Skip to main content

Ground-Structure Interaction

  • Chapter
  • First Online:
Engineering Geology for Underground Works

Abstract

In this chapter, the main methods used to study the interaction between the ground and the stabilization and lining measures (“structure”) are described. The different methods described are: the Rabcewicz method; the method of hyperstatic reactions; some simplified methods able to assess the loads acting on the lining (vertical loads, horizontal load, inclined loads, loads in case of tunnel under groundwater table); the different methods that can be used while utilizing radial nailing (method of confinement pressure, homogenization method, modelling of the cross section with continuum discretization methods), spiling or forepoling; the methods to calculate the minimum number of elements able to stabilize the face; the characteristic lines method to evaluate the suitability of a lining by means of an analysis that takes into account the ground-structure interaction and numerical methods. At the end of this chapter, the seismic effects on the underground work behaviour are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assadi A, Sloan SW (1991) Undrained stability of shallow square tunnel. J Geotech Eng 117(8):1152–1173

    Article  Google Scholar 

  • Attewell PB, Boden JB (1971) Development of the stability rations for tunnels driven in clay. Tunnnels Tunnelling Int 3:195–198

    Google Scholar 

  • Broms BB, Bennemark H (1967) Stability of clay at vertical openings (ASCE). J Soil Mech Found Eng Div, SMI 93:71–94

    Google Scholar 

  • Bhasin R (1994) Forecasting Stability Problems in Tunnels constructed through clay, soft rocks and hard rocks using an inexpensive quick approach Gallerie e Grandi Opere Sotterranee, 42 (1994), pp 14–17

    Google Scholar 

  • Caquot A, Kerisel J. (1956) Traile de mécanique des sols. Gauthier Villars, Paris

    Google Scholar 

  • Carranza-Torres C (2004) Computation of Factor of safety for shallow tunnels using Caquot’s lower bound solution—Summary Report (May 2004)

    Google Scholar 

  • Cornejo L. (1988) El fenomeno de la inestablidad del frente de excavation y su repercussion en la construccion de tuneles. Tunnels and Water, Serrano, vol. I. Balkema, Rotterdam, pp 79–87

    Google Scholar 

  • Davis E, Gunn M, Mair R, Seneviratne H (1980) The stability of shallow tunnels and underground opening in cohesive material. Geotechnique 30(4):397–416

    Article  Google Scholar 

  • Ellstein AR (1986) Heading failure of lined tunnels in soft soils. Tunnels & Tunneling 18:51–54

    Google Scholar 

  • Fuoco S, Lucarelli A, Pasqualini E (1997) Contribution to the definition of tunnel face stability of deep tunnel in continuous media. ITA Conference, San Paolo.

    Google Scholar 

  • Gallerie e Grandi Opere Sotterranee, 42 (1994), pp. 14–17.

    Google Scholar 

  • Goel RK, Jethwa JL (1991) Prediction of support pressure using RMR classification. In: Proceedings of the Indian Geotechnical Conference. Surat, pp 203–205

    Google Scholar 

  • Grasso P, Russo G, Xu S, Pelizza S (1993) Un criterio per la valutazione speditiva del comportamento di gallerie allo scavo mediante classificazione geomeccanica Gallerie e Grandi Opere Sotterranee, n.39

    Google Scholar 

  • Hoek E, Brown ET (1980) Underground Excavations in Rock. Institution of Mining and Metallurgy, London

    Google Scholar 

  • Hoek E, Marinos P (2000) Predicting tunnel squeezing problems in weak heterogeneous rock masses. Tunnels and Tunnelling International, pp 45–51: part one; pp 33–36: part two

    Google Scholar 

  • Hoek E, Marinos P, Benissi M (1998) Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation. Bull Engg Geol En 57(2):151–160

    Article  Google Scholar 

  • Houska J (1960) Beitrag zur Theorie der Erddrücke auf das Tunnelmauerwerk. Schweizerische Bauzeitung 78(1960):607–609

    Google Scholar 

  • Kolymbas D, Wagner P (2007) Groundwater ingress to tunnels—The exact analytical solution. Tunnelling Underground Space Technol 22(1):23–27

    Article  Google Scholar 

  • Kommerell O (1940) Statiche Berechnung Von Tunnelmauerwerk. W. Ernst & Sohn, Berlin

    Google Scholar 

  • Lane KS (1957) Effect of limiting stiffness on tunnel loading. Proceedings of the Fourth Internationa Conference on Soil Mechanics and Foundation Engineering, London, 12–24 August 1957

    Google Scholar 

  • Leca E, Dormieux L (1990) Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material. Géotechnique 40(4):581–606

    Article  Google Scholar 

  • Leca E, Dormieux L (1992) Contribution à l’étude du front de taille d’un tunnel en milieu cohent. Revue Française de Géotechniquen 61:5–16

    Google Scholar 

  • Leca E, Panet M (1988) Application du calcul à la rupture à la stabilité du front de taille d’un tunnel. Revue Française de Géotechnique 43:5–20

    Google Scholar 

  • Panet M (1995) Calcul des tunnels par la méthode convergence-confinement. Presse de l'Ecole des Ponts et chausses. Paris , pp 13–14

    Google Scholar 

  • Panet M, Guenot A (1982) Analysis of Convergence behind the face of a tunnel. International Symposium “Tunneling 82”. Brighton, pp 197–204

    Google Scholar 

  • Rabcewicz Lv (1964) The New Austrian Tunnelling Method, Water Power. Parte one November 1964, pp 453–457. Part Two, December 1964, pp 511–515

    Google Scholar 

  • Rabcewicz Lv, Golser J (1973) Principles of dimensioning the supporting system for the “New Austrian Tunneling Method”, Water Power, March 1973, pp 88–93

    Google Scholar 

  • Ritter (1879) Statik der Tunnel gewlbe, Berlin. Springer

    Google Scholar 

  • Sakurai S (1997) Lessons learned from field measurements in tunnelling. Tunnellin and underground space technology. Pergamon, Oct–Dec, Volume 12 Issue 4, pp 453–460

    Google Scholar 

  • Schuck W (2005) Rock and Water Pressure when dimensioning tunnels in rock. Tunnel 3:43–45

    Google Scholar 

  • Tamez E (1985) Estabilidad de tuneles excavados en suelos. Curso Victor Hardy 85, Mexico

    Google Scholar 

  • Terzaghi K (1951) Mécanique théorique des sols. Dunod Ed., Paris

    Google Scholar 

  • Terzaghi K, Proctor RV, White TL, (1946) Rock tunneling with steel supports with an introduction to Tunnel Geology, Youngstown

    Google Scholar 

  • Unal E (1983) Development of design guidelines and roof-control standards for coal-mine roofs. Ph. D. Thesis, Pennsylvania State University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Gattinoni .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gattinoni, P., Pizzarotti, E., Scesi, L. (2014). Ground-Structure Interaction. In: Engineering Geology for Underground Works. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7850-4_7

Download citation

Publish with us

Policies and ethics