Chemometric Analysis of Raman and IR Spectra of Natural Dyes

  • Anna RygulaEmail author
  • Paweł Miskowiec
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 14)


The use of chemometric methods in the analysis of Raman and IR spectra of dyes has opened new possibilities in the areas previously reserved only for chromatographic methods or conventional UV-vis studies. This chapter is focused on the analysis of natural dyes, especially carotenoids, flavonoids, anthraquinones and indigoids presented in biological samples e.g. plants or food. The discussed chemometric methods are implemented both in the qualitative and quantitative determination of colorants with the techniques of vibrational spectroscopy


Natural dyes Antraquinones Flavonoids Indigoids Carotenoids FTIR NIR Raman spectroscopy 



AR thanks the project “Society–Environment–Technologies” realized within the Human Capital Operational Programme by Jagiellonian University for financial support.


  1. 1.
    De Rijke E, Out P, Niessen WMA, Ariese F et al (2006) Analytical separation and detection methods for flavonoids. J Chromatogr A 1112:31–63Google Scholar
  2. 2.
    Melo MJ (2009) History of natural dyes in the ancient mediterranean world. In: Bechtold T, Mussak R (eds) Handbook of natural colorants. Wiley, ChichesterGoogle Scholar
  3. 3.
    Stuart BH (2007) Molecular spectroscopy. Analytical techniques in materials conservation. Wiley, ChichesterGoogle Scholar
  4. 4.
    Zollinger H (2003) Color chemistry: syntheses, properties, and applications of organic dyes and pigments. Wiley, ChichesterGoogle Scholar
  5. 5.
    General Introduction to the Chemistry of Dyes (2008) Some aromatic amines, organic dyes, and related exposures. IARC Working Group on the Evaluation of Carcinogenic Risks to HumansGoogle Scholar
  6. 6.
    Delgado-Vargas F, Jiménez AR, Paredes-López O (2000) Natural pigments: carotenoids, anthocyanins, and betalains-characteristics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr 40:173–289Google Scholar
  7. 7.
    Schmidt W (2005) Optical spectroscopy in chemistry and life science. Wiley-VCH, WeinheimGoogle Scholar
  8. 8.
    Wissgott U, Bortlik K (1996) Prospects for new natural food colorants. Trends Food Sci Technol 7:298–302Google Scholar
  9. 9.
    Schulz H, Baranska M (2007) Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib Spec 43:13–25Google Scholar
  10. 10.
    Baranska M, Schütz W, Schulz H (2006) Determination of lycopene and b-carotene content in tomato fruits and related products: comparison of FT-Raman, ATR-IR, and NIR spectroscopy. Anal Chem 78:8456–8461Google Scholar
  11. 11.
    Schulz H, Baranska M, Baranski R (2005) Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers 77:212–221Google Scholar
  12. 12.
    Siefermann-Harms D (1987) The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol Plant 69:561–568Google Scholar
  13. 13.
    Maia LF, de Oliveira VE, de Oliveira MER et al (2012) Polyenic pigments from the Brazilian octocoral Phyllogorgia dilatata Esper, 1806 characterized by Raman spectroscopy. J Raman Spectrosc 43:161–164Google Scholar
  14. 14.
    Pini E, Bertelli A, Stradi R, Falchi M (2004) Biological activity of parrodienes, a new class of polyunsaturated linear aldehydes similar to carotenoids. Drugs Exp Clin Res 30:203–206Google Scholar
  15. 15.
    McGraw KJ, Nogare MC (2004) Carotenoid pigments and the selectivity of psittacofulvin-based coloration systems in parrots. Comp Biochem Physiol B Biochem Mol Biol 138:229–233Google Scholar
  16. 16.
    Bechtold T (2009) Natural colorants—quinoid, naphthoquinoid and anthraquinoid dyes. In: Bechtold T, Mussak R (eds) Handbook of natural colorants. Wiley, ChichesterGoogle Scholar
  17. 17.
    Giusti MM, Wallace TC (2009) Flavonoids as natural pigments. In: Bechtold T, Mussak R (eds) Handbook of natural colorants. Wiley, ChichesterGoogle Scholar
  18. 18.
    Harborne JB, Willimas CA (2000) Advances in flavonoid research since 1992. Phytochem 55:481–804Google Scholar
  19. 19.
    Lakhanpal P, Rai DK (2007) Quercetin: a versatile flavonoid. Internet J Med Update 2:22–37Google Scholar
  20. 20.
    Schlangen K, Miosic S, Castro A et al (2009) Formation of UV-honey guides in Rudbeckia hirta. Phytochem 70:889–898Google Scholar
  21. 21.
    Andersen ØM, Markham KR (2006) Flavonoids chemistry, biochemistry and applications. CRC Press, New YorkGoogle Scholar
  22. 22.
    Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev 74:311–345Google Scholar
  23. 23.
    Markham KR, Gould KS, Ryan KG (2001) Cytoplasmic accumulation of flavonoids in flower petals and its relevance to yellow flower colouration. Phytochemistry 58:403–413Google Scholar
  24. 24.
    John P, Angelini LG (2009) Indigo—agricultural aspects. In: Bechtold T, Mussak R (eds) Handbook of natural colorants. Wiley, ChichesterGoogle Scholar
  25. 25.
    Schweppe H (1993) Handbuch der Naturfarbstoffe. Nikol Verlagsgesellschaft, HamburgGoogle Scholar
  26. 26.
    Cooksey CJ (2001) Tyrian Purple: 6,6’-Dibromoindigo and related compounds. Molecules 6:736–769Google Scholar
  27. 27.
    Schrader B, Klump HH, Schenzel K, Schulz H (1999) Non-destructive NIR-FT Raman analysis of plants. J Mol Stuct 509:201–212Google Scholar
  28. 28.
    Schrader B, Schulz H, Andreev GN et al (2000) Non-destructive NIR-FT-Raman spectroscopy of plant and animal tissues, of food and works of art. Talanta 53:35–45Google Scholar
  29. 29.
    Dietzek B, Cialla D, Schmitt M, Popp J (2010) Introduction to the fundamentals of Raman spectroscopy. In: Dieing T, Hollricher O, Toporski J (eds) Confocal Raman spectroscopy. Springer, BerlinGoogle Scholar
  30. 30.
    Aroca R (2006) Surface-enhanced vibrational spectroscopy. Wiley, ChichesterGoogle Scholar
  31. 31.
    Jurasekova Z, del Puerto E, Bruno G et al (2010) Extractionless non-hydrolysis surface-enhanced Raman spectroscopic detection of historical mordant dyes on textile fibers. J Raman Spectrosc 41:1455–1461Google Scholar
  32. 32.
    Bruni S, Gugliemi V, Pozzi F (2011) Historical organic dyes: a surface-enhanced Raman scattering (SERS) spectral database on Ag Lee–Meisel colloids aggregated by NaClO4. J Raman Spectrosc 42:1267–1281Google Scholar
  33. 33.
    Pozzi F, Lombardi JR, Bruni S, Leona M (2012) Sample treatment considerations in the analysis of organic colorants by surface-enhanced Raman scattering. Anal Chem 84:3751–3757Google Scholar
  34. 34.
    Casadio F, Leona M, Lombardi JR, Van Duyne R (2010) Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy. Acc Chem Res 43:782–791Google Scholar
  35. 35.
    Hering K, Cialla D, Ackermann K et al (2008) SERS: a versatile tool in chemical and biochemical diagnostics. Anal Bioanal Chem 390:113–124Google Scholar
  36. 36.
    Madariaga JM (2012) Identification of dyes and pigments by vibrational spectroscopy. In: Chalmers JM, Edwards HGM, Hargreaves MD (eds) Infrared and Raman Spectroscopy in forensic science. Wiley, ChichesterGoogle Scholar
  37. 37.
    Dent G (2006) Vibrational spectroscopy of colors dyes and pigments In: Griffiths P, Chalmers JM (eds) Handbook of vibrational spectroscopy. Wiley, ChichesterGoogle Scholar
  38. 38.
    Mirabella FM (2006) Principles, theory and practice of internal reflection spectroscopy. In: Griffiths P, Chalmers JM (eds) Handbook of vibrational spectroscopy. Wiley, ChichesterGoogle Scholar
  39. 39.
    Kokot S, Crawford K, Rintoul L, Meyer U (1997) A DRIFTS study of reactive dye states on cotton fabric. Vib Spectrosc 15:103–111Google Scholar
  40. 40.
    Navas N, Romero-Pastor J, Manzano E, Cardell C (2008) Benefits of applying combined diffuse reflectance FTIR spectroscopy and principal component analysis for the study of blue tempera historical painting. Anal Chim Acta 630:141–149Google Scholar
  41. 41.
    Baran A, Fiedler A, Schulz H, Baranska M (2010) In situ Raman and IR spectroscopic analysis of indigo dye. Anal Methods 2:1372–1376Google Scholar
  42. 42.
    Bruni S, Caglio S, Guglielmi V, Poldi G (2008) The joined use of n.i. spectroscopic analyses—FTIR, Raman, visible reflectance spectrometry and EDXRF—to study drawings and illuminated manuscripts. Appl Phys A 92:103–108Google Scholar
  43. 43.
    Rubio-Diaz DE, Francis DM, Rodriguez-Saona LE (2011) External calibration models for the measurement of tomato carotenoids by infrared spectroscopy. J Food Comp Anal 24:121–126Google Scholar
  44. 44.
    Casadio F, Toniolo L (2001) The analysis of polychrome works of art: 40 years of infrared spectroscopic investigations, J Cult Herit 2:71–78Google Scholar
  45. 45.
    Wang XF, Yu J, Zhang AL et al (2012) Nondestructive identification for red ink entries of seals by Raman and Fourier transform infrared spectrometry. Spectrochim Acta A 97:986–994Google Scholar
  46. 46.
    Koperska M, Lojewski T, Lojewska J (2011) Vibrational spectroscopy techniques to study degradation of natural dyes. Assessment of oxygen-free cassette for safe exposition of artefacts. Anal Bioanal Chem 399:3271–3283Google Scholar
  47. 47.
    Miliani C, Domenici D, Clementi C et al (2012) Colouring materials of pre-Columbian codices: non-invasive in situ spectroscopic analysis of the Codex Cospi. J Archaeol Sci 39:672–679Google Scholar
  48. 48.
    Saurina J (2010) Characterization of wines using compositional profiles and chemometrics. TrAC-Trend Anal Chem 29:234–245Google Scholar
  49. 49.
    Pappas CS, Takidelli C, Tsantili E et al (2011) Quantitative determination of anthocyanins in three sweet cherry varieties using diffuse reflectance infrared Fourier transform spectroscopy. J Food Comp Anal 24:17–21Google Scholar
  50. 50.
    Bauer R, Nieuwoudt H, Bauer FF et al (2008) FTIR spectroscopy for grape and wine analysis. Anal Chem 80:1371–1379Google Scholar
  51. 51.
    Strachan CJ, Rades T, Gordon KC, Ranten J (2007) Raman spectroscopy for quantitative analysis of pharmaceutical solids. J Pharm Pharmacol 59:179–192Google Scholar
  52. 52.
    Blanco M, Villarroya I (2002) NIR spectroscopy: a rapid-response analytical tool. TrAC-Trends Anal Chem 21:240–250Google Scholar
  53. 53.
    Davey MW, Saeys W, Hof E et al (2009) Application of Visible and Near-Infrared Reflectance Spectroscopy (Vis/NIRS) to determine carotenoid contents in banana (Musa spp.) fruit pulp. J Agric Food Chem 57:1742–1751Google Scholar
  54. 54.
    Sharpe PJH, Barber HN (1972) Near infrared reflectance of colored fruits. Appl Opt 11:2902–2906Google Scholar
  55. 55.
    Næs T, Isaksson T, Fearn T, Davies T (2002) A user-friendly guide to multivariate calibration and classification. NIR Publications, ChichesterGoogle Scholar
  56. 56.
    Reich G (2005) Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications. Adv Drug Deliv Rev 57:1109–1143Google Scholar
  57. 57.
    Berardo N, Brenna OV, Amato A, Valotia P, Pisacanea V, Mottoa M (2004) Carotenoids concentration among maize genotypes measured by near infrared reflectance spectroscopy (NIRS). Innov Food Sci Emerg 5:393–398Google Scholar
  58. 58.
    Pedro AM, Ferreira MM (2005) Nondestructive determination of solids and carotenoids in tomato products by near-infrared spectroscopy and multivariate calibration. Anal Chem 77:2505–2511.Google Scholar
  59. 59.
    Brenna OV, Berardo N (2004) Application of Near-Infrared Reflectance Spectroscopy (NIRS) to the evaluation of carotenoids content in maize. J Agric Food Chem 52:5577–5582.Google Scholar
  60. 60.
    Treado PJ, Nelson MP (2002) Raman imaging. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy. John Wiley & Sons Ltd., ChichesterGoogle Scholar
  61. 61.
    Gierlinger N, Schwanninger M (2007) The potential of Raman microscopy and Raman imaging in plant research—review. Spectroscopy 21: 69–89Google Scholar
  62. 62.
    Dieing T, Ibach W (2010) Raman microscopy. In: Dieing T, Hollricher O Toporski J (eds) Confocal Raman microscopy. Springer-Verlag Berlin HeidelbergGoogle Scholar
  63. 63.
    De Juan A, Maeder M, Hancewicz T, Duponchel L, Tauler R (2009) Chemometric tools for image analysis. In: Salzer R, Siesler HW (eds) Infrared an Raman spectroscopic imaging. Wiley-VCH, ChichesterGoogle Scholar
  64. 64.
    Noda I, Ozaki Y (2004) Two-Dimensional correlation spectroscopy: Applications in vibrational and optical spectroscopy. Wiley, ChichesterGoogle Scholar
  65. 65.
    Brereton RG (2007) Applied chemometrics for scientists. Wiley, ChichesterGoogle Scholar
  66. 66.
    Baranska M, Schulz H, Joubert E, Manley M (2006) In situ flavonoid analysis by FT-Raman spectroscopy: identification, distribution, and quantification of aspalathin in green rooibos (Aspalathus linearis). Anal Chem 78:7716–7721Google Scholar
  67. 67.
    Baranski R, Baranska M, Schulz H (2005) Changes in carotenoid content and distribution in living plant tissue can be observed and mapped in situ using NIR-FT-Raman spectroscopy. Planta 222:448–457Google Scholar
  68. 68.
    Withnall R, Chowdry BZ, Silver J, Edwards HGM, de Oliveira LFC (2003) Raman spectra of carotenoids in natural products. Spectrochim Acta A 59:2207–2212Google Scholar
  69. 69.
    Veronelli M Zerbi G, Stradi R (1995) In situ resonance Raman spectra of carotenoids in bird’s feathers. J Raman Spectrosc 26:683–692Google Scholar
  70. 70.
    De Oliveira VE, Castro HV, Edwards HGM, de Oliveira LFC (2010) Carotenes and carotenoids in natural biological samples: a Raman spectroscopic analysis. J Raman Spectrosc 41:642–650Google Scholar
  71. 71.
    Gamsjaeger S, Baranska M, Schulz H, Heiselmayer P, Musso M (2011) Discrimination of carotenoid and flavonoid content in petals of pansy cultivars (Viola x wittrockiana) by FT-Raman spectroscopy. J Raman Spectrosc 42:1240–1247Google Scholar
  72. 72.
    Kaczor A, Turnau K, Baranska M (2011) In situ Raman imaging of astaxanthin in a single microalgal cell. Analyst 136:1109–1112Google Scholar
  73. 73.
    Huang YY, Beal CM, Cai WW, Ruoff RS, Terentjev EM (2010) Micro-Raman spectroscopy of algae: composition analysis and fluorescence background behavior. Biotechnol Bioeng 105:889–898Google Scholar
  74. 74.
    Bartlett H, Howells O, Eperjesi F (2010) The role of macular pigment assessment in clinical practice: a review. Clin Exp Optom 93:300–308Google Scholar
  75. 75.
    Bernstein PS, Zhao D-Y, Sharifzadeh M, Ermakov IV, Gellermann W (2004) Resonance Raman measurement of macular carotenoids in the living human eye. Arch Biochem Biophys 430:163–169Google Scholar
  76. 76.
    Tanito M, Obana A, Gohto Y, Okazaki S, Gellermann W, Ohira A (2012) Macular pigment density changes in Japanese individuals supplemented with lutein or zeaxanthin: quantification via resonance Raman spectrophotometry and autofluorescence imaging. Jpn J Ophthalmol 56:488–496Google Scholar
  77. 77.
    Howells O, Eperjesi F, Bartlett H (2011) Measuring macular pigment optical density in vivo: a review of techniques. Graefes Arch Clin Exp Ophthalmol 249:315–347Google Scholar
  78. 78.
    Casella M, Lucotti A, Tommasini M, Bedoni M, Forvi E, Gramatica F, Zerbi G (2011) Raman and SERS recognition of β-carotene and haemoglobin fingerprints in human whole blood. Spectrochim Acta Part A 79:915–919Google Scholar
  79. 79.
    Darvin ME, Gersonde I, Meinke M, Sterry W, Lademann J (2005) Non-invasive in vivo determination of the carotenoids beta-carotene and lycopene concentrations in the human skin using the Raman spectroscopic method. J Phys D: Appl Phys 38:2696–2700Google Scholar
  80. 80.
    Maia LF, Fleury BG, Lages BG, Barbosa JP, Pinto AC, Castro HV, de Oliveira VE, Edwards HGM, de Oliveira LFC (2011) Identification of reddish pigments in octocorals by Raman spectroscopy. J Raman Spectrosc 42:653–658Google Scholar
  81. 81.
    Hedegaard C, Bardeau J-F, Chateigner D (2006) Molluscan shell pigments: an in situ resonance Raman study. J Molluscan Stud 72:157–162Google Scholar
  82. 82.
    Barnard W, de Waal D (2006) Raman investigation of pigmentary molecules in the molluscan biogenic matrix. J Raman Spectrosc 37:342–352Google Scholar
  83. 83.
    Anastasaki EG, Kanakis HD, Pappas C, Maggi L, Zalacain A, Carmona M, Alonso GL, Polissiou MG (2010) Quantification of crocetin esters in saffron (Crocus sativus L.) using Raman spectroscopy and chemometrics. J Agric Food Chem 58:6011–6017Google Scholar
  84. 84.
    Bhosale P, Ermakov IV, Ermakova MR, Gellermann W, Bernstein PS (2004) Resonance Raman quantification of nutritionally important carotenoids in fruits, vegetables, and their juices in comparison to high-pressure liquid chromatography analysis. J Agric Food Chem 52:3281–3285Google Scholar
  85. 85.
    Edwards HGM, Cockell CS, Newton EM, Wynn-Williams DD (2004) Protective pigmentation in UVB-screened Antarctic lichens studied by Fourier transform Raman spectroscopy: an extremophile bioresponse to radiation stress. J Raman Spectrosc 35:463–469Google Scholar
  86. 86.
    Doka O, Bicanic D, Buijnsters JG, Spruijt R, Luterotti S Vegvari G (2010) Exploiting direct and indirect methods for the detection of the total carotenoid content in dried pastas. Eur Food Res Technol 230:813–819Google Scholar
  87. 87.
    Lunde K, Zechmeister L (1955) Infrared Spectra and cis-trans configurations of some carotenoid pigments. J Am Chem Soc 77:1647–1653Google Scholar
  88. 88.
    De Nardo T, Shiroma-Kian C, Halim Y, Francis D, Rodriguez-Saona L (2009) Rapid and simultaneous determination of lycopene and beta-carotene contents in tomato juice by infrared spectroscopy. J Agr Food Chem 57:1105–1112Google Scholar
  89. 89.
    Ruiz D, Reich M, Bureau S, Renard CM, Audergon JM (2008) Application of reflectance colorimeter measurements and infrared spectroscopy methods to rapid and nondestructive evaluation of carotenoids content in apricot (Prunus armeniaca L.). J Agr Food Chem 56:4916–4922Google Scholar
  90. 90.
    Rubio-Diaz DE, De Nardo T, Santos A, de Jesus S, Francis D Rodriguez-Saon LE (2010) Profiling of nutritionally important carotenoids from genetically-diverse tomatoes by infrared spectroscopy. Food Chem 20:282–289Google Scholar
  91. 91.
    Marquez AJ (2003) Monitoring carotenoid and chlorophyll pigments invirginolive oil by visible-near infrared transmittance spectroscopy. On-line application. J Near Infrared Spec 11:219–226Google Scholar
  92. 92.
    Merlin J-C, Statoua A Brouillard R (1985) Investigation of the in vivo organization of anthocyanins using resonance Raman microspectrometry. Phytochem 24:1575–1581Google Scholar
  93. 93.
    Numata Y, Tanaka H (2011) Quantitative analysis of quercetin using Raman spectroscopy. Food Chemistry 126:751–755Google Scholar
  94. 94.
    Lu X, Ross CF, Powers JR, Rasco BA (2011) Determination of quercetins in onion (Allium cepa) using infrared spectroscopy. J Agric Food Chem 59:6376–6382Google Scholar
  95. 95.
    Merlin JC, Statoua A, Cornard JP, Saidi-Idrissi M, Brouillard R (1994) Resonance Raman spectroscopic studies of anthocyanins and anthocyanidins in aqueous solutions. Phytochem 35:227–232Google Scholar
  96. 96.
    Lu X, Wang J, Hamzah M Al-Qadiri HM, Ross CF, Powers JR, Tang J, Rasco BA (2011) Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy Food Chem 129:637–644Google Scholar
  97. 97.
    Lu X, Ross CF, Powers JR, Aston DE, Rasco BA (2011) Determination of total phenolic content and antioxidant activity of garlic (Allium sativum) and elephant garlic (Allium ampeloprasum) by attenuated total reflectance—Fourier transformed infrared spectroscopy. J Agr Food Chem 59:5215–5221Google Scholar
  98. 98.
    Zuo L, Sun Sq, Zhou Q, Tao Jx, Noda I (2003) 2D-IR correlation analysis of deteriorative process of traditional Chinese medicine ‘Qing Kai Ling’ injection. J Pharm Biomed Anal 30:1491–1498Google Scholar
  99. 99.
    Adiana MA Mazura MP (2011) Study on Senna alata and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation infrared spectroscopy. J Mol Struct 991:84–91Google Scholar
  100. 100.
    Sinelli N, Spinardi A, Di Egidio V, Mignani I Casiraghi E (2008) Evaluation of quality and nutraceutical content in blueberries (Vaccinium corymbosum L.) by near and mid-infrared spectroscopy. Postharvest Biol Tec 50:31–36Google Scholar
  101. 101.
    Kemsley EK, Holland JK, Defernez M Wilson RH (1996) Detection of adulteration of raspberry purees using infrared spectroscopy and chemometrics. J Agric Food Chem 44:3864–3870Google Scholar
  102. 102.
    Lam HS, Proctor A, Howard L Cho MJ (2005) Rapid fruit extracts antioxidant capacity determination by Fourier transform infrared spectroscopy. J Food Sci 70:C545–C549Google Scholar
  103. 103.
    Shi JY, Zou XB, Zhao JW, Mel H, Wang KL, Wang X Chen H (2012) Determination of total flavonoids content in fresh Ginkgo biloba leaf with different colors using near infrared spectroscopy. Spectrochim Acta A 94:271–276Google Scholar
  104. 104.
    Edwards HGM, Newton EM, Wynn-Williams DD, Coombes SR (2003) Molecular spectroscopic studies of lichen substances. 1. Parietin and emodin. J Mol Struct 648:49–59Google Scholar
  105. 105.
    Edwards HGM, Newton EM, Wynn-Williams DD, Dickensheets D, Schoen C, Crowder C (2003) Laser wavelength selection for Raman spectroscopy of microbial pigments in situ in Antarctic desert ecosystem analogues of former habitats on Mars. Int J Astrobiology 1:333–348Google Scholar
  106. 106.
    Edwards HGM, Newton EM, Wynn-Williams DD, Lewis-Smith RI (2003) Non-destructive analysis of pigments and other organic compounds in lichens using Fourier-transform Raman spectroscopy: a study of Antarctic epilithic lichens. Spectrochim Acta A 59:2301–2309Google Scholar
  107. 107.
    Bruni S, Gugliemi V, Pozzi F (2010) Surface-enhanced Raman spectroscopy (SERS) on silver colloids for the identification of ancient textile dyes: Tyrian purple and madder. J Raman Spectrosc 41:175–180Google Scholar
  108. 108.
    Lofrumento C, Ricci M, Platania E, Beucci M, Castellucci E (2013) SERS detection of red organic dyes in Ag-agar gel. J Raman Spectrosc 44:47–54Google Scholar
  109. 109.
    Leona M, Decuzzi P, Kubic TA, Gates G, Lombardi JR (2011) Nondestructive identification of natural and synthetic organic colorants in works of art by surface enhanced Raman scattering. Anal Chem 83:3990–3993Google Scholar
  110. 110.
    Coupry C, Sagon G, Goruet-Ballesteros P (1997) Raman spectroscopic investigation of blue contemporary textiles. J Raman Spectrosc 28:85–89Google Scholar
  111. 111.
    Fiedler A, Baranska M, Schulz H (2011) FT-Raman spectroscopy—a rapid and reliable quantification protocol for the determination of natural indigo dye in Polygonum tinctorium. J Raman Spectrosc 42:551–557Google Scholar
  112. 112.
    Vandenabeele P, Moens L (2003) Micro-Raman spectroscopy of natural and synthetic indigo samples. Analyst 128:187–193Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Faculty of ChemistryJagiellonian UniversityKrakowPoland

Personalised recommendations