Advertisement

General Overview on Vibrational Spectroscopy Applied in Biology and Medicine

  • Malgorzata BaranskaEmail author
  • Maciej Roman
  • Katarzyna Majzner
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 14)

Abstract

This chapter contains a short introduction to vibrational spectroscopy followed by an overview on its biological and biomedical applications. The spectroscopic techniques discussed in the book and their special advantages are briefly listed, i.e. Surface-Enhanced Raman Spectroscopy (SERS), Raman Optical Activity (ROA), Vibrational Circular Dichroism (VCD), Electronic Circular Dichroism (ECD) and matrix isolation.

The potential of vibrational spectroscopy is demonstrated by the current state of the art in secondary and primary plant components analysis performed in the tissue and from the single cells. Both Raman and IR spectroscopy are shown as powerful tools in medical diagnosis, cytology and histopathology. A brief overview on biomedical vibrational spectroscopy used to investigate lifestyle diseases is provided.

Keywords

Surface-Enhanced Raman Spectroscopy (SERS) Raman Optical Activity (ROA) Vibrational Circular Dichroism (VCD) Electronic Circular Dichroism (ECD) Matrix isolation Biological and biomedical application 

References

  1. 1.
    Chalmers JM, Griffiths PR (eds) (2002) Handbook of vibrational spectroscopy, vol 1–5. Wiley, ChichesterGoogle Scholar
  2. 2.
    Guerrini L, Jurasekova Z, Domingo C, Pérez-Méndez M, Leyton P, Campos-Vallette M, Garcia-Ramos JV, Sanchez-Cortes S (2007) Importance of metal–adsorbate interactions for the surface-enhanced Raman scattering of molecules adsorbed on plasmonic nanoparticles. Plasmonics 2:147–156CrossRefGoogle Scholar
  3. 3.
    Lombardi JR, Birke RL (2009) A unified view of surface-enhanced Raman scattering. Acc Chem Res 42(6):734CrossRefGoogle Scholar
  4. 4.
    Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and Raman spectroscopy. Academic Press, San DiegoGoogle Scholar
  5. 5.
    Ozaki Y, Cho R, Ikegawa K, Muraishi S, Kawauchi K (1992) Appl. Spectrosc 46:1503CrossRefGoogle Scholar
  6. 6.
    Withnall R, Chowdhry BZ, Silver J, Edwards HGM, de Oliveira LFC (2003) Spectrochim Acta A 59:2207Google Scholar
  7. 7.
    Himmelsbach DS, Khahili S, Akin DE (1999) Vib Spectrosc 19:361–367Google Scholar
  8. 8.
    Gierlinger N, Schwanninger M (2006) Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol 140(4):1246–1254CrossRefGoogle Scholar
  9. 9.
    Gierlinger N, Burgert I (2006) Secondary cell wall polymers studied by Confocal Raman microscopy: spatial distribution, orientation and molecular deformation. New Zeal J For Sci 36(1):60–71Google Scholar
  10. 10.
    Rösch P, Schneider H, Zimmermann U, Kiefer W, Popp J (2004) In situ Raman investigation of single lipid droplets in the water-conducting xylem of four woody plant species. Biopolymers 74(1–2):151–156CrossRefGoogle Scholar
  11. 11.
    Baranska M, Baranski R, Grzebelus E, Roman M (2011) Vib Spectrosc 56:166–169Google Scholar
  12. 12.
    Kaczor A, Turnaub K, Baranska M (2011) Analyst 136:1109–1112Google Scholar
  13. 13.
    Collins AM, Jones HDT, Han D, Hu Q, Beechem TE, Timlin JA (2011) PLoS ONE 6(9):e24302Google Scholar
  14. 14.
    Gou J-Y, Park S, Yu X-H, Miller LM, Liu C-J (2008) Planta 229:15–24Google Scholar
  15. 15.
    Fackler K, Stevanic JS, Ters T, Hinterstoisser B, Schwanninger M, Salmén L (2010) Enzyme Microb Tech 47:257–267Google Scholar
  16. 16.
    Yin Y, Berglund L, Salmen L (2011) Biomacromolecules 12:194–202Google Scholar
  17. 17.
    Labbe N, Rials TG, Kelley SS, Cheng Z-M, Kim J-Y, Li Y (2005) Wood Sci Technol 39:61–77Google Scholar
  18. 18.
    Toole GA, Wilson RH, Parker ML, Wellner NK, Wheeler TR, Shewry PR, Mills ENC (2007) Planta 225:1393–1403Google Scholar
  19. 19.
    Barron C, Parker ML, Mills ENC, Rouau X, Wilson RH (2005) FTIR imaging of wheat endosperm cell walls in situ reveals compositional and architectural heterogeneity related to grain hardness. Planta 220:667–677CrossRefGoogle Scholar
  20. 20.
    Gorzsas A, Stenlund S, Persson P, Trygg J, Sundberg B (2011) Plant J 66:903–914Google Scholar
  21. 21.
    Wetzel DL, Eilert AJ, Pietrzak LN, Miller SS, Sweat JA (1998) Ultraspatially-resolved synchrotron infrared microspectroscopy of plant tissue in situ. Cell Mol Biol 44:145–167Google Scholar
  22. 22.
    Heraud P, Caine S, Sanson G, Gleadow R, Wood BR, McNaughton D (2007) New Phytol 173:216–225Google Scholar
  23. 23.
    Blout Elkan R, Mellors Robert C (1949) Infrared spectra of tissues. Science 110:137–138CrossRefGoogle Scholar
  24. 24.
    Schwarz H (1951) Infrared spectra of tissues. Appl Spectrosc 6:15–18CrossRefGoogle Scholar
  25. 25.
    Woernley D (1952) Infrared absorption curves for normal and neoplastic tissues and related biological substances. Cancer Res 12:516–523Google Scholar
  26. 26.
    Mellors R (1953) Microscopy. I: a review. Cancer Res 13:101–118Google Scholar
  27. 27.
    Bordner RH, Kabler PW, Kenner B et al (1956) Bacterial identification by infrared spectrophotometry. J Bacteriol 72:593–603Google Scholar
  28. 28.
    Short KW, Carpenter S, Freyer JP et al (2005) Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures. Biophys J 88:4274–4288CrossRefGoogle Scholar
  29. 29.
    Miljkovic M, Romeo M, Matthäus C et al (2009) Infrared Microspectroscopy of Individual Human Cervical Cancer (HeLa) Cells Suspended in Growth Medium. Biopolymers 74:172–175CrossRefGoogle Scholar
  30. 30.
    Wood BR, Tait B, McNaughton D (2001) Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte. Biochim Biophys Acta 1539:58–70CrossRefGoogle Scholar
  31. 31.
    Kuimova MK, Chan KLA, Kazarian SG (2009) Chemical imaging of live cancer cells in the natural aqueous environment. Appl Spectrosc 63:164–171CrossRefGoogle Scholar
  32. 32.
    Bonnier F, Byrne HJ (2012) Understanding the molecular information contained in principal component analysis of vibrational spectra of biological systems. Analyst 137:322–332CrossRefGoogle Scholar
  33. 33.
    Tang H, Yao H, Wang G et al (2007) NIR Raman spectroscopic investigation of single mitochondria trapped by optical tweezers. Opt Express 15:12708–12716CrossRefGoogle Scholar
  34. 34.
    Lasch P, Pacifico A, Diem M (2002) Spatially resolved IR microspectroscopy of single cells. Biopolymers 67:335–338CrossRefGoogle Scholar
  35. 35.
    Lasch P, Boese M, Pacifico A et al (2002) FT-IR spectroscopic investigations of single cells on the subcellular level. Vib Spectrosc 28:147–157CrossRefGoogle Scholar
  36. 36.
    Krafft C, Knetschke T, Funk RHW et al (2006) Studies on stress-induced changes at the subcellular level by Raman microspectroscopic mapping. Anal Chem 78:4424–4429CrossRefGoogle Scholar
  37. 37.
    Majzner K, Kaczor A, Kachamakova-Trojanowska N et al (2013) 3D confocal Raman imaging of endothelial cells and vascular wall: perspectives in analytical spectroscopy of biomedical research. Analyst 138:603–610CrossRefGoogle Scholar
  38. 38.
    Holman HY, Martin MC, Blakely EA et al (2000) IR spectroscopic characteristics of cell cycle and cell death probed by synchrotron radiation based Fourier transform IR spectromicroscopy. Biopolymers 57:329–335CrossRefGoogle Scholar
  39. 39.
    Zelig U, Kapelushnik J, Moreh R et al (2009) Diagnosis of cell death by means of infrared spectroscopy. Biophys J 97:2107–2114CrossRefGoogle Scholar
  40. 40.
    Liu KZ, Jia L, Kelsey SM et al (2001) Quantitative determination of apoptosis on leukemia cells by infrared spectroscopy. Apoptosis 6:269–278CrossRefGoogle Scholar
  41. 41.
    Fass L (2008) Imaging and cancer: a review. Mol Oncol 2:115–152CrossRefGoogle Scholar
  42. 42.
    Harris AT, Rennie A, Waqar-Uddin H et al (2010) Raman spectroscopy in head and neck cancer. Head Neck Oncol 2:26CrossRefGoogle Scholar
  43. 43.
    Kendall C, Isabelle M, Bazant-Hegemark F et al (2009) Vibrational spectroscopy: a clinical tool for cancer diagnostics. Analyst 134:1029–1045CrossRefGoogle Scholar
  44. 44.
    Brozek-Pluska B, Musial J, Kordek R et al (2012) Raman spectroscopy and imaging: applications in human breast cancer diagnosis. Analyst 137:3773–3780CrossRefGoogle Scholar
  45. 45.
    Abramczyk H, Placek I, Bro B (2008) Human breast tissue cancer diagnosis by Raman spectroscopy. Spectroscopy 22:113–121CrossRefGoogle Scholar
  46. 46.
    Bergner N, Krafft C, Geiger KD et al (2012) Unsupervised unmixing of Raman microspectroscopic images for morphochemical analysis of non-dried brain tumor specimens. Anal BioAnal Chem 403:719–725CrossRefGoogle Scholar
  47. 47.
    Kast R, Serhatkulu G, Cao A (2008) Raman spectroscopy can differentiate malignant tumors from normal breast tissue and detect early neoplastic changes in a mouse model. Biopolymers 89:235–241CrossRefGoogle Scholar
  48. 48.
    Draga ROP, Grimbergen MCM, Vijverberg PLM et al (2010) In vivo bladder cancer diagnosis by high-volume Raman spectroscopy. Anal Chem 82:5993–5999CrossRefGoogle Scholar
  49. 49.
    Barman I, Dingari NC, Singh GP et al (2012) Selective sampling using confocal Raman spectroscopy provides enhanced specificity for urinary bladder cancer diagnosis. Anal Bioanal Chem 404:3091–3099CrossRefGoogle Scholar
  50. 50.
    Harvey TJ, Gazi E, Henderson A et al (2009) Factors influencing the discrimination and classification of prostate cancer cell lines by FTIR microspectroscopy. Analyst 134:1083–1091CrossRefGoogle Scholar
  51. 51.
    Bhargava R (2007) Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology. Anal Bioanal Chem 389:1155–1169CrossRefGoogle Scholar
  52. 52.
    Bhargava R, Fernandez DC, Hewitt SM et al (2006) High throughput assessment of cells and tissues: Bayesian classification of spectral metrics from infrared vibrational spectroscopic imaging data. Biochim Biophys Acta 1758:830–845CrossRefGoogle Scholar
  53. 53.
    Teh SK, Zheng W, Ho KY et al (2008) Diagnostic potential of near-infrared Raman spectroscopy in the stomach: differentiating dysplasia from normal tissue. Br J Cancer 98:457–465CrossRefGoogle Scholar
  54. 54.
    Stone N, Stavroulaki P, Kendall C et al (2000) Raman spectroscopy for early detection of laryngeal malignancy: preliminary results. Laryngoscope 110:1756–1763CrossRefGoogle Scholar
  55. 55.
    Lyng FM, Faoláin EO, Conroy J et al (2007) Vibrational spectroscopy for cervical cancer pathology, from biochemical analysis to diagnostic tool. Exp Mol Pathol 82:121–129CrossRefGoogle Scholar
  56. 56.
    Huang Z, McWilliams A, Lui H et al (2003) Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int J Cancer 107:1047–1052CrossRefGoogle Scholar
  57. 57.
    Kaminaka S, Yamazaki H, Ito T et al (2001) Near-infrared Raman spectroscopy of human lung tissues: possibility of molecular-level cancer diagnosis. J Raman Spectrosc 32:139–141CrossRefGoogle Scholar
  58. 58.
    Eckel R, Huo H, Guan H-W et al (2001) Characteristic infrared spectroscopic patterns in the protein bands of human breast cancer tissue. Vib Spectrosc 27:165–173CrossRefGoogle Scholar
  59. 59.
    Walsh MJ, Kajdacsy-Balla A, Holton SE et al (2012) Attenuated total reflectance Fourier-transform infrared spectroscopic imaging for breast histopathology. Vib Spectrosc 60:23–28CrossRefGoogle Scholar
  60. 60.
    Bitar Carter RA, Martin AA, Netto MM et al (2004) FT-Raman spectroscopy study of human breast tissue. In: Mahadevan-Jansen A, Sowa MG, Puppels GJ et al (eds) Proc. SPIE 5321, Biomedical vibrational spectroscopy and biohazard detection technologies. Bellingham, WA, pp 190–197Google Scholar
  61. 61.
    Abramczyk H, Brozek-Pluska B, Surmacki J et al (2011) The label-free Raman imaging of human breast cancer. J Mol Liq 164:123–131CrossRefGoogle Scholar
  62. 62.
    Abramczyk H, Brozek-Pluska B, Surmacki J et al (2012) Raman “optical biopsy” of human breast cancer. Prog Biophys Mol Biol 108:74–81CrossRefGoogle Scholar
  63. 63.
    Shetty G, Kendall C, Shepherd N et al (2006) Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. Br J Cancer 94:1460–1464CrossRefGoogle Scholar
  64. 64.
    Larraona-Puy M, Ghita A, Zoladek A et al (2012) Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma. J Biomed Opt 14:054031CrossRefGoogle Scholar
  65. 65.
    Nijssen A, Bakker Schut TC, Heule F et al (2002) Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy. J Invest Dermatol 119:64–69CrossRefGoogle Scholar
  66. 66.
    Puppels GJ, De Mul FF, Otto C et al (1990) Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature 347:301–303CrossRefGoogle Scholar
  67. 67.
    Fabian H, Choo LI, Szendrei GI et al (1993) Infrared spectroscopic characterization of Alzheimer plaques. Appl Spectrosc 47:1513–1518CrossRefGoogle Scholar
  68. 68.
    Mizuno A, Kitajima H, Kawauchi K et al (1994) Near-infrared Fourier transform Raman spectroscopic study of human brain tissues and tumours. J Raman Spectrosc 25:25–29CrossRefGoogle Scholar
  69. 69.
    Tabas I (2008) Lipids and atherosclerosis. In: Vance J, Vance D (eds) Biochemistry of lipids, lipoproteins and membranes, 5th ed. Elsevier, Oxford, pp 579–604Google Scholar
  70. 70.
    Peres MB, Silveira L, Zângaro RA et al (2011) Classification model based on Raman spectra of selected morphological and biochemical tissue constituents for identification of atherosclerosis in human coronary arteries. Lasers Med Sci 26:645–655CrossRefGoogle Scholar
  71. 71.
    Wang H-W, Langohr IM, Sturek M et al (2009) Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy. Arterioscler Thromb Vasc Biol 29:1342–1348CrossRefGoogle Scholar
  72. 72.
    Motz JT, Fitzmaurice M, Haka AS et al (2006) In vivo Raman spectral pathology of human atherosclerosis and vulnerable plaque. J Biomed Opt 11:1–9Google Scholar
  73. 73.
    Toyran N, Lasch P, Naumann D et al (2006) Early alterations in myocardia and vessels of the diabetic rat heart: an FTIR microspectroscopic study. Biochem J 397:427–436CrossRefGoogle Scholar
  74. 74.
    Khalil OS (1999) Spectroscopic and clinical aspects of noninvasive glucose measurements. Clin Chem 45:165–177Google Scholar
  75. 75.
    Petibois C, Gionnet K, Gonçalves M et al (2006) Analytical performances of FT-IR spectrometry and imaging for concentration measurements within biological fluids, cells, and tissues. Analyst 131:640–647CrossRefGoogle Scholar
  76. 76.
    Ermakov IV, Ermakova MR, McClane RW et al (2001) Resonance Raman detection of carotenoid antioxidants in living human tissues. Opt Lett 26:1179–1181CrossRefGoogle Scholar
  77. 77.
    Puppels GJ, Garritsen HS, Kummer JA et al (1993) Carotenoids located in human lymphocyte subpopulations and natural killer cells by Raman microspectroscopy. Cytometry 14:251–256CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Malgorzata Baranska
    • 1
    Email author
  • Maciej Roman
    • 1
  • Katarzyna Majzner
    • 1
  1. 1.Faculty of ChemistryJagiellonian UniversityKrakowPoland

Personalised recommendations