Advertisement

Structural and Spatial Analysis of Carotenoids in a Single Cell Monitored by Raman Spectroscopy

  • Agnieszka KaczorEmail author
  • Marta Pilarczyk
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 14)

Abstract

Carotenoids are particularly convenient subjects to study by means of Raman spectroscopy due to very high Raman scattering cross-section associated with their chain vibrations. Raman studies of carotenoids in single cells have a variety of applications starting from monitoring of growth and morphogenesis of unicellular algae and ending with differentiation of cancerous versus non-cancerous tissues in humans. Examples illustrating the potential of Raman spectroscopy to investigate carotenoids structure and distribution with a particular impact on studies using chemometric and computational methods as a tool to analyze experimental data are reviewed in this chapter.

Keywords

carotenoids Raman imaging chemometrics quantum-chemical calculations unicellular algae 

References

  1. 1.
    Koyama Y (1995) Resonance Raman spectroscopy. In: Britton G (ed) Carotenoids Volume 1B: Spectroscopy, Birkhäuser Verlag AG, Basel, p 135–146Google Scholar
  2. 2.
    Ermakov IV, Sharifzadeh M, Ermakova M et al (2005) Resonance Raman detection of carotenoid antioxidants in living human tissue. J Biomed Opt 10:064028–064018CrossRefGoogle Scholar
  3. 3.
    Gellermann W, Bernstein PS (2004) Noninvasive detection of macular pigments in the human eye. J Biomed Opt 9:75–85CrossRefGoogle Scholar
  4. 4.
    Briviba K, Bornemann R, Lemmer U (2006) Visualization of astaxanthin localization in HT29 human colon adenocarcinoma cells by combined confocal resonance Raman and fluorescence microspectroscopy. Mol Nutr Food Res 50:991–995CrossRefGoogle Scholar
  5. 5.
    Shen A, Ye Y, Zhang J et al (2005) Screening of gastric carcinoma cells in the human malignant gastric mucosa by confocal Raman microspectroscopy. Vib Spectrosc 37:225–231CrossRefGoogle Scholar
  6. 6.
    Brozek-Pluska B, Musial J, Kordek R et al (2012) Raman spectroscopy and imaging: applications in human breast cancer diagnosis. Analyst 137:3773CrossRefGoogle Scholar
  7. 7.
    Ramoji A, Neugebauer U, Bocklitz T et al (2012) Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood. Anal Chem 84:5335–5342CrossRefGoogle Scholar
  8. 8.
    Pully V, Lenferink A, Otto C (2011) Time-lapse Raman imaging of single live lymphocytes. J Raman Spectrosc 42:167–173CrossRefGoogle Scholar
  9. 9.
    Puppels G, Garritsen H, Kummer J et al (2005) Carotenoids located in human lymphocyte subpopulations and natural killer cells by Raman microspectroscopy. Cytometry 14:251–256CrossRefGoogle Scholar
  10. 10.
    Bakker Schut TC, Puppels GJ, Kraan YM et al (1997) Intracellular carotenoid levels measured by Raman microspectroscopy: comparison of lymphocytes from lung cancer patients and healthy individuals. Int J Canc Prev 74:20–25Google Scholar
  11. 11.
    Majzner K, Kaczor A, Kachamakova-Trojanowska N et al (2013) 3D confocal Raman imaging of endothelial cells and vascular wall: perspectives in analytical spectroscopy of biomedical research. Analyst 138:603–610CrossRefGoogle Scholar
  12. 12.
    Reddy RK, Bhargava R (2010) Chemometric Methods or Biomedical Raman Spectroscopy and Imaging. In: Matousek P (ed) Emerging Raman applications and techniques in biomedical and pharmaceutical fields. Springer Berlin Heidelberg, p 179–213Google Scholar
  13. 13.
    Heraud P, Wood BR, Beardall J et al (2006) Effects of pre-processing of Raman spectra on in vivo classification of nutrient status of microalgal cells. J Chemom 20:193–197CrossRefGoogle Scholar
  14. 14.
    Heraud P, Beardall J, McNaughton D et al (2007) In vivo prediction of the nutrient status of individual microalgal cells using Raman microspectroscopy. FEMS Microbiol Lett 275:24–30CrossRefGoogle Scholar
  15. 15.
    Abbas A, Josefson M, Abrahamsson K (2011) Characterization and mapping of carotenoids in the algae Dunaliella and Phaeodactylum using Raman and target orthogonal partial least squares. Chemometr Intell Lab 107:174–177CrossRefGoogle Scholar
  16. 16.
    Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10:31–41CrossRefGoogle Scholar
  17. 17.
    Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renev Sust Energ Rev 14:557–577CrossRefGoogle Scholar
  18. 18.
    Spolaore P, Joannis-Cassan C, Duran E et al (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96CrossRefGoogle Scholar
  19. 19.
    Collins AM, Jones HD, Han D et al (2011) Carotenoid distribution in living cells of Haematococcus pluvialis (Chlorophyceae). PLoS One 6:e24302CrossRefGoogle Scholar
  20. 20.
    Tao Z, Wang G, Xu X et al (2011) Monitoring and rapid quantification of total carotenoids in Rhodotorula glutinis cells using laser tweezers Raman spectroscopy. FEMS Microbiol Lett 314:42–48CrossRefGoogle Scholar
  21. 21.
    Pilat Z, Bernatova S, Jezek J et al (2012) Raman microspectroscopy of algal lipid bodies: beta-carotene quantification. J Appl Phycol 24:541–546CrossRefGoogle Scholar
  22. 22.
    Han R-M, Zhang J-P, Skibsted LH (2012) Reaction Dynamics of Flavonoids and Carotenoids as Antioxidants. Molecules 17:2140–2160CrossRefGoogle Scholar
  23. 23.
    Wormit M, Dreuw A (2007) Quantum chemical insights in energy dissipation and carotenoid radical cation formation in light harvesting complexes. Phys Chem Chem Phys 9:2917–2931CrossRefGoogle Scholar
  24. 24.
    Wormit M, Dreuw A (2006) Carotenoid radical cation formation in LH2 of purple bacteria: a quantum chemical study. J Phys Chem 110:24200–24206Google Scholar
  25. 25.
    Walla PJ, Linden PA, Hsu C-P et al (2000) Femtosecond dynamics of the forbidden carotenoid S1 state in light-harvesting complexes of purple bacteria observed after two-photon excitation. Natl Acad Sci 97:10808–10813CrossRefGoogle Scholar
  26. 26.
    Wang Y, Hu X (2002) A quantum chemistry study of binding carotenoids in the bacterial light-harvesting complexes. J Am Chem Soc 124:8445–8451CrossRefGoogle Scholar
  27. 27.
    Neugebauer J, Veldstra J, Buda F (2011) Theoretical Spectroscopy of Astaxanthin in Crustacyanin Proteins: Absorption, Circular Dichroism, and Nuclear Magnetic Resonance. J Phys Chem B 115:3216CrossRefGoogle Scholar
  28. 28.
    van Wijk AA, Spaans A, Uzunbajakava N et al (2005) Spectroscopy and quantum chemical modeling reveal a predominant contribution of excitonic interactions to the bathochromic shift in α-crustacyanin, the Blue carotenoprotein in the carapace of the lobster Homarus gammarus. J Am Chem Soc 127:1438–1445CrossRefGoogle Scholar
  29. 29.
    Kaczor A, Turnau K, Baranska M (2011) In situ Raman imaging of astaxanthin in a single microalgal cell. Analyst 136:1109–1112CrossRefGoogle Scholar
  30. 30.
    Kaczor A, Baranska M (2011) Structural Changes of Carotenoid Astaxanthin in a Single Algal Cell Monitored in Situ by Raman Spectroscopy. Anal Chem 83:7763–7770CrossRefGoogle Scholar
  31. 31.
    Kubo Y, Ikeda T, Yang S-Y et al (2000) Orientation of carotenoid molecules in the eyespot of alga: In Situ polarized resonance Raman spectroscopy. Appl Spectrosc 54:1114–1119CrossRefGoogle Scholar
  32. 32.
    Urban PL, Schmid T, Amantonico A et al (2011) Multidimensional analysis of single algal cells by integrating microspectroscopy with mass spectrometry. Anal Chem 83:1843–1849CrossRefGoogle Scholar
  33. 33.
    Huang Y, Beal C, Cai W et al (2010) Micro-Raman spectroscopy of algae: composition analysis and fluorescence background behavior. Biotechnol Bioeng 105:889–898Google Scholar
  34. 34.
    He X, Allen J, Black P et al (2012) Coherent anti-Stokes Raman scattering and spontaneous Raman spectroscopy and microscopy of microalgae with nitrogen depletion. Biomed Opt Express 3:2896CrossRefGoogle Scholar
  35. 35.
    Lu F-K, Ji M, Fu D et al (2012) Multicolor stimulated Raman scattering microscopy. Mol Phys 110:1927–1932CrossRefGoogle Scholar
  36. 36.
    Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117CrossRefGoogle Scholar
  37. 37.
    Fan L, Vonshak A, Boussiba S (1994) Effect of temperature and irradiance on growth of Haematococcus Pluvialis (Chlorophyceae). J Phycol 30:829–833CrossRefGoogle Scholar
  38. 38.
    Tjahjono AE, Hayama Y, Kakizono T et al (1994) Hyper-accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures. Biotechnol Lett 16:133–138CrossRefGoogle Scholar
  39. 39.
    Baranska M, Baranski R, Grzebelus E et al (2011) In situ detection of a single carotenoid crystal in a plant cell using Raman microspectroscopy. Vib Spectrosc 56:166–169CrossRefGoogle Scholar
  40. 40.
    Lopez-Sanchez P, Schumm S, Pudney PD et al (2011) Carotene location in processed food samples measured by Cryo In-SEM Raman. Analyst 136:3694–3697CrossRefGoogle Scholar
  41. 41.
    Arikan Ş, Sands H, Rodway R et al (2002) Raman spectroscopy and imaging of β-carotene in live corpus luteum cells. Anim Reprod Sci 71:249–266CrossRefGoogle Scholar
  42. 42.
    O’Fallon JV, Chew BP (1984) The subcellular distribution of β-carotene in bovine corpus luteum. In: Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York, NY), vol 177, p 406–411Google Scholar
  43. 43.
    Rusciano G, Pesce G, Salemme M et al (2010) Raman spectroscopy of Xenopus laevis oocytes. Methods 51:27–36CrossRefGoogle Scholar
  44. 44.
    Dumont JN (1972) Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol 136:153–179CrossRefGoogle Scholar
  45. 45.
    Ramanauskaite RB, Segers-Nolten I, Grauw Kd et al (1997) Carotenoid levels in human lymphocytes, measured by Raman microspectroscopy. Pure Appl Chem 69:2131–2134CrossRefGoogle Scholar
  46. 46.
    Abramczyk H, Brozek-Pluska B, Surmacki J et al (2011) Raman ‘optical biopsy’of human breast cancer. Prog Biophys Mol Biol 108:74–81CrossRefGoogle Scholar
  47. 47.
    Abramczyk H, Brozek-Pluska B, Surmacki J et al (2011) The label-free Raman imaging of human breast cancer. J Mol Liq 164:123–131CrossRefGoogle Scholar
  48. 48.
    Puppels G, Garritsen H, Segers-Nolten G et al (1991) Raman microspectroscopic approach to the study of human granulocytes. Biophys J 60:1046–1056CrossRefGoogle Scholar
  49. 49.
    Bankapur A, Zachariah E, Chidangil S et al (2010) Raman tweezers spectroscopy of live, single red and white blood cells. PLoS One 5:e10427CrossRefGoogle Scholar
  50. 50.
    Chew BP, Park JS (2004) Carotenoid action on the immune response. J Nutr 134:257S–261SGoogle Scholar
  51. 51.
    Bolin AP, Macedo RC, Marin DP et al (2010) Astaxanthin prevents in vitro auto-oxidative injury in human lymphocytes. Cell Biol Toxicol 26:457–467CrossRefGoogle Scholar
  52. 52.
    Jyonouchi H, Hill RJ, Tomita Y et al (1991) Studies of immunomodulating actions of carotenoids. 1. Effects of b-carotene and astaxanthin on murine lymphocyte functions and cell surface marker expression in vitro culture system. Nutr Cancer 16:93–105CrossRefGoogle Scholar
  53. 53.
    Stacewicz-Sapuntzakis M, Bowen P, Kikendall J et al (1987) Simultaneous determination of serum retinol and various carotenoids: their distribution in middle-aged men and women. J Micronutr Anal 3:27–45Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Faculty of ChemistryJagiellonian UniversityKrakowPoland
  2. 2.Jagiellonian Centre of Experimental Therapeutics (JCET)Jagiellonian UniversityKrakowPoland

Personalised recommendations