Skip to main content

Role of Lipid Peroxide in the Neurodegenerative Disorders

  • Chapter
  • First Online:
Lipid Hydroperoxide-Derived Modification of Biomolecules

Part of the book series: Subcellular Biochemistry ((SCBI,volume 77))

Abstract

Nervous system controls all the organs in the living like a symphony. In this chapter, the mechanism of neuronal death in aged is discussed in relation to oxidative stress. Polyunsaturated fatty acid (PUFA) is known to be rich in the membranous component of the neurons and plays an important role in maintaining the neuronal functions. Recent reports revealed that oxidation of omega-3 and omega-6 PUFAs, such as docosahexaenoic acid (DHA) and arachidonic acid (ARA), are potent antioxidant but simultaneously, their oxidation products are potentially toxic. In this chapter, the existence of early oxidation products of PUFA is examined in the samples from neurodegenerative disorders and the cellular model. Accumulation of proteins with abnormal conformation is suggested to induce neuronal death by disturbance of proteolysis and mitochondrial function. The role of lipid peroxide and lipid-derived aldehyde adduct proteins is discussed in relation to brain ageing and age-related neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baur JA (2010) Resveratrol, sirtuins, and the promise of a DR mimetic. Mech Ageing Dev 131:261–269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bazan NG, Molina MF, Gordon WC (2011) Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases. Annu Rev Nutr 31:321–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berman DR, Mozurkewich E, Liu Y, Barks J (2009) Docosahexaenoic acid pretreatment confers neuroprotection in a rat model of perinatal cerebral hypoxia-ischemia. Am J Obstet Gynecol 200(305):e301–e306

    Google Scholar 

  • Carlsson A (1978) Age-dependent changes in central dopaminergic and other monoaminergic systems. Adv Exp Med Biol 113:1–13

    Article  CAS  PubMed  Google Scholar 

  • Carrillo MC, Minami C, Kitani K, Maruyama W, Ohashi K, Yamamoto T, Naoi M, Kanai S, Youdim MB (2000) Enhancing effect of rasagiline on superoxide dismutase and catalase activities in the dopaminergic system in the rat. Life Sci 67:577–585

    Article  CAS  PubMed  Google Scholar 

  • Dalfo E, Portero-Otin M, Ayala V, Martinez A, Pamplona R, Ferrer I (2005) Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J Neuropathol Exp Neurol 64:816–830

    Article  CAS  PubMed  Google Scholar 

  • Eady TN, Belayev L, Khoutorova L, Atkins KD, Zhang C, Bazan NG (2012) Docosahexaenoic acid signaling modulates cell survival in experimental ischemic stroke penumbra and initiates long-term repair in young and aged rats. PLoS One 7:e46151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Exner N, Lutz AK, Haass C, Winklhofer KF (2012) Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J 31:3038–3062

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Ito M, Nozawa Y, Yoneda M, Oshida Y, Tanaka M (2007) CHOP (C/EBP homologous protein) and ASNS (asparagine synthetase) induction in cybrid cells harboring MELAS and NARP mitochondrial DNA mutations. Mitochondrion 7:80–88

    Article  CAS  PubMed  Google Scholar 

  • Gleissman H, Yang R, Martinod K, Lindskog M, Serhan CN, Johnsen JI, Kogner P (2010) Docosahexaenoic acid metabolome in neural tumors: identification of cytotoxic intermediates. FASEB J 24:906–915

    Article  CAS  PubMed  Google Scholar 

  • Glozman S, Green P, Yavin E (1998) Intraamniotic ethyl docosahexaenoate administration protects fetal rat brain from ischemic stress. J Neurochem 70:2484–2491

    Article  CAS  PubMed  Google Scholar 

  • Hisaka S, Kato Y, Kitamoto N, Yoshida A, Kubushiro Y, Naito M, Osawa T (2009) Chemical and immunochemical identification of propanoyllysine derived from oxidized n-3 polyunsaturated fatty acid. Free Radic Biol Med 46:1463–1471

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Osawa T (2010) Detection of lipid-lysine amide-type adduct as a marker of PUFA oxidation and its applications. Arch Biochem Biophys 501:182–187

    Article  CAS  PubMed  Google Scholar 

  • Kawai Y, Fujii H, Okada M, Tsuchie Y, Uchida K, Osawa T (2006) Formation of Nepsilon-(succinyl)lysine in vivo: a novel marker for docosahexaenoic acid-derived protein modification. J Lipid Res 47:1386–1398

    Article  CAS  PubMed  Google Scholar 

  • Kitani K, Yokozawa T, Osawa T (2004) Interventions in aging and age-associated pathologies by means of nutritional approaches. Ann N Y Acad Sci 1019:424–426

    Article  CAS  PubMed  Google Scholar 

  • Knoll J (1988) The striatal dopamine dependency of life span in male rats. Longevity study with (−)deprenyl. Mech Ageing Dev 46:237–262

    Article  CAS  PubMed  Google Scholar 

  • Maruyama W, Naoi M (2013) “70th Birthday Professor Riederer” Induction of glial cell line-derived and brain-derived neurotrophic factors by rasagiline and (−)deprenyl: a way to a disease-modifying therapy? J Neural Transm 120:83–89

    Article  CAS  PubMed  Google Scholar 

  • Maruyama W, Akao Y, Carrillo MC, Kitani K, Youdium MB, Naoi M (2002) Neuroprotection by propargylamines in Parkinson’s disease: suppression of apoptosis and induction of prosurvival genes. Neurotoxicol Teratol 24:675–682

    Article  CAS  PubMed  Google Scholar 

  • Maruyama W, Nitta A, Shamoto-Nagai M, Hirata Y, Akao Y, Yodim M, Furukawa S, Nabeshima T, Naoi M (2004) N-Propargyl-1 (R)-aminoindan, rasagiline, increases glial cell line-derived neurotrophic factor (GDNF) in neuroblastoma SH-SY5Y cells through activation of NF-kappaB transcription factor. Neurochem Int 44:393–400

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Magnus T (2006) Ageing and neuronal vulnerability. Nat Rev Neurosci 7:278–294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morgan-Hughes JA, Hayes DJ, Clark JB, Landon DN, Swash M, Stark RJ, Rudge P (1982) Mitochondrial encephalomyopathies: biochemical studies in two cases revealing defects in the respiratory chain. Brain 105(Pt 3):553–582

    Article  PubMed  Google Scholar 

  • Naoi M, Maruyama W (2009) Functional mechanism of neuroprotection by inhibitors of type B monoamine oxidase in Parkinson’s disease. Expert Rev Neurother 9:1233–1250

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W (2010) Monoamine oxidase inhibitors as neuroprotective agents in age-dependent neurodegenerative disorders. Curr Pharm Des 16:2799–2817

    Article  CAS  PubMed  Google Scholar 

  • Orimo S, Oka T, Miura H, Tsuchiya K, Mori F, Wakabayashi K, Nagao T, Yokochi M (2002) Sympathetic cardiac denervation in Parkinson’s disease and pure autonomic failure but not in multiple system atrophy. J Neurol Neurosurg Psychiatry 73:776–777

    Article  CAS  PubMed  Google Scholar 

  • Qin Z, Hu D, Han S, Reaney SH, Di Monte DA, Fink AL (2007) Effect of 4-hydroxy-2-nonenal modification on alpha-synuclein aggregation. J Biol Chem 282:5862–5870

    Article  CAS  PubMed  Google Scholar 

  • Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695

    Article  CAS  PubMed  Google Scholar 

  • Shamoto-Nagai M, Maruyama W, Hashizume Y, Yoshida M, Osawa T, Riederer P, Naoi M (2007) In Parkinsonian substantia nigra, alpha-synuclein is modified by acrolein, a lipid-peroxidation product, and accumulates in the dopamine neurons with inhibition of proteasome activity. J Neural Transm 114:1559–1567

    Article  CAS  PubMed  Google Scholar 

  • Shamoto-Nagai M, Hisaka S, Akao Y, Osawa T, Naoi M, Maruyama W (in preparation) A membrane-component, docosahexaenoic acid induces neuronal cell death with accumulation of abnormal-synuclein modified by lipid-peroxides: its relevance to the pathogenesis of Parkinson disease

    Google Scholar 

  • Wurtman RJ, Cansev M, Sakamoto T, Ulus I (2010) Nutritional modifiers of aging brain function: use of uridine and other phosphatide precursors to increase formation of brain synapses. Nutr Rev 68(Suppl 2):S88–S101

    Article  PubMed Central  PubMed  Google Scholar 

  • Xiang L, Nakamura Y, Lim YM, Yamasaki Y, Kurokawa-Nose Y, Maruyama W, Osawa T, Matsuura A, Motoyama N, Tsuda L (2011) Tetrahydrocurcumin extends life span and inhibits the oxidative stress response by regulating the FOXO forkhead transcription factor. Aging (Albany NY) 3:1098–1109

    CAS  Google Scholar 

  • Yakunin E, Loeb V, Kisos H, Biala Y, Yehuda S, Yaari Y, Selkoe DJ, Sharon R (2012) Alpha-synuclein neuropathology is controlled by nuclear hormone receptors and enhanced by docosahexaenoic acid in a mouse model for Parkinson’s disease. Brain Pathol 22:280–294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yavin E, Glozman S, Green P (2001) Docosahexaenoic acid accumulation in the prenatal brain: prooxidant and antioxidant features. J Mol Neurosci 16:229–235; discussion 279–284

    Article  CAS  PubMed  Google Scholar 

  • Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci USA 93:2696–2701

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Research Funding for Longevity Sciences (23–2) from National Center for Geriatrics and Gerontology (NCGG) and Grant-in-Aid for Scientific Research (A) (Grant Number 24248024) from JSPS (W. M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wakako Maruyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maruyama, W., Shaomoto-Nagai, M., Kato, Y., Hisaka, S., Osawa, T., Naoi, M. (2014). Role of Lipid Peroxide in the Neurodegenerative Disorders. In: Kato, Y. (eds) Lipid Hydroperoxide-Derived Modification of Biomolecules. Subcellular Biochemistry, vol 77. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7920-4_11

Download citation

Publish with us

Policies and ethics