Skip to main content

Insecticides: Impact on the Environment and Human Health

  • Chapter
  • First Online:
Environmental Deterioration and Human Health

Abstract

Insecticides have saved millions of human and animal lives since the date of their synthesis and use. They have played an important role that brought revolution in the field of agriculture and human health on control of insect pests of crops and vector-borne diseases. More than 80,000 chemical substances are now commercially available in agriculture and industry. About 4.6 million t of pesticides are applied into the environment and insecticides accounted for the largest portion of total use in the world to increase the productivity of food and fibre as well as to prevent the incidence of vector-borne diseases.

Insects are the most successful group of animals existing in every segment of environment. They are polyphagous and migratory in nature, with high fecundity and short life span and diapausing (over-wintering) under adverse conditions. Food and fibre crops are damaged by more than 10,000 species of insects, with an estimated annual loss of 13.6 % globally. In human health, more than 3,100 species of mosquitoes, vector of malaria, kill more than 1–3 million people annually. Approximately 40 % of the world’s population lives in areas at risk of malaria and every year about 500 million people become severely ill with malaria. Dengue, the most prevalent mosquito-borne viral disease, is estimated to cause 100 million infections each year, 250,000–500,000 of which are the cause of severe illness.

Despite their importance, insecticides also have negative impact, like toxic residues in food, water, air and soil, resurgence and resistance of insect pests, and effect on non-target organisms. More than 645 species of insects and mites have developed resistance to insecticides with 542 species of arthropods resistant to at least one compound. About 7,470 cases of resistance have been reported in insects to a particular insecticide; 16 species of arthropods accounted for 3,237 (43 %).

The effects of insecticides on human health are more risky because of their exposure either directly or indirectly; yearly, more than 26 million people suffer from pesticide poisoning with nearly 220,000 deaths. Hundreds of millions of people are exposed to pesticides every year, primarily through agriculture: Globally, 36 % of workers are employed in agriculture; this figure is rising to almost 50 % in Southeast Asia and the Pacific and to 66 % in sub-Saharan Africa. However, with all their hazards, the production of insecticides is continuously increasing in the international trade. Global pesticide use reached record sales of US$ 40 billion in 2008.

We are continuously facing the challenges to decrease the incidence of insect pests and vectors to maintain a safe environment for future generations. Therefore, concerted global efforts shall be made to achieve this goal by safer alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abhilash PC, Singh N (2009) Pesticide use and application: an Indian scenario. J Hazar Mater 165(1–3):1–12

    CAS  Google Scholar 

  • Ahmad M, Sayyed AH, Saleem MA (2008) Evidence for field evolved resistance to newer insecticides in Spodoptera litura (Lepidoptera: Noctuidae) from Pakistan. Crop Protect 27:1367–1372

    CAS  Google Scholar 

  • Ahmad N, Ansari MS, Nazrussalam (2012) Effect of neemarin on life table indices of Plutella xylostella (L.). Crop Protect 38:7–14

    CAS  Google Scholar 

  • Ahmad S, Ansari MS (2013) Acute toxicity and sublethal effects of a pyrethroid (cypermethrin) on survival, development and fitness of Helicoverpa armigera, Arch Phytopath Plant Protect. doi:10.1080/03235408.2013.774809

    Google Scholar 

  • Ahmad S, Ansari MS, Moraiet MA (2013) Demographic changes in Helicoverpa armigera after exposure to neemazal (1 % EC azadirachtin). Crop Protect 50:30–36

    CAS  Google Scholar 

  • Ali MH (2011) Pollution of water resources from agricultural fields and its control. Pract Irrig On-farm Water Manag 2:241–269

    Google Scholar 

  • Anjum R, Malik A (2013) Evaluation of mutagenicity of wastewater in the vicinity of pesticide industry. Environ Toxicol Pharmacol 35(2):284–291

    CAS  Google Scholar 

  • Anjum R, Rahman M, Masood F, Malik A (2012) Bioremediation of pesticides from soil and wastewater. In: Malik A, Grohmann E (eds) Environ Prot Strateg Sustain Dev. Springer, Netherlands, pp 295–328

    Google Scholar 

  • Anonymous (1984) US EPA, United States Environmental Protection Agency, Pesticide fact sheet number 37: chlorpyrifos. Office of pesticides and toxic substances, Washington, DC

    Google Scholar 

  • Anonymous (1993) Surveillance of food contaminants in India.1993.Report of an ICMR task force study (part 1). In: Toteja GS, Dasgupta, J, Saxena BN, Kalra RL (eds) Indian Council of Medical Research, New Delhi.

    Google Scholar 

  • Anonymous (1999) PANNA, Pesticide Action Network North America, pesticides threaten birds and fish in California. Pesticide Action Network Updates Service (PANUPS). http://www.panna.org/legacy/panups/panup_19990604.dv.html. Accessed on 23 May 2013

  • Anonymous (2009) Committee on Natural Resources, U.S. House Of Representatives, White-Nose Syndrome: What’s killing bats in the Northeast? (House Hearing, 111 Congress) (From the U.S. Government Printing Office). Washington, D.C., First session, Thursday, June 4, 2009, Serial No.111–21.http://www.gpo.gov/fdsys/pkg/CHRG-111hhrg50087/html/CHRG-11hhrg50087.htm. Accessed on 15 May 2013

  • Anonymous (2012a) PECBMS, Pan-European Common Bird Monitoring Scheme (2012) Population trends of common European breeding birds 2012. CSO, Prague. http://www.ebcc.info/wpimages/video/Leaflet2012.pdf. Accessed on 24 May 2013

  • Anonymous (2012b) Ceresana Research (2012) market study: crop protection (UC-2805). June 2012. 837. http://www.ceresana.com/upload/Marktstudien/brochueren/Ceresana_Brochure_Market_Study_Crop_Protection.pdf. Accessed on 20 April 2013

  • Ansari MI, Malik A (2009) Genotoxicity of wastewaters used for irrigation of food crops. Environ Toxicol 24(2):103–115

    CAS  Google Scholar 

  • Ansari MS, Ahmad S, Ahmad N, Ahmad T, Hasan F (2013) Microbial insecticides: food security and human health. In: Malik A, Grohmann E, Alves M (eds) Management of microbial resources in the environment. Springer Science+Business Media, The Netherlands

    Google Scholar 

  • Armes NJ, Jadhav DR, De Souza KR (1996) A survey of insecticide resistance in Helicoverpa armigera in the Indian subcontent. Bull Entomol Res 86:499–514

    CAS  Google Scholar 

  • Atreya K, Kumar BS, Bajracharya RM (2012) Pesticide use in agriculture: the philosophy, complexities and opportunities. Sci Res Essays 7(25):2168–2173

    Google Scholar 

  • Avilla C, José E, González-Zamora (2010) Monitoring resistance of Helicoverpa armigera to different insecticides used in cotton in Spain. Crop Protect 29:100–103

    CAS  Google Scholar 

  • Barron MG, Galbraith H, Beltman D (1995) Comparative reproduction and developmental toxicology of birds. Comp Biochem Physiol 112c:1–14

    Google Scholar 

  • Battu RS, Singh B, Kang BK, Joia BS (2005). Risk assessment through dietary intake of total diet contaminated with pesticide residues in Punjab, India, 1999–2002. Ecotoxicol Environ Saf 62(1):132–139

    CAS  Google Scholar 

  • Betancourt AM, Burgess SC, Carr RL (2006) Effect of developmental exposure to chlorpyrifos on the expression of neurotrophin growth factors and cell-specific markers in neonatal rat brain. Toxicol Sci 92(2):500–506

    CAS  Google Scholar 

  • Biesmeijer JC, Roberts SP, M, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354

    CAS  Google Scholar 

  • Bingham S (2007) Pesticides in rivers and groundwater. Environ Agency, UK. Retrieved on 2007-10–12

    Google Scholar 

  • Bishop BA, Grafius EJ (1996) Insecticide resistance in the Colorado potato beetle. In: Jolivet P, Hsiao TH (eds) Chrysomelidae biology, 1. SBP Academic Publishing, Amsterdam

    Google Scholar 

  • Bolognesi C, Merlo FD (2011).Pesticides: human health effects. Encyclop Environ Health, 438–453

    Google Scholar 

  • Borrell A, Cantos G, Pastor T, Aguilar A (2001) Organochlorine compounds in common dolphins (Delphinus delphis) from the Atlantic Mediterranean waters of Spain. Environ Poll 114:265–274

    CAS  Google Scholar 

  • Brickle NW, Harper DGC, Aebischer NJ, Cockayne SH (2000) Effects of agricultural intensification on the breeding success of corn buntings Miliaria calandra. Appl Ecol 37:742–755

    Google Scholar 

  • Bright JA, Morris AJ, Winspear R (2008) A review of indirect effects of pesticides on birds and mitigating land-management practices. RSPB (The Royal Society for the Protection of Birds). Res Rep No 28, p 66

    Google Scholar 

  • Brown DL, Patton CL (2012) Animal poisonings in New York State. J Vet Sci Med Diag 1:2

    Google Scholar 

  • Brown MT, Bryson PK (1992) Selective inhibitors of methyl parathion-resistant acetylcholinesterase from Heliothis virescens. Pestic Biochem Physiol 44:155–164

    CAS  Google Scholar 

  • Brühl CA, Schmidt T, Pieper S, Alscher (2013) Terrestrial pesticide exposure of amphibians: an underestimated cause of global decline? Sci Rep 3, 1135 (online): 2045–2322 http://www.nature.com/srep/2013/130124/srep01135/full/srep01135.html. Accessed on 11 May 2013

  • Brussaard L, Behan-Pelletier VM, Bignell DE, Brown VK, Didden W, Folgarait P, Fragoso C, Freckman DW, Gupta VVSR, Hattori T, Hawksworth DL, Klopatek C, Lavelle P, Malloch DW, Rusek J, Soderstrom B, Tiedje JM, Virginia RA (1997) Biodiversity and ecosystem functioning in soil. Ambio 26:563–570

    Google Scholar 

  • Burke ER, Holden AJ, Shaw IC (2003) A method to determine residue levels of persistent organochlorine pesticides in human milk from Indonesian women. Chemosphere 50(4):529–535

    CAS  Google Scholar 

  • Castillo LE, Martínez E, Ruepert C, Savage C, Gilek M, Pinnock M, Solis E (2006) Water quality and macroinvertebrate community response following pesticide applications in a banana plantation, Limon, Costa Rica. Sci Environ 367(1):418–432

    CAS  Google Scholar 

  • Cohen M (2006) Pesticide-mediated homeostatic modulation in arthropods. Pestic Biochem Physiol 85:21–27

    CAS  Google Scholar 

  • Colborn T, Smolen MJ (1996) Epidemiological analysis of persistent organochlorine contaminants in cetaceans. Rev Environ Contam Toxicol 146:91–172

    CAS  Google Scholar 

  • Costa CJ, Garcia MF, Ferragut F, Laborda R, Roca D, Marzal C (1988) Residual influence of the insecticides butocarboxim, cypermethrin and azinphos-methyl on the biotic potential of Panonychus citri (McGr.), (Acari: Tetranychidae), Boletin de Sanidad Vegetale. Plagas 14:127–140

    Google Scholar 

  • Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health 8:1402–1419

    CAS  Google Scholar 

  • De Silva HJ, Samarawickrema NA, Wickremasinghe AR (2006) Toxicity due to organophosphorus compounds: what about chronic exposure? Trans Royal Soc Trop Med Hyg 100(9):803–806

    CAS  Google Scholar 

  • DeLorenzo ME, Scott GI, Ross PE (2001) Toxicity of pesticides to aquatic microorganisms: a review. Environ Toxic Chem 20(1):84–98

    CAS  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Ann Rev Entomol 52:81–106

    CAS  Google Scholar 

  • Dittrich V, Ernst GH, Ruesch O, Uk S (1990) Resistant mechanism in sweet potato whitefly (Homoptera; Aleyrodidae) populations from Sudan, Turkey, Guatemala and Nicaragua. Econ Entomol 83:1665–1668

    CAS  Google Scholar 

  • Dittrich V, Hassan GH (1985) Ernst Sudanese cotton and the white fly: a case study of the emergence of a new primary pest. Crop Protect 4:161–168

    CAS  Google Scholar 

  • Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc Biol Sci 268(1462):25–29

    Google Scholar 

  • Elzen GW (2001) Lethal and sublethal effects of insecticide residues on Orius insidiosus (Hemiptera, Anthocoridae) and Geocoris punctipes (Hemiptera, Lygaeidae). Econ Entomol 94:55–59

    CAS  Google Scholar 

  • Elzen GW, O’Brien, PJ, Powell JE (1989) Toxic and behavioral effects of selected insecticides on the Heliothis parasitoid, Microplitis croceipes. Entomophaga 34(1):87–94

    CAS  Google Scholar 

  • FAO Food and Agricultural Organization (2012) http://www.fao.org/docrep/016/i3027e/i3027e.pdf. Accessed on 23 November 2013

  • Fenoll J, Ruiz E, Flores P, Hellín P, Navarro S (2011) Reduction of the movement and persistence of pesticides in soil through common agronomic practices. Chemosph 85(8):1375–1382

    CAS  Google Scholar 

  • Frankart C, Eullaffroy P, Vernet G (2003) Comparative effects of four herbicides on non-photochemical fluorescence quenching in Lemna minor. Environ Exptl Bot 49:159–168

    CAS  Google Scholar 

  • Fujiwara YT, Takahashi T, Yoshioka F, Nakasuji (2002) Changes in egg size of the diamondback moth Plutella xylostella (Lepidoptera: Yponomeutidae) treated with fenvalerate at sublethal doses and viability of the eggs. Appl Entomol Zool 37:103–109

    CAS  Google Scholar 

  • Georgiev B, Kesiakova S, Donev N (1980) Effect of organophosphate and organochlorine pesticides on the physical work capacity of rats under a varying temperature regimen. Eksp Med Morfol 19(2):98–104

    CAS  Google Scholar 

  • Gilliom RJ, Barbash JE, Crawford GG, Hamilton PA, Martin JD, Nakagaki N, Nowell LH, Scott JC, Stackelberg PE, Thelin GP, Wolock DM (2007) The quality of our nation’s waters—pesticides in the nation’s streams and ground water, 1992–2001: U.S. Geological Survey Circular 1291:172. http://pubs.usgs.gov/circ/2005/1291/pdf/circ1291.pdf. Accessed on 24 May 2013

  • Grande M, Andersen S, Berge D (1994) Effects of pesticides on fish. Norvegian J Agric Sci 13:195–209

    Google Scholar 

  • Grube A, Donaldson D, Kiely T, Wu L (2011) Pesticides industry sales and usage 2006 and 2007 market estimates. biological and economic analysis division, office of pesticide programs, office of chemical safety and pollution prevention, U.S. Environ Protec Agency Washington, DC 20460, p 41. http://www.epa.gov/opp00001/pestsales/07pestsales/market_estimates2007.pdf

  • Guitart R, Croubels S, Caloni F, Sachana M, Davanzo F, VandenbrouckeV, Berny P (2010) Animal poisoning in Europe part 1: farm livestock and poultry. Vet J 183(3):249–254

    Google Scholar 

  • Hart JD, Milson TP, Fisher G, Wilkins V, Moreby S, Murra AWA, Robertson PA (2006) The relationship between yellowhammer breeding performance, arthropod abundance and insecticide applications on arable farmland. Appl Ecol 43:81–91

    CAS  Google Scholar 

  • Haseeb M, Liu TX, Jones WA (2004) Effects of selected insecticides on Cotesia plutellae, endoparasitoid of Plutella xylostella. BioCont 49:33–46

    CAS  Google Scholar 

  • Hemingway J, Hawkes NJ, McCarroll L, Ranson H (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34:653–665

    CAS  Google Scholar 

  • Hooper DU, Chapin Iii FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monographs 75:3–35

    Google Scholar 

  • Housset P, Dickmann R (2009) A promise fulfilled—pyrethroid development and the benefits for agriculture and human health. Bayer Crop Sci 62(2):135–144

    Google Scholar 

  • Hua J, Relyea RA (2012) East coast vs West coast: effects of an insecticide in communities containing different amphibian assemblages. Freshwater Science 31(3):787–799

    Google Scholar 

  • Itokawa K, Komagata O, Kasai S, Masahiro M, Takashi T (2011) Cis-acting mutation and duplication: history of molecular evolution in a P450 haplotype responsible for insecticide resistance in Culex quinquefasciatus. Insect Biochem Mol Biol 41(7):503–512

    CAS  Google Scholar 

  • Johnson RM, Ellis MD, Mullin CA, Frazier M (2010) Pesticides and honey bee toxicity—USA. Apidologie © INRA/DIB-AGIB/EDP Sciences, pp 1–20. www.apidologie.org

  • Kalaikandhan R, Vijayarengan P, Thamizhiniyan P, Sivasankar R (2012) Impact of the pesticides monocrotophos and quinalphos on the morphological features of red amaranth under arbuscular mycorrhizal fungus inoculation. World J Agric Sci 8(2):212–217

    CAS  Google Scholar 

  • Kammon AM, Brar RS (2012) Ameliorating effects of vitamin E and selenium on immunological alterations induced by imidacloprid chronic toxicity in chickens. J Environ Anal Toxicol S4:S4–007

    Google Scholar 

  • Kannan K, Tanabe S, Ramesh A, Subramanian A, Tatsukawa R (1992) Persistent organochlorine residues in foodstuffs from India and their implications on human dietary exposure. J Agric and. Food Chem 40(3):518–524

    CAS  Google Scholar 

  • Karunakaran CO (1958) The Kerala food poisoning. J Indian Med Assoc 31:204

    CAS  Google Scholar 

  • Kaushik A, Sharma HR, Jain S, Dawra J, Kaushik CP (2010) Pesticide pollution of river Ghaggar in Haryana, India. Environ Monit Assess 160:61–69. doi:10.1007/s10661-008-0657-z

    CAS  Google Scholar 

  • Kaushik CP, Sharma N, Kumar S, Kaushik A (2012) Organochlorine pesticide residues in human blood samples collected from Haryana, India and the changing pattern. Bull Environ Contam Toxicol 89(3):587–591

    CAS  Google Scholar 

  • Kellogg RL, Nehring R, Grube A, Goss DW, Plotkin S (2002) Environmental indicators of pesticide leaching and runoff from farm fields. United States Department of Agriculture Natural Resources conservation service. Agricultural productivity, studies in productivity and efficiency 2:213–256

    Google Scholar 

  • Kole RK, Bagchi MM (1995) Pesticide residues in the aquatic environment and their possible ecological hazards. J Inland Fish Soc India 27(2):79–89

    Google Scholar 

  • Kranthi KR, Jadhav DR, Wanjari RR, Ali SS, Russell D (2001) Carbamate and organophosphate resistance in cotton pests in India, 1995 to 1999. Bull Entomol Res 91:37–46

    CAS  Google Scholar 

  • Lahm GP, Stevenson TM, Selby TP, Freudenberger JH, Cordova D, Flexner L, Bellin CA, Dubas CM, Smith BK, Hughes KA, Hollingshaus JG, Clark CE, Benner EA (2007) Rynaxypyr: A new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator. Bioorg Med Chem Lett 17(22):6274–6279.

    Google Scholar 

  • Lear L (2009) Rachel Carson: witness for nature. Mariner Books; Reprint edition, 688

    Google Scholar 

  • Ledoux M (2011) Analytical methods applied to the determination of pesticide residues in foods of animal origin. A review of the past two decades. J Chromatogr A 1218(8):1021–1036

    CAS  Google Scholar 

  • Liu F, Bao SW, Song Y, Lu H, Y, Xu JX (2010) Effects of imidacloprid on the orientation behavior and parasitizing capacity of Anagrus nilaparvatae, an egg parasitoid of Nilaparvata lugens. BioCont 55(4):473–483

    CAS  Google Scholar 

  • Liu Z, Zhaojun H, Yinchang W, Lingchun W, Hongwei Z, Chengjun L (2003) Selection for imidacloprid resistance in Nilaparvata lugens: cross-resistance patterns and possible mechanisms. Pest Manag Sci 59(12):1355–1359

    CAS  Google Scholar 

  • Luckey TD (1968) Insecticide hormoligosis. Econ Entomol 61:7–12

    CAS  Google Scholar 

  • Maltby L, Hills L (2008) Spray drift of pesticides and stream macroinvertebrates: experimental evidence of impacts and effectiveness of mitigation measures. Environ Poll 156(3):1112–1120

    CAS  Google Scholar 

  • Margni M, Rossier D, Crettaz P, Jolliet O (2002) Life cycle impact assessment of pesticides on human health and ecosystems. Agric Ecosys Environ 93(1):379–392

    CAS  Google Scholar 

  • Martins AJ, Valle D (2012) The pyrethroid knockdown resistance, insecticides—basic and other applications. In: Soloneski S (eds) http://cdn.intechopen.com/pdfs/27797/InTech-The_pyrethroid_knockdown_resistance.pdf. Accessed on 16 November 2013

  • Mason R, Tennekes H, Sánchez-Bayo F, Jepsen PU (2012) Immune suppression by neonicotinoid insecticides at the root of global wildlife declines. J Environ Immunol Toxicol X:X, XX-XX; September/October 2012; STM Publications

    Google Scholar 

  • Mathur SC (1999) Future of Indian pesticides industry in next millennium. Pestic Inform 24(4):9–23

    Google Scholar 

  • Mehboob F, Langenhoff AA, Schraa G, Stams AJ (2013) Anaerobic Degradation of Lindane and Other HCH Isomers. In: Malik A, Grohmann E, Alves M (eds) Management of microbial resources in the environment. Springer Science+Business Media, The Netherlands, pp 495–521

    Google Scholar 

  • Metcalf RL (1994) Insecticides in pest management. In: Metcalf RL, Luckmann WH (eds) Introduction to insect pest management, third edition. Willey, NewYork

    Google Scholar 

  • Metts BS, Hopkins WA, Nestor JP (2005) Interaction of an insecticide with larval density in pond-breeding salamanders (Ambystoma). Freshwater Biol 50:685–696

    CAS  Google Scholar 

  • Mineau P (2005) Direct losses of birds to pesticides—beginnings of a quantification. In: Ralph CJ, Rich TD (eds) Bird conservation implementation and integration in the Americas: Proc 3rd International Partners in Flight Conf 2002, U.S.D.A. Forest Serv GTR-PSW-191, Albany, 2:1065–1070

    Google Scholar 

  • Mineau P, Downes CM, Kirk DA, Bayne E, Csizy M (2005) Patterns of bird species abundance in relation to granular insecticide use in the Canadian prairies. Ecosci 12(2):267–278

    Google Scholar 

  • Mineau P, Palmer C (2013) Neonicotinoid insecticides and birds-the impact of the nation’s most widely used insecticides on birds. Am Bird Conservancy 97

    Google Scholar 

  • Mineau P, Whiteside M (2013) Pesticide acute toxicity is a better correlate of U.S. grassland bird declines than agricultural intensification. PLoS One 8(2):e57457

    CAS  Google Scholar 

  • Mishra K, Sharma RC, Kumar S (2011) Organochlorine pollutants in human blood and their relation with age, gender and habitat from North-east India. Chemosphere 85(3):454–464

    CAS  Google Scholar 

  • Mollah M, Rahman MI, Alam, MM (2012) Toxic effect of some insecticides on predatory lady bird beetles (coleoptera: coccinellidae) in country bean (Lablab purpureus L.) field. World J Zool 7(4):347–350

    Google Scholar 

  • Mueller JF, Harden F, Toms LM, Symons R, Fürst P (2008) Persistent organochlorine pesticides in human milk samples from Australia. Chemosphere 70(4):712–720

    CAS  Google Scholar 

  • Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, VanEngelsdorp D, Pettis JS (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 5(3):9754

    Google Scholar 

  • Nagata K, Huang CS, Hamilton BJ, Carter DB, Narahashi T (1996) Differential effects of hexaclorocyclohexane in Pseudomonas paucimobilis. J Bacteriol 176:3117–3125

    Google Scholar 

  • Nawab A, Aleem A, Malik A (2003) Determination of organochlorine pesticides in agricultural soil with special reference to c-HCH degradation by Pseudomonas strains. Biores Technol 88:41–46

    CAS  Google Scholar 

  • Ngoula F, Watcho P, Dongmo Marie-Chantal, Kenfack A, Kamtchouing P, Tchoumboué J (2007) Effects of pirimiphos-methyl (an organophosphate insecticide) on the fertility of adult male rats. Afr Health Sci 7(1):3–9

    Google Scholar 

  • Palikhe BR (2007) Relationship between pesticide use and climate change for crops. J Agric Enviorn 8:83–91

    Google Scholar 

  • Pawar KS, Bhoite RR, Pillay CP, Chavan SC, Malshikare DS, Garad SG (2006) Continuous pralidoxime infusion versus repeated bolus injection to treat organophosphorus pesticide poisoning: a randomised controlled trial. Lancet 368:2136–2141

    CAS  Google Scholar 

  • Philp RB (2013) Ecosystems and Human Health:Toxicology and Environmental Hazards (third edition). Boca Raton: Taylor and Francis Group, CRC Press, pp 440

    Google Scholar 

  • Pimentel D, Burgess M (2012) Small amounts of pesticides reaching target insects. Environ Dev Sustain 14(1):1–2

    Google Scholar 

  • Popa OM, Trif A, Marin N, Ursu N (2008) Organochlorine pesticides in the black sea dolphins. Lucrări Ştiinłifice Medicină Veterinară, Vol. Xli, Timişoara, pp 768–773

    Google Scholar 

  • Prabhaker N, Morse JG, Castle SJ, Naranjo SE, Henneberry TJ, Toscano NC (2007) Toxicity of seven foliar insecticides to four insect parasitoids attacking citrus and cotton pests. Econ Entomol 100:1053–1061

    CAS  Google Scholar 

  • Preetha G, Stanley J, Suresh S, Samiyappan R (2010) Risk assessment of insecticides used in rice on miridbug, Cyrtorhinus lividipennis reuter, the important predator of brown plant hopper, Nilaparvata lugens (Stal). Chemosphere 80:498–503

    CAS  Google Scholar 

  • Quick MP (1982) Pesticide poisoning of livestock: a review cases investigated. Vet Rec 111(1):5–7

    CAS  Google Scholar 

  • Rafiee-Dastjerdi H, Hassanpour M, Nouri-Ganbalani, Golizadeh GA, Sarmadi S (2012) Sublethal effects of indoxacarb, imidacloprid and deltamethrin on life table parameters of Habrobracon hebetor (Hymenoptera:Braconidae) in pupal stage treatment. J Crop Prot 1(3):221–228

    Google Scholar 

  • Rao CHS, Venkateswarlu V, Surender T, Eddleston M, Buckley NA (2005) Pesticide poisoning in South India: opportunities for prevention and improved medical management. Trop Med Int Health 10(6):581–588

    Google Scholar 

  • Rehana Z, Malik A, Ahmad M (1996) Genotoxicity of the Ganges water at Narora (U.P.), India. Mutation Res 367:187–193

    CAS  Google Scholar 

  • Relyea RA (2009) A cocktail of contaminants: how mixtures of pesticides at low concentrations affect aquatic communities. Oecologia 159(2):363–376

    Google Scholar 

  • Rogers EF, Koniuszy FR, Shavel J Jr, Folkers K (1948) Plant insecticides. I. Ryanodine, a new alkaloid from Ryania speciosa J Am Chem Soc 70:3086–3088.

    Google Scholar 

  • Rortais A, Arnold G, Halm MP, Touffet-Briens F (2005) Modes of honeybees exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees. Apidologie 36:71–83

    CAS  Google Scholar 

  • Saleem MA, Ahmad M, Aslam M, Sayyed AH (2008) Resistance to selected organochlorine, organophosphate, carbamate and pyrethroid, in Spodoptera litura (Lepidoptera: Noctuidae) from Pakistan. Econ Entomol 101:1667–1675

    CAS  Google Scholar 

  • Sardar D, Kole RK (2005) Metabolism of chlorpyrifos in relation to its effect on the availability of some plant nutrients in soil. Chemosphere 61:1273–1280

    CAS  Google Scholar 

  • Shan ZJ (1997) Status of pesticide pollution and management of China. Environ Prot 7:40–43

    Google Scholar 

  • Shafiani S Malik A (2003) Tolerance of pesticides and antibiotic resistance in bacteria isolated from wastewater-irrigated soil. World J Microbiol Biotechnol 19(9):897–901

    Google Scholar 

  • Sheikh SA, Nizamani SM, Jamali AA, Kumbhar MI (2011) Pesticides and associated impact on human health: a case of small farmers in southern Sindh, Pakistan. Pharm Nutr Sci 1:82–86

    Google Scholar 

  • Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434(7030):214–7

    CAS  Google Scholar 

  • Sparling DW, Fellers G (2007) Comparative toxicity of chlorpyrifos, diazinon, malathion and their oxon derivatives to larval Rana boylii. Environ Poll 147(3):535–539

    CAS  Google Scholar 

  • Sparling DW, Fellers GM, McConnell LL (2001) Pesticides and amphibian population declines in California, USA. Environ Toxicol and Chem 20 (7):1591–1595

    Google Scholar 

  • Srinivas R, Udikeri SS, Jayalakshmi SK, Sreeramulu K (2004) Identification of factors responsible for insecticide resistance in Helicoverpa armigera. Comp Biochem Physiol C Toxicol Pharmacol 137(3):261–269

    Google Scholar 

  • Stark JD, Sugayama RLC, Kovaleski A (2007) Why demographic and modeling approaches should be adopted for estimating the effects of pesticides on biocontrol agents. Biol Cont 52:365–374

    Google Scholar 

  • Stark JD, Wennergren U (1995) Can population effects of pesticides be predicted from demographic toxicological studies? Econ Entomol 85:1089–1096

    Google Scholar 

  • Stefanelli P, Santilio A, Cataldi L, Dommarco R (2009) Multiresidue analysis of organochlorine and pyrethroid pesticides in ground beef meat by gas chromatography-mass spectrometry. J Environ Sci Health B 44(4):350–356

    CAS  Google Scholar 

  • Suma P, Zappalà L, Mazzeo G, Siscaro G (2009) Lethal and sub-lethal effects of insecticides on natural enemies of citrus scale pests. BioCont 54:651–661

    CAS  Google Scholar 

  • Suri KS, Singh G (2011) Insecticide-induced resurgence of the whitebacked planthopper, Sogatella furcifera (Horvath) (Hemiptera: Delphacidae) on rice varieties with different levels of resistance. Crop Prot 30(2):118–124

    Google Scholar 

  • Szegedi V, Bardos G, Detari L, Toth A, Banczerowski-Pelyhe I, Vilagi I (2005) Transient alterations in neuronal and behavioral activity following bensultap and fipronil treatment in rats. Toxicology 214:67–76

    CAS  Google Scholar 

  • Tanabe S, Senthilkumar K, Kannan K, Subramanian AN (1998) Accumulation features of polychlorinated biphenyls and organochlorine pesticides in resident and migratory birds from south India. Arch Environ Contam Toxicol 34:387–397

    CAS  Google Scholar 

  • Thies ML, Mc Bee K (1994) Cross-placental transfer of organochlorine pesticides in Mexican free-tailed bats from Oklahoma and New Mexico. Arch Environ Contam Toxicol 27:239–242

    Google Scholar 

  • Vandenbroucke V, Pelt HV, Backer PD, Croubels S (2010) Animal poisonings in Belgium: a review of the past decade. Vlaams Diergeneeskundig Tijdschrift 79(4):259–268

    Google Scholar 

  • Venkatesh J, Priya S, Balasubramaniam M, Aarthy C, Thenmozhi S, Balasubramanie P (2012) Continuing issues in the use of pesticides for procuring life in developing countries. Life Sci J 9(4):304–308

    Google Scholar 

  • Vos JG, Dybing E, Greim HA, Ladefoged O, Lambré C, Tarazona JV, Brandt I, Vethaak AD (2000) “Health Effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation.” Critic Rev Toxicol 30(1):71–133

    Google Scholar 

  • Wafo E, Mama C, Risoul V, Schembri T, Dhermain F, Portugal H (2012) Chlorinated pesticides in the bodies of dolphins of the French Mediterranean coastal environment. Adv Environ Sci Int J of the Bioflux Soc 4(1):29–35

    Google Scholar 

  • Wandan EN, Elleingand Ef, Koffi E, Clément BN, Charles B (2010) Impact of the insecticide endosulfan on growth of the African giant snail Achatina achatina (L.). Afr Environ Sci Technol 4(10):685–690

    CAS  Google Scholar 

  • Wang HY, Yang Y, Su JY, Shen JL, Gao CF, Zhu YC (2008) Assessment of the impact of insecticides on Anagrus nilaparvatae (Pang et Wang) (Hymenoptera: Mymanidae), an egg parasitoid of the rice planthopper, Nilaparvata lugens(Hemiptera: Delphacidae). Crop Protect 27(3–5):514–522

    CAS  Google Scholar 

  • Wang Y, Kruzik P, Helsberg A, Helsberg I, Rausch WD (2007) Pesticide poisoning in domestic animals and livestock in Austria: a 6 years retrospective study. Forensic Sci Int 169:157–160

    CAS  Google Scholar 

  • Whalon ME, Mota-Sanchez D, Hollingsworth RM (2008) Global pesticides resistance in arthropods. CABI International, Wallingford

    Google Scholar 

  • Widder PD, Bidwell JR (2008) Tadpole size, cholinesterase activity, and swim speed in four frog species after exposure to sub-lethal concentrations of chlorpyrifos. Aquat Toxicol 88(1):9–18

    CAS  Google Scholar 

  • Wilson C, Tisdell C (2001) Why farmers continue to use pesticides despite environmental, health and sustainability costs? Ecol Econ 39:449–462

    Google Scholar 

  • WHO World Health Organization (2012) Dengue and dengue haemorrhagic fever. Factsheet No 117, Geneva, WHO, Media centre. http://www.who.int/mediacentre/factsheets/fs117/en/ Accessed on 23 May 2013

  • Wu M (1986) Serious crop phytotoxicity by pesticides in India. World Agric 4:37–37

    Google Scholar 

  • Yamamoto I (1999) Nicotine to Nicotinoids: 1962 to 1997. In: Yamamoto I, Casida J (eds) Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer-Verlag, Tokyo, pp 3–27

    Google Scholar 

  • Yang Y, Li Y, Wu Y (2013) Current status of insecticide resistance in Helicoverpa armigera after 15 years of Bt cotton planting in China. Econ Entomol 106(1):375–381

    CAS  Google Scholar 

  • Yasmin S, D’Souza D (2010) Effects of pesticides on the growth and reproduction of earthworm: a review. App Environ Soil Sci 27:1–9

    Google Scholar 

  • Zhang WJ, Jiang FB, Ou JF (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1(2):125–144

    CAS  Google Scholar 

  • Zhao X, Wu C, Wang Y, Cang T, Chen L, Yu R, Wang Q (2012) Assessment of toxicity risk of insecticides used in rice ecosystem on Trichogramma japonicum, an egg parasitoid of rice lepidopterans. Econ Entomol 105(1):92–101

    CAS  Google Scholar 

  • Zhu F, Wigginton J, Romero A, Moore A, Ferguson K, Palli R, Potter MF, Haynes KF, Palli SR (2010) Widespread distribution of knockdown resistance mutations in the bed bug, Cimex lectularius (Hemiptera: Cimicidae), populations in the United States. Arch Insect Biochem Physiol 73(4):245–257

    CAS  Google Scholar 

  • Zotti MJ, Grutzmacher AD, Lopes IH, Smagghe G (2013) Comparative effects of insecticides with different mechanisms of action on Chrysoperla externa (Neuroptera: Chrysopidae): Lethal, sublethal and dose–response effects. Insect Sci 00:1–10

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shafiq Ansari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ansari, M., Moraiet, M., Ahmad, S. (2014). Insecticides: Impact on the Environment and Human Health. In: Malik, A., Grohmann, E., Akhtar, R. (eds) Environmental Deterioration and Human Health. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7890-0_6

Download citation

Publish with us

Policies and ethics