Skip to main content

Surface-enhanced Raman Scattering (SERS) in Bioscience: A Review of Application

  • Chapter
  • First Online:
Optical Spectroscopy and Computational Methods in Biology and Medicine

Abstract

This article reviews some recent applications of surface-enhanced Raman scattering (SERS) spectroscopy in biology, biochemistry and biomedicine. We start with a short description of theoretical background of Raman scattering enhancement by the plasmonic nanoparticles. SERS is a phenomenon observed for molecules in a close proximity to the surface of metallic nanostructures. We present an overview of SERS substrates fabricated using various physical and chemical methods. SERS spectroscopy, which combines very high sensitivity with molecular specificity, is a powerful technique for studying biologically important systems, ranging from simple molecules like amino acids, to extremely complex samples such as living cells and tissues. We demonstrate great potential of SERS not only for detection and identification of (bio)molecules, but also in monitoring various biochemical processes. The strategies that are used for biosensing with the aid of SERS spectroscopy are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166

    CAS  Google Scholar 

  2. Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electrochem 84(1):1–20

    CAS  Google Scholar 

  3. Lombardi JR, Birke RL, Lu T, Xu J (1986) Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions. J Chem Phys 84:4174–4180

    CAS  Google Scholar 

  4. Pines D (1956) Collective energy losses in solids. Rev Mod Phys 28:184–198

    CAS  Google Scholar 

  5. Stern EA, Ferrell RA (1960) Surface plasma oscillations of a degenerate electron gas. Phys Rev 120:130–136

    Google Scholar 

  6. Le Ru EC, Blackie E, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111:13794–13803

    CAS  Google Scholar 

  7. Kottmann JP, Martin OJF, Smith DR, Schultz S (2001) Dramatic localized electromagnetic enhancement in plasmon resonant nanowires. Chem Phys Lett 341:1–6

    CAS  Google Scholar 

  8. Creighton JA (1988) The selection rules for surface-enhanced Raman spectroscopy. In: Clark RJH, Hester RE (eds) Spectroscopy of surfaces. Advances in Spectroscopy, vol 16. Wiley, New York, pp 37–89

    Google Scholar 

  9. Creighton A, Blatchford CG, Albrecht MG (1979) Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver and gold sol particles of size comparable to the excitation wavelength. J Chem Soc Faraday Trans 2 75:790–798

    Google Scholar 

  10. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395

    CAS  Google Scholar 

  11. Leopold N, Lendl B (2003) A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J Phys Chem B 107(24):5723–5727

    CAS  Google Scholar 

  12. Blatchford CG, Campbell JR, Creighton JA (1982) Plasma resonance enhanced Raman scattering by adsorbates on gold colloids: the effects of aggregation. Surf Sci 120:435–455

    CAS  Google Scholar 

  13. Larmour IA, Faulds K, Graham D (2012) SERS activity and stability of the most frequently used silver colloids. J Raman Spectrosc 43:202–206

    CAS  Google Scholar 

  14. Chumanov G, Sokolov K, Gregory BW, Cotton TM (1995) Colloidal metal films as a substrate for surface-enhanced spectroscopy. J Phys Chem 99:9466–9471

    CAS  Google Scholar 

  15. Grabar KC, Brown KR, Keating CD, Stranick SJ, Tang SL, Natan MJ (1997) Nanoscale characterization of gold colloid monolayers: a comparison of four techniques. Anal Chem 69:471–477

    CAS  Google Scholar 

  16. Fan M, Brolo AG (2009) Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Phys Chem Chem Phys 11:7381–7389

    CAS  Google Scholar 

  17. Andrade GFS, Fan MK, Brolo AG (2010) Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing. Biosens Bioelectron 25:2270–2275

    CAS  Google Scholar 

  18. Addison CJ, Brolo AG (2006) Nanoparticle-containing structures as a substrate for surface-enhanced Raman scattering. Langmuir 22:8696–870

    CAS  Google Scholar 

  19. Li X, Xu W, Zhang J, Jia H, Yang B, Zhao B, Li B, Ozaki Y (2004) Self-assembled metal colloid films: two approaches for preparing new SERS active substrates. Langmuir 20:1298–1304

    CAS  Google Scholar 

  20. Tantra R, Brown RJC, Milton MJT, Gohil DD (2008) A practical method to fabricate gold substrates for surface-enhanced Raman spectroscopy. Appl Spectrosc Vol. 62:992–1000

    CAS  Google Scholar 

  21. Yang C, Xie YT, Yuen MMF, Xiong XM, Wong CP (2010) A facile chemical approach for preparing a SERS active silver substrate. Phys Chem Chem Phys 12(43):14459–14461

    CAS  Google Scholar 

  22. Semin DJ, Rowlen KL (1994) Influence of vapor deposition parameters on SERS active Ag film morphology and optical properties. Anal Chem 66:4324–4331

    CAS  Google Scholar 

  23. Roark SE, Rowlen KL (1994) Thin Ag films: influence of substrate and postdeposition treatment on morphology and optical properties. Anal Chem 66:261–270

    CAS  Google Scholar 

  24. Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599–5611

    CAS  Google Scholar 

  25. Haes AJ, Chang L, Klein WL, Van Duyne RP (2005) Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 127(7):2264–2271

    CAS  Google Scholar 

  26. Stosch R, Yaghobian F, Weimann T, Brown RJC, Milton MJT, Guttler B (2011) Lithographical gap-size engineered nanoarrays for surface-enhanced Raman probing of biomarkers. Nanotechnology 22(10):105303

    CAS  Google Scholar 

  27. Abu Hatab NA, Oran JM, Sepaniak MJ (2008) Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. ACS Nano 2(2):377–385

    CAS  Google Scholar 

  28. Cialla D, Huebner U, Schneidewind H, Moeller R, Popp J (2008) Probing innovative microfabricated substrates for their reproducible SERS activity. ChemPhysChem 9(5):758–762

    CAS  Google Scholar 

  29. Porter Jr LA, Choi HC, Schmeltzer JM, Ribbe AE, Elliott LCC, Buriak JM (2002) Electroless nanoparticle film deposition compatible with photolithography, microcontact printing, and dip-pen nanolithography patterning technologies. NanoLetters 2(12):1369–1372

    Google Scholar 

  30. Dieringer JA, McFarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR, Young MA, Zhang XY, Van Duyne RP (2006) Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discussions 132:9–26

    CAS  Google Scholar 

  31. Baia L, Baia M, Popp J, Astilean S (2006) Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR. J Phys Chem B 110(47):23982–23986

    CAS  Google Scholar 

  32. Haynes CL, Van Duyne RP (2003) Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J Phys Chem B 107:7426–7433

    CAS  Google Scholar 

  33. Cialla D, März A, Böhme R, Theil F, Weber K, Schmitt M, Popp J (2012) Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403:27–54

    CAS  Google Scholar 

  34. Mohapatra S, Siddhanta S, Kumar DR, Narayana C, Maji TK (2010) Facile and green synthesis of SERS active and ferromagnetic silver nanorods. Eur J Inorg Chem 31:4969–4974

    Google Scholar 

  35. Smitha SL, GopchandranKG, Ravindran TR, Prasad VS (2011) Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates. Nanotechnology 22:265705

    CAS  Google Scholar 

  36. Rycenga M, Camargo PHC, Li W, Moran CH, Xia Y, (2010) Understanding the SERS effects of single silver nanoparticles and their dimers, one at a time. J Phys Chem Lett 1:696–703

    CAS  Google Scholar 

  37. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    CAS  Google Scholar 

  38. Rycenga M, Kim MH, Camargo PHC, Cobley C, Li Z-Y, Xia Y (2009) Surface-enhanced Raman scattering: comparison of three different molecules on single-crystal nanocubes and nanospheres of silver. J Phys Chem A 113:3932–3939

    CAS  Google Scholar 

  39. Eguchi M, Mitsui D, Wu H-L, Sato R, Teranishi T (2012) Simple reductant concentration-dependent shape control of polyhedral gold nanoparticles and their plasmonic properties. Langmuir 28(24):9021–9026

    CAS  Google Scholar 

  40. Khoury CG, Vo-Dinh T (2008) Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. J PhysChem C 112(48):18849–18859

    CAS  Google Scholar 

  41. Esenturk EN, Walker ARH (2009) Surface-enhanced Raman scattering spectroscopy via gold nanostars. J Raman Spectrosc 40(1):86–91

    CAS  Google Scholar 

  42. Rodriguez-Lorenzo L, Alvarez-Puebla RA, Garcia J, de Abajo F, Liz-Marzan LM (2010) Surface enhanced Raman scattering using star-shaped gold colloidal nanoparticles. J Phys Chem C 114(16):7336–7340

    CAS  Google Scholar 

  43. Kim JH, Kang T, Yoo SM, Lee SY, Kim B, Choi YK (2009) A well-ordered flower-like gold nanostructure for integrated sensors via surface-enhanced Raman scattering. Nanotechnology 20(23):235302

    Google Scholar 

  44. Gellner M, Kustner B, Schlucker S (2009) Optical properties and SERS efficiency of tunable gold/silver nanoshells. Vib Spectrosc 50:43–47

    CAS  Google Scholar 

  45. Oldenberg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of Optical Resonances. Chem Phys Lett 288:243–247

    Google Scholar 

  46. Alvarez-Puebla RA, Ross DJ, Nazri GA, Aroca RF (2005) Surface-enhanced Raman scattering on nanoshells with tunable surface plasmon resonance. Langmuir 21:10504–10508

    CAS  Google Scholar 

  47. Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR (2005) Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 5:1569–1574

    CAS  Google Scholar 

  48. Jackson JB, Halas NJ (2004) Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proc Natl Acad Sci USA 101:17930–17935

    CAS  Google Scholar 

  49. Ochsenkuhn MA, Jess PRT, Stoquert H, Dholakia K, Campbell CJ, (2009) Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development. ACS Nano 3(11):3613–3621

    CAS  Google Scholar 

  50. Lal S, Grady NK, Goodrich GP, Halas NJ (2006) Profiling the near field of a plasmonic nanoparticle with Raman-based molecular rulers. Nano Lett 6:2338–2343

    CAS  Google Scholar 

  51. Gellner M, Küstner B, Schlücker S (2009) Optical properties and SERS efficiency of tunable gold/silver nanoshells. Vibr Spectr 50:43–47

    CAS  Google Scholar 

  52. Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 64(7287):392–395

    Google Scholar 

  53. Anema JR, Li JF, Yang ZL, Ren B, Tian ZQ (2011) Shell-isolated nanoparticle-enhanced Raman spectroscopy: expanding the versatility of surface-enhanced Raman scattering. Annu Rev Anal Chem 4:129–150

    CAS  Google Scholar 

  54. Kustner B, Gellner M, Schutz M, Schoppler F, Marx A, Strobel P, Adam P, Schmuck C, Schlucker S (2009) SERS labels for red laser excitation: silica-encapsulated SAMs on tunable gold/silver nanoshells. Angew Chem Int Ed 48:1950–1953

    Google Scholar 

  55. Mulvaney SP, Musick M D, Keating CD. Natan MJ (2003) Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-enhanced Raman scattering. Langmuir 19:4784–4790

    CAS  Google Scholar 

  56. Merican Z, Schiller TL, Hawker CJ, Fredericks PM, Blakey I (2007) Self-assembly and encoding of polymer-stabilized gold nanoparticles with surface-enhanced Raman reporter molecules. Langmuir 23:10539–10545

    CAS  Google Scholar 

  57. Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36:485–496

    CAS  Google Scholar 

  58. Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3939

    CAS  Google Scholar 

  59. Camden JP, Dieringer JA, Wang Y, Masiello DJ, Marks LD, Schatz GC, Van Duyne RP (2008) Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J Am Chem Soc 130:12616–12617

    CAS  Google Scholar 

  60. Rycenga M, Camargo PHC, Li W, Moran CH, Xia Y (2010) Understanding the SERS effects of single silver nanoparticles and their dimers, one at a time. J Phys Chem Lett 1:696–703

    CAS  Google Scholar 

  61. Wustholz KL, Henry AI, McMahon JM, Freeman RG, Valley N, Piotti ME, Natan MJ, Schatz GC, Van Duyne RP (2010) Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J Am Chem Soc 132:10903–10910

    CAS  Google Scholar 

  62. Stockle RM, Suh YD, Deckert V, Zenobi R (2000) Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett 318:131–136

    CAS  Google Scholar 

  63. Pettinger B, Picardi G, Schuster R, Ertl G (2003) Surface-enhanced and STM tip-enhanced Raman spectroscopy of CN ions at gold surfaces. J Electroanal Chem 554:293–299

    Google Scholar 

  64. Picardi G, Nguyen Q, Schreiber J, Ossikovski R (2007) Comparative study of atomic force mode and tunneling mode tip-enhanced Raman spectroscopy. Eur Phys J Appl Phys 40:197–201

    CAS  Google Scholar 

  65. Zhang W, Yeo BS, Schmid T, Zenobi R (2007) Single-molecule tip-enhanced Raman spectroscopy with silver tips. J Phys Chem C 111:1733–1738

    CAS  Google Scholar 

  66. Sonntag MD, Klingsporn JM, Garibay LK, Roberts JM, Dieringer JA, Seideman T, Scheidt KA, Jensen L, Schatz GC, Van Duyne RP (2012) Single-molecule tip-enhanced Raman spectroscopy. J Phys Chem C 116:478–483

    CAS  Google Scholar 

  67. Yeo BS, Stadler J, Schmid T, Zenobi R, Zhang W (2009) Tip-enhanced Raman spectroscopy—its status, challenges and future directions. Chem Phys Lett 472:1–13

    CAS  Google Scholar 

  68. Bailo E, Deckert V (2008) Tip-enhanced Raman scattering. Chem Soc Rev 37:921–930

    CAS  Google Scholar 

  69. Deckert-Gaudig T, Deckert V (2010) Tip-enhanced Raman scattering (TERS) and high-resolution bio nano-analysis—a comparison. Phys Chem Chem Phys 12:12040–12049

    CAS  Google Scholar 

  70. Cotton TM (1988) The application of surface-enhanced Raman scattering to biochemical systems. In: Clark RJH, Hester RE (eds) Spectroscopy of surfaces. Advances in Spectroscopy, vol 16. Wiley, New York, pp 91–153

    Google Scholar 

  71. Aliaga AE, Osorio-Roman I, Leyton P, Garrido C, Carcamo J, Caniulef C, Celis F, Díaz GF, Clavijo E, Gomez-Jeria JS, Campos-Vallette MM (2009) Surface-enhanced Raman scattering study of L-tryptophan. J Raman Spectrosc 40:164–169

    CAS  Google Scholar 

  72. Aliaga AE, Osorio-Roman I, Garrido C, Leyton P, Carcamo J, Clavijo E, Gomez-Jeria JS, Diaz FG, Campos-Vallette MM (2009) Surface enhanced Raman scattering study of L-lysine. Vib Spectrosc 50(1):131–135

    CAS  Google Scholar 

  73. Yaffe NR, Blanch EW (2008) Effects and anomalies that can occur in SERS spectra of biological molecules when using a wide range of aggregating agents for hydroxylamine-reduced and citrate-reduced silver colloids. Vibr Spectrosc 48:196–201

    CAS  Google Scholar 

  74. Suh JS, Moskovits M (1986) Surface-enhanced Raman spectroscopy of amino acids and nucleotide bases adsorbed on silver. J Am Chem Soc 108:4711–4718

    Google Scholar 

  75. Lee HI, Suh SW, Kim MS (1988) Raman spectroscopy of L-tryptophan-containing peptides adsorbed on a silver surface. J Raman Spectrosc 19:491–495

    CAS  Google Scholar 

  76. Vidugiris GJA, Gudavicius AV, Razumas VJ, Kulys JJ (1989) Structure-potential dependence of adsorbed enzymes and amino acids revealed by the surface enhanced Raman effect. Eur Biophys J 17:19–23

    Google Scholar 

  77. Stewart S, Fredericks PM (1999) Surface-enhanced Raman spectroscopy of amino acids adsorbed on an electrochemically prepared silver surface. Spectrochim Acta Part A 55:1641–1660

    Google Scholar 

  78. Podstawka E, Ozaki Y, Proniewicz L (2004) Part I: surface-enhanced Raman spectroscopy investigation of amino acids and their homodipeptides adsorbed on colloidal silver. Appl Spectrosc 58:570–580

    CAS  Google Scholar 

  79. Podstawka E, Ozaki Y, Proniewicz L (2005) Part III: surface-enhanced Raman spectroscopy investigation of amino acids and their homodipeptides deposited onto colloidal Gold Surface. Appl Spectrosc 59:1516–1526

    CAS  Google Scholar 

  80. Guerrero AR, Aroca RF (2012) Surface-enhanced Raman scattering of hydroxyproline. J Raman Spectrosc 43:478–481

    CAS  Google Scholar 

  81. Brolo AG, Germain P, Hager G (2002) Investigation of the adsorption of L-Cysteine on a polycrystalline silver electrode by surface-enhanced Raman scattering (SERS) and Surface-Enhanced Second Harmonic Generation (SESHG). J Phys Chem B 106:5982–5987

    CAS  Google Scholar 

  82. Lee HI, Kim MS, Suh SW (1991) Raman spectroscopy of sulphur-containing amino acids and their derivatives adsorbed on silver. J Raman Spectrosc 22:91–96

    CAS  Google Scholar 

  83. Graff M, Bukowska J (2005) Adsorption of enantiomeric and racemic cysteine on a silver electrode—SERS sensitivity to chirality of adsorbed molecules. J Phys Chem B 109:9567–9574

    CAS  Google Scholar 

  84. Lee HI, Kim MS, Suh SW (1991) Raman spectroscopy of sulphur-containing amino acids and their derivatives adsorbed on silver. J Raman Spectrosc 22:91–96

    CAS  Google Scholar 

  85. Kühnle A, Linderoth TR, Hammer B, Besenbacher F (2002) Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunneling microscopy. Nature 415:891–893

    Google Scholar 

  86. Graff M, Bukowska J (2010) Enantiomeric recognition of phenylalanine by self-assembled monolayers of cysteine: surface-enhanced Raman scattering evidence. Vibr Spectr 52:103–107

    CAS  Google Scholar 

  87. Graff M, Bukowska J (2011) Surface-enhanced Raman Scattering (SERS) spectroscopy of enantiomeric and racemic methionine on a silver electrode—evidence for chiral discrimination in interactions between adsorbed molecules. Chem Phys Lett 509:58–61

    CAS  Google Scholar 

  88. Deckert-Gaudig T, Deckert V (2009) Ultraflat transparent gold nanoplates-ideal substrates for tip-enhanced Raman scattering experiments. Small 5(4):432–436

    CAS  Google Scholar 

  89. Deckert-Gaudig T, Deckert V (2009) Tip-enhanced Raman scattering studies of histidine on novel silver substrates. J Raman Spectrosc 40:1446–1451

    CAS  Google Scholar 

  90. Stewart S, Fredericks PM (1999) Surface-enhanced Raman spectroscopy of peptides and proteins adsorbed on an electrochemically prepared silver surface. Spectrochim Acta Part A 55:1615–1640

    Google Scholar 

  91. Wei F, Zhang D, Halas NJ, Hartgerink JD (2008) Aromatic amino acids providing characteristic motifs in the Raman and SERS spectroscopy of peptides. J Phys Chem B 112:9158–9164

    CAS  Google Scholar 

  92. Herne TM, Ahern A, Garrell RL (1991) Surface-enhanced Raman spectroscopy of peptides: preferential N-terminal adsorption on colloidal silver. J Am Chem Soc 113:846–854

    CAS  Google Scholar 

  93. Podstawka E, Ozaki Y (2008) Bombesin modified 6–14 C-terminal fragments adsorption on silver surfaces: influence of a surface substrate. Biopolymers 89:941–950

    CAS  Google Scholar 

  94. Podstawka E, Niaura G, Proniewicz LM (2010) Potential-dependent studies on the interaction between phenylalanine-substituted bombesin fragments and roughened Ag, Au, and Cu electrode surfaces. J Phys Chem B 114:1010–1029

    CAS  Google Scholar 

  95. Podstawka-Proniewicz E, Kudelski A, Younkyoo Kim Y, Proniewicz L (2012) Adsorption of neurotensin-family peptides on SERS-active Ag substrate. J Raman Spectrosc 43:1196–1203

    CAS  Google Scholar 

  96. Podstawka-Proniewicz E, Andrzejak M, Kafarski P, Kim Y, Proniewicz LM (2011) Vibrational characterization of L-valine phosphonate dipeptides: FT-IR, FT-RS, and SERS spectroscopy studies and DFT calculations. J Raman Spectrosc 42(5):958–979

    CAS  Google Scholar 

  97. Małek K, Królikowska A and Bukowska J (2012) Comparative studies on IR, Raman, and Surface Enhanced Raman scattering spectroscopy of dipeptides containing ΔAla and ΔPhe. J Phys Chem B 116:1414–1425

    Google Scholar 

  98. Keating CD, Kovaleski KM, Natan MJ (1998) Protein: colloid conjugates for surface enhanced Raman scattering: stability and control of protein orientation. J Phys Chem B 102(45):9404–9413

    CAS  Google Scholar 

  99. Pavel I, McCarney E, Elkhaled A, Morrill A, Plaxco K, Moskovits M (2008) Label-free SERS detection of small proteins modified to act as bifunctional linkers. J Phys Chem C 112:4880–4883

    CAS  Google Scholar 

  100. Drachev VP, Nashine VC, Thoreson MD, Ben-Amotz D, Davisson VJ, Shalaev VM (2005) Adaptive silver films for detection of antibody-antigen binding. Langmuir 21:8368–8373

    CAS  Google Scholar 

  101. Aroca R (2006) Surface-enhanced vibrational spectroscopy. John Wiley, Chichester, pp 91–96

    Google Scholar 

  102. Deckert-Gaudig T, Bailo E, Deckert V (2009) Tip-enhanced Raman scattering (TERS) of oxidised glutathione on an ultraflat gold nanoplate. Phys Chem Chem Phys 11:7360–7362

    CAS  Google Scholar 

  103. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169

    CAS  Google Scholar 

  104. Moyano DF, Rotello VM, (2011) Nano Meets Biology: Structure and Function at the Nanoparticle Interface. Langmuir 27:10376–10385

    CAS  Google Scholar 

  105. Królikowska A, Bukowska J (2007) Self-assembled monolayers of mercaptosuccinic acid monolayers on silver and gold surfaces designed for protein binding. Part II: vibrational spectroscopy studies on cytochrome c immobilization. J Raman Spectrosc 38:943–949

    Google Scholar 

  106. Fedurco M (2000) Redox reactions of heme-containing metalloproteins:dynamic effects of self-assembled monolayers on thermodynamics and kinetics of cytochrome c electron-transfer reactions. Coord Chem Rev 209:263–331

    CAS  Google Scholar 

  107. Hobara D, Imabayashi Si, Kakiuchi T (2002) Preferential adsorption of horse heart cytochrome c on nanometer-scale domains of a phase-separated binary self-assembled monolayer of 3-mercaptopropionic acid and 1-hexadecanethiol on Au(111). Nano Lett 2:1021–1025

    CAS  Google Scholar 

  108. Dick LA, Haes AJ, Van Duyne RP (2000) Distance and orientation dependence of heterogeneous electron transfer: a surface-enhanced resonance Raman scattering study of cytochrome c bound to carboxylic acid terminated alkanethiols adsorbed on silver electrodes. J Phys Chem B 104:11752–11762

    CAS  Google Scholar 

  109. Bonifacio A, van der Sneppen L, Gooijer C, van der Zwan G (2004) Citrate-reduced silver hydrosol modified with ö-mercaptoalkanoic acids self-assembled monolayers as a substrate for surface-enhanced resonance Raman scattering. A study with cytochrome c. Langmuir 20:5858–5864

    CAS  Google Scholar 

  110. Królikowska A, Bukowska J (2010) Surface-enhanced resonance Raman spectroscopic characterization of cytochrome c immobilized on 2-mercaptoethanesulfonate monolayers on silver. J Raman Spectrosc 41:1621–1631

    Google Scholar 

  111. Murgida DH, Hildebrandt P (2004) Electron-transfer processes of cytochrome c at interfaces. New insights by surface-enhanced resonance Raman spectroscopy. Acc Chem Res 37:854–861

    CAS  Google Scholar 

  112. Grochol J, Dronov R, Lisdat F, Hildebrandt P, Murgida DH (2007) Electron transfer in SAM/Cytochrome/Polyelectrolyte hybrid systems on electrodes: a time-resolved surface-enhanced resonance Raman study. Langmuir 23:11289–11294

    CAS  Google Scholar 

  113. Hildebrandt P, Stockburger (1986) Surface-enhanced resonance Raman spectroscopy of cytochrome c at room and low temperatures. J Phys Chem 90:6017–6024

    CAS  Google Scholar 

  114. Oellerich S, Wackerbarth H, Hildebrandt P (2002) Spectroscopic characterization of nonnative conformational states of cytochrome c. J Phys Chem B 106:6566–6580

    CAS  Google Scholar 

  115. Macdonald IDG, Smith WE (1996) Orientation of cytochrome c adsorbed on a citrate-reduced silver colloid surface. Langmuir 12:706–713

    CAS  Google Scholar 

  116. Murgida DH, Hildebrandt P (2001) Heterogenous electron transfer of cytochrome c on coated silver electrodes. Electric field effects on structure and redox potential. J Phys Chem B 105:1578–1586

    CAS  Google Scholar 

  117. Kranich A., Ly HK, Hildebrandt P, Murgida DH (2008) Direct observation of the gating step in protein electron transfer: electric-field-controlled protein dynamics. J Am Chem Soc 130:9844–9848

    CAS  Google Scholar 

  118. Yeo BS, Madler S, Schmid T, Zhang W, Zenobi R (2008) Tip-enhanced Raman spectroscopy can see more: the case of cytochrome c. J Phys Chem C 112:4867–4873

    CAS  Google Scholar 

  119. Larmour IA, Faulds K, Graham D (2010) The past, present and future of enzyme measurements using surface enhanced Raman spectroscopy. Chem Sci 1:151–160

    CAS  Google Scholar 

  120. Copeland RA, Fodor SPA, Spiro TG (1984) Surface-enhanced Raman spectra of an active flavo enzyme: glucose oxidase and riboflavin binding protein on silver particles. J Am Chem Soc 106:3872–3874

    CAS  Google Scholar 

  121. Broderick JB, Natan MJ, O’Halloran TV, Van Duyne RP (1993) Evidence for retention of biological activity of a non-heme iron enzyme adsorbed on a silver colloid: a surface-enhanced resonance Raman scattering study. Biochemistry 32:13771–13776

    CAS  Google Scholar 

  122. Wu ZS,. Zhou GZ, Jiang JH, Shen GL, Yu RQ (2006) Gold colloid-bienzyme conjugates for glucose detection utilizing surface-enhanced Raman scattering. Talanta 70:533–539

    Google Scholar 

  123. Dou X, Takama T, Yamaguchi Y, Yamamoto H, Ozaki Y (1997) Enzyme Immunoassay Utilizing Surface-Enhanced Raman Scattering of the Enzyme Reaction Product. Anal Chem 69:1492–1495

    CAS  Google Scholar 

  124. Stevenson R, Ingram A, Leung H, McMillan DC, Graham D (2009) Quantitative SERRS immunoassay for detection of human PSA. Analyst 134:842–844

    CAS  Google Scholar 

  125. Ruan CM, Wang W, Gu BH, (2006) Detection of alkaline phosphatase using surface-enhanced Raman spectroscopy. Anal Chem 78:3379–3384

    CAS  Google Scholar 

  126. Barhoumi A, Zhang D, Tam F., Halas NJ (2008) Surface-enhanced Raman spectroscopy of DNA. J Am Chem Soc 130:5523–5529

    CAS  Google Scholar 

  127. Shafer-Peltier KE, Haynes CL, Glucksberg MR, Van Duyne RP (2003) Towards a glucose biosensor based on surface-enhanced Raman scattering. J Am Chem Soc 125:588–593

    CAS  Google Scholar 

  128. Yonzon CR, Haynes CL, Zhang XY, Walsh JT, Van Duyne RP (2004) A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference. Anal Chem 76:78–85

    CAS  Google Scholar 

  129. Lyandres O, Shah NC, Yonzon CR, Walsh JT, Glucksberg MR, Van Duyne RP (2005) Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer. Anal Chem 77:6134–6139

    CAS  Google Scholar 

  130. Stuart DA, Yonzon CR, Zhang X, Lyandres O, Shah NC, Glucksberg MR, Walsh JT, Van Duyne RP (2005) Glucose sensing using near-infrared surface-enhanced Raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy. Anal Chem 77:4013–4019

    CAS  Google Scholar 

  131. Zhang XY, Young MA, Lyandres O, Van Duyne RP (2005) Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J Am Chem Soc 127:4484–4489

    CAS  Google Scholar 

  132. Cheng H-W, Chen Y-Y, Lin X-X, Huan S-Y, Wu H-L, Shen G-L, Yu R-Q (2011) Surface-enhanced Raman spectroscopic detection of Bacillus subtilis spores using gold nanoparticle based substrates. Anal Chim Acta 707:155–163

    CAS  Google Scholar 

  133. Li M, Zhang J, Suri S, Sooter LJ, Ma D, Wu N (2012) Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering. Anal Chem 84:2837–2842

    CAS  Google Scholar 

  134. Braun G, Lee SJ, Dante M, Nguyen T-Q, Moskovits M, Reich N (2007) Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J Am Chem Soc 129:6378–6379

    CAS  Google Scholar 

  135. Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540

    CAS  Google Scholar 

  136. Stokes RJ, Macaskill A, Dougan JA, Hargreaves PG, Stanford HM, Smith WE, Faulds K, Graham D (2007) Highly sensitive detection of dye-labelled DNA using nanostructured gold surfaces. Chem Commun 27:2811–2813

    Google Scholar 

  137. Faulds K, McKenzie F, Smith WE, Graham D (2007) Quantitative simultaneous multianalyte detection of DNA by dual-wavelength surface-enhanced resonance Raman scattering. Angew Chem Int Ed 46:1829–1831

    Google Scholar 

  138. Driskell JD, Kwarta KM, Lipert RJ, Porter MD (2005) Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay. Anal Chem 77:6147–6154

    CAS  Google Scholar 

  139. Xu S, Ji X, Xu W, Li X, Wang L, Bai Y, Zhao B, Ozaki Y (2004) Immunoassay using probe-labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering. Analyst 129:63–68

    CAS  Google Scholar 

  140. Yakes BJ, Lipert RJ, Bannantine JP, Porter MD (2008) Detection of mycobacterium avium subsp. paratuberculosis by a sonicate immunoassay based on surface-enhanced Raman scattering. Clin Vaccine Immunol 15:227–234

    CAS  Google Scholar 

  141. Wang G, Park HY, Lipert RJ (2009) Mixed monolayers on gold nanoparticle labels for multiplexed surface-enhanced Raman scattering based immunoassays. Anal Chem 81:9643–9650

    CAS  Google Scholar 

  142. Chourpa I, Lei FH, Dubois P, Manfaita M, Sockalingum GD (2008) Intracellular applications of analytical SERS spectroscopy and multispectral imaging. Chem Soc Rev 37:993–1000

    CAS  Google Scholar 

  143. Xie W, Su L, Shen A, Materny A, Hu J (2011) Application of surface-enhanced Raman scattering in cell analysis. J Raman Spectrosc 42:1248–1254

    CAS  Google Scholar 

  144. Kneipp J, Kneipp H, Kneipp K (2008) SERS—a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev 37:1052–1060

    CAS  Google Scholar 

  145. Vitol EA, Orynbayeva Z, Friedman G, Gogotsi Y (2012) Nanoprobes for intracellular and single cell surface-enhanced Raman spectroscopy (SERS). J Raman Spectrosc 43:817–827

    CAS  Google Scholar 

  146. Nabiev IR, Morjani H, Manfait M (1991) Selective analysis of antitumor drug interaction with living cancer cells as probed with surface-enhanced Raman spectroscopy Eur Biophys J 19:311–316

    CAS  Google Scholar 

  147. Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) In Vivo Molecular Probing of Cellular Compartments with Gold Nanoparticles and Nanoaggregates. Nano Letters. 6(10):2225–2231

    CAS  Google Scholar 

  148. Kneipp J, Kneipp H, Rajadurai A, Redmont RW, Kneipp K (2009) Optical probing and imaging of live cells using SERS labels. J Raman Spectrosc 40:1–5

    CAS  Google Scholar 

  149. Oyelere AK, Chen PC, Huang X, El-Sayed IH, El-Sayed MA (2007) Peptide-Conjugated Gold Nanorods for Nuclear Targeting. Bioconjugate Chem 18:1490–1497

    CAS  Google Scholar 

  150. Rodriguez-Lorenzo L, Krpetic Z, Barbosa S, Alvarez-Puebla RA, Liz-Marzan LM, Prior IA, Brust M (2011) Intracellular mapping with SERS-encoded gold stars. Integr Biol 3:922–926

    CAS  Google Scholar 

  151. Xie JP, Zhang QB, Lee JY (2008) The synthesis of SERS-active gold nanoflower tags for In Vivo applications. ACS Nano 2:2473–2480

    CAS  Google Scholar 

  152. Vitol EA, Orynbayeva Z, Bouchard MJ, Azizkhan-Clifford J, Friedman G, Gogotsi Y (2009) In Situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes. ACS Nano 3(11):3529–3536

    CAS  Google Scholar 

  153. Kneipp K, Haka AS, Kneipp H, Badizadegan K, Yoshizawa N, Boone C, Shafer-Peltier K, Motz JT, Dasari RR, Feld MS (2002) Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Appl Spectrosc 56:150–154

    CAS  Google Scholar 

  154. Jarvis RM, Law N, Shadi LT, O’Brien P, Lloyd JR, Goodacre R (2008) Surface-enhanced Raman scattering from intracellular and extracellular bacterial locations. Anal Chem 80:6741–6746

    CAS  Google Scholar 

  155. Efrima S, Zeiri L (2009) Understanding SERS of bacteria. J Raman Spectrosc 40:277–288

    CAS  Google Scholar 

  156. Gessner R, Winter C, Rosch P, Schmitt M, Petry R, Kiefer W, Lankers M, Popp J (2004) Identification of Biotic and Abiotic Particles by Using a Combination of Optical Tweezers and In Situ Raman Spectroscopy. ChemPhysChem 5:1159–1170

    CAS  Google Scholar 

  157. Scaffidi JP, Gregas MK, Seewaldt V, Vo-Dinh T (2009) SERS-based plasmonic nanobiosensing in single living cells. Anal Bioanal Chem 393:1135–1141

    CAS  Google Scholar 

  158. Bohme R, Richter M, Cialla D, Rosch P, Deckert V, Popp J (2009) Towards a specific characterization of components on a cell surface—combined TERS-investigations of lipids and human cells. J Raman Spectrosc 40:1452–1457

    Google Scholar 

  159. Cialla D, Deckert-Gaudig T, Budich C, Laue M, Moller R, Naumann D, Deckert V, Popp J (2009) Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus. J Raman Spectrosc 40:240–243

    CAS  Google Scholar 

  160. Budich C, Neugebauer U, Popp J, Deckert V (2008) Cell Wall investigations utilizing tip-enhanced Raman scattering. J Microsc 229:533–539

    CAS  Google Scholar 

  161. Kozitskaya S, Deckert V, Schmitt M, Popp J (2007) Towards a detailed understanding of bacterial metabolism—spectroscopic characterization of Staphylococcus Epidermidis. ChemPhysChem 8:124–137

    Google Scholar 

  162. Auchinvole CAR, Richardson P, McGuinnes C, Mallikarjun V, Donaldson K, McNab H, Campbell CJ (2012) Monitoring intracellular redox potential changes using SERS nanosensors. ACS Nano 6(1):888–896

    CAS  Google Scholar 

  163. Kneipp J, Kneipp H, Wittig B, Kneipp K (2007) One- and two-photon excited optical pH probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Lett 7:2819–2823

    CAS  Google Scholar 

  164. Talley CE, Jusinski L, Hollars CW, Lane SM, Huser T (2004) Intracellular pH sensors based on surface-enhanced Raman scattering. Anal Chem 76:7064–7068

    CAS  Google Scholar 

  165. Nowak-Lovato KL, Wilson BS, Rector KD (2010) SERS nanosensors that report pH of endocytic compartments during FcεRI transit. Anal Bioanal Chem 398:2019–2029

    CAS  Google Scholar 

  166. Kneipp J, Kneipp H, Wittig B, Kneipp K (2010) Following the dynamics of pH in endosomes of live cells with SERS nanosensors. J Phys Chem C 114:7421–7426

    CAS  Google Scholar 

  167. Zong S, Wang Z, Yang J, Cui Y (2011) Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low toxicity. Anal Chem 83:4178–4183

    CAS  Google Scholar 

  168. Balint S, Rao S, Marro M, Miskovsky P, Petrov D (2011) Monitoring of local pH in photodynamic therapy-treated live cancer cells using surface-enhanced Raman scattering probes. J Raman Spectrosc 42:1215–1221

    CAS  Google Scholar 

  169. Bishnoi SW, Rozell CJ, Levin CS, Gheith MK, Johnson BR, Johnson DH, Halas NJ (2006) All-optical nanoscale pH meter. Nano Lett 6:1687–1692

    CAS  Google Scholar 

  170. Ando RA, Pieczonka NPW, Santos PS, Aroca RF (2009) Chromic materials for responsive surface-enhanced resonance Raman scattering systems: a nanometric pH sensor. Phys Chem Chem Phys 11:7505–7508

    CAS  Google Scholar 

  171. Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie SM (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotech 26:83–90

    CAS  Google Scholar 

  172. Lee S, Kim S, Choo J, Shin SY, Lee YH, Choi HY, Ha S, Kang KH, Oh CH (2007) Biological imaging of HEK293 cells expressing PLCç1 using surface-enhanced Raman microscopy. Anal Chem 79:916–922

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Bukowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bukowska, J., Piotrowski, P. (2014). Surface-enhanced Raman Scattering (SERS) in Bioscience: A Review of Application. In: Baranska, M. (eds) Optical Spectroscopy and Computational Methods in Biology and Medicine. Challenges and Advances in Computational Chemistry and Physics, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7832-0_3

Download citation

Publish with us

Policies and ethics