipoxygenase and free radicals. FEBS Lett 445(2–3):287–290

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Kisugi R (2010) Mechanisms of LDL oxidation. Clin Chim Acta 411(23–24):1875–1882

    Article  CAS  PubMed  Google Scholar 

  • Yuan XM, Brunk UT (1998) Iron and LDL-oxidation in atherogenesis. APMIS 106(9):825–842

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Arai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Arai, H. (2014). Oxidative Modification of Lipoproteins. In: Kato, Y. (eds) Lipid Hydroperoxide-Derived Modification of Biomolecules. Subcellular Biochemistry, vol 77. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7920-4_9

Download citation

Publish with us

Policies and ethics