Skip to main content

Management of Virus and Viroid Diseases of Crops in the Tropics

Abstract

Virus and viroid diseases are serious constraints to the production and profitability of a wide range of tropical crops. Many plant virus outbreaks have been recorded in the last two decades around the world and the ultimate aim of the applied plant virologist is to devise measures for combating the virus and viroid diseases. Unlike mycologists and bacteriologists, virologists do not have an array of chemicals with which to attack and manage viral and viroid diseases. In the present book an attempt is made to discuss the various techniques of plant virus/viroid management that will enable the operator to break the disease cycle, and allow for normal production practices to proceed. We will examine the classical methods that include: (1) Selection of virus-free vegetative propagules and seed; (2) Role of cultural practices like plant density, barrier cropping, and time of planting; (3) Eliminating the infected source material like weeds, wild hosts and susceptible host plants; (4) Reducing the vector population by insecticides, oils and mulches; and (5) Developing the virus resistant/tolerant/transgenic plants. Resistant cultivars are one of the most efficient and effective methods of virus disease control and host resistance greatly eliminates or minimizes losses due to virus diseases. In certain crops like rice, potato, papaya, tomato, cassava, and some other crops, transgenic crops were developed and were tested under field conditions. Even in crops like cassava, tomato and rice where resistant cultivars were developed, they have failed with time because of new viral strain development due to mutations and recombination. Partial success is achieved by using the cross protection technique in certain crops like citrus, papaya and tomato. In recent years, quarantines are playing a major role in restricting disease spread through infected seed or infected planting material by identifying the virus/viroid diseases through molecular tests performed at the importing stations. Finally, as no single measure will give higher disease control, an integrated approach comprised of the selection of healthy seed/vegetative plant material, vector control through the use of insecticides/oil/aluminum or plastic mulches or barrier crops along with resistant/tolerant cultivars are providing maximum disease control in crops like rice, cassava, banana, and tomato against major virus and viroid diseases. In the present chapter the subject matter covered includes: the production of the virus free seed/planting material; vector control by non-chemical and chemical measures, developing resistant/transgenic plants; and the role of quarantines in implementing bio-safety measures. As no single measure can be expected to provide the required virus management, an integrated approach is being attempted in different parts of the world. The success stories of plant virus disease management by using integrated methods of control are discussed.

Keywords

  • Barrier Crops
  • To Tomato Spotted Wilt Virus (TSWV)
  • European And Mediterranean Plant Protection Organization (EPPO)
  • Papaya Ring Spot Virus (PRSV)
  • Tomato Yellow Leaf Curl Virus (TYLCV)

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-7820-7_2
  • Chapter length: 332 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-7820-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 2.8
Fig. 2.9
Fig. 2.10
Fig. 2.11
Fig. 2.12
Fig. 2.13
Fig. 2.14
Fig. 2.15
Fig. 2.16
Fig. 2.17
Fig. 2.18
Fig. 2.19
Fig. 2.20

References

  • Aaziz R, Tepfer M (1999) Recombination in RNA viruses and in virus-resistant transgenic plants. J Gen Virol 80:1339–1346

    CAS  PubMed  Google Scholar 

  • Abbott EV (1961) A new strain of sugarcane mosaic virus. Phytopathology 51:642 (Abstract)

    Google Scholar 

  • Abdalla N, Lear B (1975) Lethal dosages of methyl bromide for four plant-parasitic nematodes and the effect of soil temperature on its nematicidal activity. Plant Dis Rep 59:224–228

    CAS  Google Scholar 

  • Abdalla NA, Raski DJ, Lear B, Schmitt RV (1974) Movement, persistence and nematocidal activity of a pesticide containing 1,3-dichloropropene in soils treated for nematode control in replant vineyards. Plant Dis Rep 58:562–566

    CAS  Google Scholar 

  • Abe N (1987) Studies of the ecology and control of Polymyxa betae Keskin as a fungal vector of the causal virus (beet necrotic yellow vein virus) of rhizomania disease of sugar beet. Bull Hokkaido Prefectural Agric Exp Stn 60:81

    Google Scholar 

  • Abo ME, Sy AA, Alegbejo MD, Afolabi AS, Onasanya A, Nwilene FE, Sere Y (2013) The mode of transmission of Rice yellow mottle virus. In: 12th International Symposium on plant epidemiology, 28th Jan–1st Feb 2013, Arusha, Tanzania (Abstract, pp 041, p 142)

    Google Scholar 

  • A’Brook J (1964) The effect of planting date and spacing on the incidence of groundnut rosette disease and of the vector Aphis craccivora, Koch, at Mokawa, Northern Nigeria. Ann Appl Biol 54:199–208

    Google Scholar 

  • Abu Salih HS, Ishag HM, Siddig SA (1973) Effect of sowing date on incidence of Sudanese broad bean mosaic virus and yield of Vicia faba. Ann Appl Biol 74:371–378

    Google Scholar 

  • Acedo VZ, Labana CU (2008) Rapid propagation of released Philippine cassava varieties through tissue culture. J Root Crops 34:108–114

    Google Scholar 

  • Adam AV (1962) An effective program for the control of banana mosaic. Plant Dis Rep 46:366–370

    Google Scholar 

  • Addy ND (1988) Opportunities and challenges for private industry. Am Potato J 65:221–227

    Google Scholar 

  • Adejare GO, Coutts RHA (1981) Eradication of cassava mosaic disease from Nigerian cassava clones by meristern-tip culture. Plant Cell Tissue Organ Cult 1:25–32

    Google Scholar 

  • Adipala E, Warren HL, Epieru G, Takan JP, Khyamanywa S, Wilson H (1998) Comparative performance of cv Igola-1 and other local groundnut cultivars for the control of rosette disease. In: Proceedings IPM/CRSP workshop, 15–18 May 1998, Blacksburg, Virginia Technology, USA, 290 pp

    Google Scholar 

  • Adkins S (2000) Tomato spotted wilt virus-positive steps towards negative success. Mol Plant Pathol 1:151–158

    CAS  PubMed  Google Scholar 

  • Adlerz WC (1972a) Momordica charantia as a source of Watermelon mosaic virus 1 for cucurbit crops in Palm Beach Country, Florida. Plant Dis Rep 56:563–564

    Google Scholar 

  • Adlerz WC (1972b) Melothria pendula plants infected with Watermelon mosaic virus 1 as a source of inoculum for cucurbits in Collier Country, Florida. J Econ Entomol 65:1303–1306

    Google Scholar 

  • Adlerz WC, Everett PH (1968) Aluminum foil and white polyethylene mulches to repel aphids and control water melon mosaic. J Econ Entomol 61:1276–1279

    Google Scholar 

  • Adsuar J (1961) Deleterious effect of Simazine on mosaic-infected sugarcane. J Agric Univ PR 45:191

    Google Scholar 

  • Agarwal VK, Sinclair JB (1996) Principles of seed pathology, 2nd edn. CRC Press Inc., Boca Raton

    Google Scholar 

  • Agarwal VK, Nene YL, Beniwal SPS, Verma HS (1979) Transmission of Bean common mosaic virus through urdbean (Phaseolus mungo L.) seeds. Seed Sci Technol 7:103–108

    Google Scholar 

  • Aghora TS, Mohan N, Krishna Reddy M (2010) Evaluation of French bean germplasm for resistance to Mungbean yellow mosaic virus. Indian Phytopathol 63:238–239

    Google Scholar 

  • Ahlawat YS (2010) Diagnosis of plant viruses and allied pathogens. Studium Press (India) Pvt. Ltd., New Delhi, 224 pp

    Google Scholar 

  • Ahmed NE, Kanan HO, Sugimoto Y, Ma YQ, Inanaga S (2001) Effect of imidacloprid on incidence of Tomato yellow leaf curl virus. Plant Dis 85:84–87

    CAS  Google Scholar 

  • Ahohuendo BC, Sarkar S (1995) Partial control of the spread of African cassava mosaic virus in Benin by intercropping. Z Pfl Krankh Pfl Schutz 102:249–256

    Google Scholar 

  • Ahoonmanesh A, Shalla T (1981) Feasibility of cross-protection for control of tomato mosaic virus in fresh market field-grown tomatoes. Plant Dis 65:56–58

    Google Scholar 

  • Akhtar KP, Aslam M, Haq MA, Jamil FF, Khan AI, Elahi MT (2005) Resistance to Cotton leaf curl virus (CLCuV) in a mutant cotton line. J Cotton Sci 9:175–181

    Google Scholar 

  • Akhtar KP, Kitsanachandee R, Srinives P, Abbas G, Asghar MJ, Shah TM, Atta BM, Chatchawankanphanich O, Sarwar G, Ahmad M, Sarwar N (2009) Field evaluation of mungbean recombinant inbred lines against mungbean yellow mosaic disease using new disease scale in Thailand. Plant Pathol J 25:422–428

    Google Scholar 

  • Akram M, Jain RK, Chaudhary Vikas, Ahlawat YS, Khurana SMP (2004) Comparison of Groundnut bud necrosis virus isolates based on movement protein (NSm) gene sequences. Ann Appl Biol 145:285–289

    CAS  Google Scholar 

  • Alam SN, Cohen MB (1998) Detection and analysis of QTL’s for resistance to brown plant hopper Nilaparvata lugens, in a double haploid population. Theor Appl Genet 97:1370–1379

    CAS  Google Scholar 

  • Albanese G, La Rosa R, Tessitori M, Fuggetta E, Catara A (1996) Long-term effect of CVd-III of plants on citrange, trifoliate and sour orange. In: da Graca JV, Moreno P, Yokomi RK (eds) Proceedings of the 13th conference of the International Organization of Citrus Virologists, Riverside, CA, pp 367–369

    Google Scholar 

  • Albrechtsen SE (2006) Testing methods for seed transmitted viruses: principles and protocols. CAB1 publishing, Wallingford, pp 1–268

    Google Scholar 

  • Aliyu TH, Balogun OS (2011) Effect of variety and planting density on the incidence of common viral diseases of cowpea (Vigna unguiculata) in a Southern Guinea Savannah Agro ecology. Asian J Plant Pathol 5:126–133

    Google Scholar 

  • Allavena A (1989) Modification of the seed coat color associated to the gene conferring resistance to BCMV. Annu Rept Bean Improv Co-op 32:90–91

    Google Scholar 

  • Allen TC Jr (1965) Field spread of Potato virus A inhibited by oil. Plant Dis Rep 49:557

    Google Scholar 

  • Allen DJ, Thottappilly G, Rossel HW (1982) Cowpea mottle virus: field resistance and seed transmission in virus tolerant cowpea. Ann Appl Biol 100:331–336

    Google Scholar 

  • Allen WR, Tehrani B, Luft R (1993) Effect of horticultural oil, insecticidal soap, and film-forming products on the western flower thrips and the Tomato spotted wilt virus. Plant Dis 77:915–918

    CAS  Google Scholar 

  • Almekinders C, Louwaars N (1999) Farmers ‘Seed Production’: new approaches and practices. Intermediate Technology Publications, London, pp 291

    Google Scholar 

  • Al-Musa A (1982) Incidence, economic importance and control of tomato leaf curl virus in Jordan. Plant Dis 66:561–563

    Google Scholar 

  • Alper M, Levy S, Loebenstein G (1973) Mulches to repel aphids from peppers. Hassadeh 53:529–531 (In Hebrew)

    Google Scholar 

  • Alshami AA, Nasher MMA, Almezgagi M, Alyaremi A (2008) Evaluation of some non-chemical methods for reducing infection with Tomato leaf curl virus transmitted by Bemisia tabaci (Gennadius). Arab J Plant Prot 26:45–49

    Google Scholar 

  • Alstrom S (1991) Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhozosphere pseudomonas. J Gen Appl Microbiol 37:495–501

    Google Scholar 

  • Al-Taleb MM, Hassawi DS, Abu-Rommau SM (2011) Production of virus-free potato plants using meristem culture from cultivars grown under Jordanian environment. J Agric Environ Sci 11:467–472

    CAS  Google Scholar 

  • Altamirano DM, Gonzales CI, Vinas RC (1976) Analysis of the devastation of leaf mottling (Greening) disease of citrus and its control program in the Philippines. In: Proceedings of the 7th conference of the IOCV, Riverside, pp 22–26

    Google Scholar 

  • Ambang Z, Ndongo B, Amayana D, Djile B, Ngoh JP, Chewachong GM (2009) Combined effect of host plant resistance and insecticide application on the development of cowpea viral diseases. Aust J Crop Sci 3:167–172

    CAS  Google Scholar 

  • Amin PW (1985) Apparent resistance of groundnut cultivar Robut 33–1 to bud necrosis disease. Plant Dis 69:718–719

    Google Scholar 

  • Anandam RJ, Doraiswamy S (2002) Role of barrier crops in reducing the incidence of mosaic disease in Chilli. J Plant Dis Prot 109:109–112

    Google Scholar 

  • Anderson EJ, Stark DM, Nelson RS, Powell PA, Tumer NE, Beachy RN (1989) Transgenic plants that express the coat protein genes of tobacco mosaic virus or alfalfa mosaic virus interfere with disease development of some non related viruses. Phytopathology 79:1284–1290

    CAS  Google Scholar 

  • Anfoka GH (2000) Benzo-(1,2,3)-thiodiazole-7 carbothioic acid 5-methyl ester induces systemic resistance in tomato (Lycopersicon esculentum Mill. cv. Vollendung) to Cucumber mosaic virus. Crop Prot 19:401–405

    CAS  Google Scholar 

  • Angenent GC, Van der Ouweland JMW, Bol JF (1990) Susceptibility to virus infection of transgenic tobacco plants expressing structural and non-structural genes of Tobacco rattle virus. Virology 175:191–198

    CAS  PubMed  Google Scholar 

  • Anithacherian K (1998) Management of Tomato leaf curl virus in tomato through the control of its whitefly vector, Bemisia tabaci Genn. by entamopathogenic fungi. Ph.D. Thesis, UAS, Bangalore, pp 226

    Google Scholar 

  • Anjaneyulu A (1977) Donors of resistance to rice tungro. IRRN 2:3

    Google Scholar 

  • Anjaneyulu A, Singh SK, Shenoi MM (1982) Evaluation of rice varieties to tungro resistance by field screening technique. Trop Pest Manag 28:147–155

    Google Scholar 

  • Anjaneyulu A, Bhaktavatsalam G, Mohanty SK (1994) Prevention and control of rice tungro disease through new synthetic pyrethroids. In: Rishi N, Ahuja KL, Singh BP (eds) Virology in the tropics. Malhotra Publishing House, New Delhi, pp 660–671

    Google Scholar 

  • Anon (1912) The Plant quarantine act, August 20, 1912, as amended March 4, 1913, and March 4, 1917. http://www.archive.org/details/plantquarantinea00unit

  • Anon (1944a) Entomological investigations. 17th Report Council for Scientific and Industrial Research, Australia, 1942–1943, pp 15–20

    Google Scholar 

  • Anon (1944b) Entomological investigations. 18th Report Council for Scientific and Industrial Research, Australia, 18–22, pp 14–20

    Google Scholar 

  • Anon (1957) Common names of virus diseases used in the Review of Applied Mycology. Rev Appl Mycol 35(Suppl):43

    Google Scholar 

  • Anon (1971) Diseases of cultivated plants observed in Greece from 1962 to 1967. Ann Inst Phytopathol Benaki 10:70–118

    Google Scholar 

  • Anon (1977–1978) List of intercepted plant pests. United States. Plant Quarantine and Control Administration. Canada Agriculture

    Google Scholar 

  • Anon (1992) Quarantine implications: Cassava Program 1987–1991. Working Document No. 116, CIAT, Colombia

    Google Scholar 

  • Anon (1994) Sky’s reflection repels aphids. Calif Agric 48:4–5. doi:10.3733/ca.v048n04p4 July–Aug 1994

    Google Scholar 

  • Anon (2004) Entomological society of America—Annual Meeting, Nov 2004

    Google Scholar 

  • Antignus Y, Ben-Yakir D (2004) Ultraviolet-absorbing barriers, an efficient integrated pest management tool to protect greenhouses from insects and virus diseases. In: Horowitz AR, Ishaaya I (eds) Insect pest management field and protected crops. Springer, Berlin, pp 319–337

    Google Scholar 

  • Antignus Y, Cohen S, Mor N, Messika Y, Lapidot M (1996a) The effects of UV-blocking greenhouse covers on insects and insect-borne virus diseases. Plasticulture 112:15–20

    Google Scholar 

  • Antignus Y, Mor N, Ben-Joseph R, Lapidot M, Cohen S (1996b) UV-absorbing plastic sheets protect crops from insect pests and from virus diseases vectored by insects. Environ Entomol 25:919–924

    Google Scholar 

  • Antignus Y, Lapidot M, Hadar D, Messika Y, Cohen S (1997) The use of UV-absorbing plastic sheets to protect crops against insects and spread of virus diseases. In: Ben-Yehosua S (ed) CIPA, Proceedings of international congress for plastics in agriculture. Jerusalem, Laser Pages, pp 23–33

    Google Scholar 

  • Antignus Y, Lachman O, Leshem Y, Matan E, Yehezkel H, Messika Y (1999) Protection efficiency of UV-absorbing films in greenhouse with vertical walls. In: Zeidan O (ed) Summary of research projects and field experiments in tomato crops for 1999. Israeli Ministry of Agriculture: Bulletin of the Israeli Extension Service, Bet Dagan, pp 29–39

    Google Scholar 

  • Antignus Y, Lapidot M, Cohen S (2001a) Interference with ultraviolet vision of insects to impede insects pests and insect-borne plant viruses. In: Kerry FH, Oney PS, Duffus JE (eds) Virus-insect-plant interactions. Academic Press, San Diego, pp 331–334

    Google Scholar 

  • Antignus Y, Nestel D, Cohen S, Lapidot M (2001b) Ultraviolet deficient greenhouse environment affects whitefly attraction and flight behavior. Environ Entomol 30:394–439

    Google Scholar 

  • Antignus Y, Lachman O, Pearlsman M (2005) Light manipulation by soil mulches protect crops from the spread of Begomoviruses. Abstracts of the IX International Plant Virus Epidemiology Symposium, Lima Peru

    Google Scholar 

  • Antignus Y, Lachman O, Pearlsman M (2007) The spread of Tomato apical stunt viroid (TAS Vd) in green house tomato crops is associated with seed transmission and bumble bee activity. Plant Dis 91:47–50

    CAS  Google Scholar 

  • Antignus Y, Vunsh R, Lachman O, Pearlsman M, Maslenin L, Hananya U, Rosner A (2004) Truncated Rep gene originated from Tomato yellow leaf curl virus Israel [Mild] confers strain-specific resistance in transgenic tomato. Ann Appl Biol 144:39–44

    Google Scholar 

  • Appel O (1934) Vitality and vitality determination in potatoes. Phytopathology 24:482–494

    Google Scholar 

  • Aragao FJL, Faria JC (2009) First transgenic Gemini virus-resistant plant in the field. Nat Biotechnol 27:1086–1089

    CAS  PubMed  Google Scholar 

  • Ares X, Calamante G, Cabral S, Lodge J, Hemenway P, Beachy RN, Mentaberry A (1998) Transgenic plants expressing potato virus X ORF2 protein (p24) are resistant to tobacco mosaic virus and Ob tobamoviruses. J Virol 72:731–738

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arias BV, Bellotti AC, Vargas HLB (2004) Nataima—31, a cassava (Manihot esculenta) variety resistant to the whitefly Aleurotrachelus socialis. In: 6th International science meeting of the Cassava Biotechnology Network, CIAT, Cali, Columbia, pp 66

    Google Scholar 

  • Arif M, Hassan S (2000) Pathogen-derived resistance against plant viruses: postscript and prospects. Pak J Biol Sci 3:1–9

    Google Scholar 

  • Arif M, Hassan S (2002) Evaluation of resistance in soybean germplasm to Soybean mosaic poty virus under field conditions. J Biolog Sci 2:601–604 (Online). ISSN 1608–4127

    Google Scholar 

  • Arif M, Ibrahim M, Ahmad A, Hassan S (2005) Elimination of citrus tristeza closterovirus from citrus bud-wood through thermotherapy. Pak J Bot 37:423–430

    Google Scholar 

  • Aritua V, Adipala E, Carey EE, Gibson RW (1998a) The incidence of Sweet potato virus disease and virus resistance of sweet potato grown in Uganda. Ann Appl Biol 132:399–411

    Google Scholar 

  • Aritua V, Alicai T, Adipala E, Carey EE, Gibson RW (1998b) Aspects of resistance to Sweet potato virus disease in sweet potato. Ann Appl Biol 132:387–398

    Google Scholar 

  • Aritua V, Bua B, Gibson RW, Mwanga ROM, Adipala E (2003) Toward integrated management of Sweet potato virus disease: lessons from Uganda. African Crop Sci Conf Proc 6:307–314

    Google Scholar 

  • Arora SK, Dhanju KC, Sharma BR (1992) Resistance in okra (Abelmoschus esculentus L. Moench) genotypes to yellow vein mosaic virus. Plant Dis Res 7:221–225

    Google Scholar 

  • Arumugam R, Chelliah S, Muthukrishnan CR (1975) Abelmoschus manihot: a source of resistance to bhindi yellow vein mosaic. Madras Agric J 62:310–312

    Google Scholar 

  • Ashfaq M, Aslam Khan M, Mughal SM, Javed N, Mukhtar T, Bashir M (2007) Evaluation of urdbean germplasm for resistance against Urdbean leaf crinkle virus. Pak J Bot 39:2103–2111

    Google Scholar 

  • Asjes CJ (1972) Virus disease in narcissus. Gard Chron, pp 28–33

    Google Scholar 

  • Asjes CJ (1974) Control of the spread of brown ring formation virus disease in the lily. Mid century hybrid ‘Enchantment’ by mineral oil sprays. Acta Hort 36:85–92

    Google Scholar 

  • Asjes CJ (1975) Control of the spread of tulip breaking virus in tulips with mineral-oil sprays. Neth J Plant Path 81:64–70

    CAS  Google Scholar 

  • Atabekov JG, Taliansky ME (1990) Expression of a plant virus coded transport function by different viral genomes. Adv Virus Res 38:201–247

    CAS  PubMed  Google Scholar 

  • Atiri GI, Ekpo EJA, Thottappilly G (1984) The effect of aphid-resistance in cowpea on infestation and development of Aphis craccivora and the transmission of Cowpea aphid-borne mosaic virus. Ann Appl Biol 104:339–346

    Google Scholar 

  • Atkins D, Young M, Uzzell S, Kelly L, Fillatti J, Gerlach WL (1995) The expression of antisense ribozyme genes targeting Citrus exocortis viroid in transgenic plants. J Gen Virol 76:781–790

    Google Scholar 

  • Attafuah A (1965) Embryo abortion in virus infected sweet cherry. FAO Plant Prot Bull 13:79–82

    Google Scholar 

  • Audy P, Palukaitis P, Slack SA, Zaitlin M (1994) Replicase-mediated resistance to potato virus Y in transgenic plants. Mol Plant Microbe Interact 7:15–22

    CAS  PubMed  Google Scholar 

  • Avilla C, Collar JL, Duque M, Hernaiz P, Martın B, Fereres A (1996) Cultivos barrera como metodo de control de virus no persistentes en pimiento. Bol San Veg Plagas 22:301–307

    Google Scholar 

  • AVRDC (2000) Report 2000, Asian vegetable research and development center, Shanhua, Tainan, Taiwan, 2001

    Google Scholar 

  • Awan AR, Mughal SM, Iftikhar Y, Khan HZ (2007) In vitro elimination of Potato leaf roll polerovirus from potato varieties. Eur J Sci Res 18:155–164

    Google Scholar 

  • Awondo SN, Fonsah EG, Riley D, Abney M (2012) Effectiveness of tomato-spotted wilt virus management tactics. J Econ Entomol 105(3):943–948

    PubMed  Google Scholar 

  • Ayabe M, Sumi S (2001) A novel and efficient tissue culture method-“Stem-disc dome culture”-for producing virus-free garlic (Allium sativum L.). Plant Cell Rep 20:503–507

    Google Scholar 

  • Bacon PE (1980) Effects of dwarfing inoculations on the growth and productivity of Valencia oranges. J Hortic Sci 55:49–55

    Google Scholar 

  • Badak KS, Nirmal DD, Mahatale PV, Shinde VB (2006) Management of Papaya ring spot virus by cross protection. Ann Plant Physiol 20:116–118

    Google Scholar 

  • Badara Gueve, Lava Kumar P, Peter Kulakow, Michael Abberton (2013) Virus checks for safe exchange of cassava germplasm for crop improvement and food security. In: 12th International Symposium on plant virus epidemiology, 28th Jan–1st Feb 2013, Arusha, Tanzania (Abstract, pp 035, p 136)

    Google Scholar 

  • Bag S, Singh RS, Jain RK (2007) Agrobacterium-mediated transformation of groundnut with coat protein gene of Tobacco streak virus. Indian J Virol 18:65–69

    Google Scholar 

  • Baggett JR, Kean D (1988) Seven pea seed-borne mosaic virus resistant pea breeding lines. Hortic Sci 23:630–631

    Google Scholar 

  • Bagnall RH (1953) The spread of Potato virus Y in seed potatoes in relation to the date of harvesting and the prevalence of aphids. Can J Agric Sci 33:509–519

    Google Scholar 

  • Bai Y, Guo Z, Wang X, Bai D, Zhang W (2009) Generation of double-virus-resistant marker-free transgenic potato plants. Prog Nat Sci 19:543–548

    CAS  Google Scholar 

  • Balamuralikrishnan M, Doraisamy S, Ganapathy T, Viswanathan R (2002) Combined effect of chemotherapy and meristem culture on sugarcane mosaic virus elimination in sugarcane. Sugar Tech 4:19–25

    Google Scholar 

  • Balaraman K (1981) Pre-immunization for control of Citrus tristeza virus on citron. Z Pfl Krankh Pfl Schtz 88:218–222

    Google Scholar 

  • Balaraman K (1987) Cross protection performance trials on acid lime against tristeza virus in South India. Mysore J Agric Sci 21:193–195

    Google Scholar 

  • Balaraman K, Ramakrishnan K (1977) Studies on strains and strain interaction in citrus trizteza virus. Univ Agric Sci Bangalore. Tech Series No 19:1–62

    Google Scholar 

  • Balaraman K, Ramakrishnan K (1979a) Transmission studies with strains of Citrus tristeza virus on acid lime. Z Pfl Krankh Pfl Schutz 86:653–661

    Google Scholar 

  • Balaraman K, Ramakrishnan K (1979b) Two new additional hosts of Citrus tristeza virus. Curr Sci 48:453–454

    Google Scholar 

  • Balaraman K, Ramakrishnan K (1980) Strain variation and cross protection in Citrus tristeza virus on acid lime. In: Calavan EC et al (eds) Proceedings of the 8th conference of the International Organization of Citrus Virologists, FL, pp 60–68

    Google Scholar 

  • Baleshwar Singh R, Bhalla S, Challam VC, Pandey BM, Sateesh Singh SK, Kumar N, Khetarpal RK (2003) Quarantine processing of imported transgenic planting material. Indian J Agric Sci 73:97–100

    Google Scholar 

  • Bankina TF (1976) The importance of early harvest in the preservation of potato from virus infection. Znachenie rannel uborki v. Sokhranenii Kartofelya at porazheniya virusami. Tr Tulsk Gos Skh Opyt St 5:125–134

    Google Scholar 

  • Banttari EE, Khurana SMP (1998) Serological procedures in plant virology. In: Khurana SMP (ed) Pathological problems of economic crop plants and their management. Scientific Publishers, Jodhpur, pp 603–624

    Google Scholar 

  • Baranwal VK, Verma HN (2000) Antiviral phytoproteins as biocontrol agents for efficient management of plant virus diseases. pp 71–79. In: Upadhyay RK (ed) Biocontrol potential and its exploitation in sustainable agriculture. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Barba M (1998) Virus certification of fruit tree propagative material in Western Europe. In: Hadidi A, Khaterpal RK, Koganezawa H (eds) Plant virus disease control. APS Press, St. Paul, pp 288–293

    Google Scholar 

  • Bar-Joseph M, Loebenstein G (1973) Effects of strain, source of plant and temperature on the transmissibility of Citrus tristeza virus by melon aphid. Phytopathology 63:716–720

    Google Scholar 

  • Bar-Joseph M, Loebenstein G, Gren Y (1974) Use of electron-microscopy in eradication of tristeza sources recently found in Israel. In: Weathers LG, Cohen M (eds) Proceedings of the 6th Conference of the IOCV, Berkeley, pp 83–85

    Google Scholar 

  • Barker H, Solomon RM (1990) Evidence of simple genetic control in potato of ability to restrict Potato leaf roll virus concentration in leaves. Theor Appl Genet 80:188–192

    CAS  PubMed  Google Scholar 

  • Barker H, Waterhouse PM (1999) The development of resistance to luteoviruses mediated by host genes and pathogen-derived transgenes. In: Smith HG, Barker H (eds) The Luteoviridae. CAB International, Wallingford, pp 169–210

    Google Scholar 

  • Barnes GL (1959) Herbicidal agents as possible aids for roguing diseased seed potato plants. Am Potato J 36:212–218

    CAS  Google Scholar 

  • Barone A, Frusciante L (2007) Molecular marker-assisted selection for resistance to pathogens in tomato. In: Guimaraes E, Ruane J, Scherf BD, Sonnino A, Dargie JD (eds) Marker-assisted selection: current status and future perspectives in crops, livestock, forestry and fish/. FAO, Rome (Italy). Agric and Consum Prot Dept., pp 151–164

    Google Scholar 

  • Bartels W (1955) Untersuchungen uber die inaktivierung des Tabak-mosaik virus durch Extrakte und Sekrete Non hoheren Pflanzen und einigen Microorganismen. Ein Beitrag Zur Frage der Kompostierung tabak mosaic virusshaltigen. Pflanzen Materials Phytopathol Z 25:72–152

    Google Scholar 

  • Bartha L (1963) French bean seed certification. J Agric Vic 419:408–411

    Google Scholar 

  • Bashir M, Ahmad Z, Ghafoor A (2005) Sources of genetic resistance in mungbean and blackgram against Urdbean leaf crinkle virus (ULCV). Pak J Bot 37:47–51

    Google Scholar 

  • Basky Z (1984) Effect of reflective mulches and oil sprays on mosaic virus incidence in seed cucumbers. Prot Ecol 7:243–248

    Google Scholar 

  • Bau HJ, Cheng YH, Yu TA, Yang JS, Yeh SD (2003) Broad spectrum resistance to different geographic strains of Papaya ringspot virus in coat protein gene transgenic papaya. Phytopathology 93:112–120

    CAS  PubMed  Google Scholar 

  • Bau HJ, Cheng YH, Yu TA, Yang JS, Liou PC, Hsiao CH, Lin CY, Yeh SD (2004) Field evaluation of transgenic papaya lines carrying the coat protein gene of Papaya ringspot virus in Taiwan. Plant Dis 88:594–599

    Google Scholar 

  • Baulcombe DC (1996) Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8:1833–1844

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baulcombe D (2005) RNA silencing. Trends Biochem Sci 30:290–293

    CAS  PubMed  Google Scholar 

  • Beachy RN (1993) Transgenic resistance to plant viruses. Semin Virol 4:327–416

    Google Scholar 

  • Beachy RN (1997) Mechanisms and applications of pathogen-derived resistance. Curr Opin Biotechnol 8:215–220

    CAS  PubMed  Google Scholar 

  • Beck BDA (1982) Historical prospectives of cassava breeding in Africa. In: Hahn SK (ed) Proceedings of a workshop on root crops in Eastern Africa, Kigali, Rwanda. Ker ADR IDRC, Canada, pp 13–18

    Google Scholar 

  • Beier H, Siler DJ, Russell ML, Bruening G (1977) Survey of susceptibility to Cowpea mosaic virus among protoplasts and intact plants from Vigna sinensis lines. Phytopathology 67:917–921

    Google Scholar 

  • Bendahmane M, Beachy RN (1999) Control of tobamovirus infections via pathogen derived resistance. Adv Virus Res 53:369–386

    CAS  PubMed  Google Scholar 

  • Bendahmane M, Gronenborn B (1997) Engineering resistance against Tomato yellow leaf curl virus (TYLCV) using antisense RNA. Plant Mol Biol 33:351–357

    CAS  PubMed  Google Scholar 

  • Bennett CW (1944) Latent virus of dodder and its effect on sugarbeet and other plants. Phytopathology 34:77–91

    Google Scholar 

  • Bennett CW (1960) Sugar beet yellows disease in the United States. U S Dep Agric Tech Bull 1218:1–63

    Google Scholar 

  • Bennett CW (1967) Epidemiology of leaf hopper transmitted viruses. Annu Rev Phytopathol 5:87–108

    Google Scholar 

  • Bennett CW (1971) The curly top disease of sugarbeet and other plants. Monograph. No. 7. American Phytopathological Society, St. Paul, p 81

    Google Scholar 

  • Bennett CW, Tanrisever A (1957) Sugarbeet curly top disease in Turkey. Plant Dis Rep 41:721–725

    Google Scholar 

  • Berg LA, Bustamante M (1974) Heat treatment and meristem culture for the production of virus-free bananas. Phytopathology 64:320–322

    Google Scholar 

  • Bergstrom GC, Johnson MC, Kuc J (1982) Effects of local infection of cucumber by Colletotrichum lagenarium, Pseudomonas lachrymans, or Tobacco necrosis virus on systemic resistance to Cucumber mosaic virus. Phytopathology 72:922–926

    Google Scholar 

  • Berlinger MJ, Dahn R (1987) Breeding for resistance to virus transmission by whiteflies in tomatoes. Insect Sci Appl 8:783–784

    Google Scholar 

  • Berlinger MJ, Mordechi SL (1996) Physical methods for the control of Bemisia. In: Gerling D (ed) Bemisia 1995: taxonomy, biology, damage control and management. Andover, Intercept, pp 617–634

    Google Scholar 

  • Berlinger MJ, Taylor RAJ, Lebiush Mordechi S, Shalhevet S, Spharim I (2002) Efficiency of insect exclusion screens for preventing whitefly transmission of Tomato yellow leaf curl virus of tomatoes in Israel. Bull Entomol Res 92:367–373

    CAS  PubMed  Google Scholar 

  • Bernardo R, Charcosset A (2006) Usefulness of gene information in marker-assisted recurrent selection: a simulation appraisal. Crop Sci 46:614–621

    Google Scholar 

  • Bertaccini A, Botti S, Tabanelli D, Dradi G, Fogher C, Previati A, Re F (2004) Micropropagation and establishment of mite-borne virus free garlic (Allium sativum). Acta Hortic 631:201–206

    Google Scholar 

  • Besedina VA (1985) Sources of resistance in tomatoes to Tobacco mosaic virus. Sholnik Nauchnykh Tendov Po Prikloduoi Botanike Genetike i Selektsii 92:81–84 (RPP 66, 25037)

    Google Scholar 

  • Bethke JA, Parrella MP (1990) Control of the sweet potato whitefly on poinsettia under glasshouse conditions, 1989. Insectic Acaricide Tests 15:330

    Google Scholar 

  • Bevington KB, Bacon PE (1977) Effect of rootstocks on the response of navel orange trees to dwarfing inoculations. In: Proceedings of the International Society of Citriculture, Orlando, FL, pp 567–570

    Google Scholar 

  • Bevington KB, Bacon PE (1978) Effect of rootstocks on the response of navel orange trees to dwarfing inoculations, 1977. Proc Int Soc Citricult 2:570–571

    Google Scholar 

  • Bhaktavatsalam G, Anjaneyulu A (1984) Green house evaluation of synthetic pyrethroids for tungro prevention. Int Rice Res Newsl 9:11

    Google Scholar 

  • Bharatan N, Reddy DVR, Rajeswari R, Murthy VK, Rao VR (1984) Screening of peanut germplasm lines by enzyme linked immunosorbent assay for seed transmission of Peanut mottle virus. Plant Dis 68:757–758

    Google Scholar 

  • Bhardwaj SV, Thakur PD (1993) Virus diseases of temperate fruits, pp 1447–1452

    Google Scholar 

  • Bhardwaj SV, Rai SJ, Thakur PD, Handa A (1998) Meristem tip culture and heat therapy for production of Apple mosaic virus free plants in India. Acta Hortic 472:65–68

    Google Scholar 

  • Bhargava KS, Khurana SMP (1969) Papaya mosaic control by oil sprays. Phytapathol Z 64:338–343

    Google Scholar 

  • Bhat ZA, Dhillon WS, Rashid R, Bhat JA, Alidar W, Ganaie MY (2010) The role of molecular markers in improvement of fruit crops. Not Sci Biol 2:22–30

    CAS  Google Scholar 

  • Bhat Bharati N, Raja Ram Reddy D, Chander Rao S, Singh TVK (2012) Integrated disease management of sunflower necrosis disease. Indian J Plant Prot 40:99–104

    Google Scholar 

  • Bhatoa GS, Sekhon PS, Pathak D, Monga D (2013) Molecular screening of American cotton (Gossypium hirsutum L.) genotypes for resistance to cotton leaf curl disease (CLCuD). J Cotton Res Dev 27:104–110

    Google Scholar 

  • Bhojwani SS, Razdan MK (1983) Plant tissue culture: theory and practice. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Birkett MA, Agelopulos N, Jensen KMV, Jespersen JB, Pickett JA, Prijs HJ, Thomas G, Trapman JJ, Wadhams LJ, Woodcock CM (2004) The role of volatile semiochemicals in mediating host location and selection by nuisance and disease-transmitting cattle flies. Med Vet Entomol 18:313–322

    CAS  PubMed  Google Scholar 

  • Biswas MK, Hossain M, Islam R (2007) Virus-free plantlets production of strawberry through meristem culture. World J Agric Sci 3:757–763

    Google Scholar 

  • Biswas KK, Tarafdar A, Jayakumar BK, Pun KB (2009) Strategy for the production of virus-free mandarin (Citrus reticulata) planting materials in the Darjeeling hills of India. Indian Phytopathol 62:376–380

    Google Scholar 

  • Bitters WP, Murashige T, Ranga TS, Nauer E (1972) Investigation on establishing virus-free citrus plants through tissue culture. In: Proceedings of the 5th International Organization of Citrus Virologists, pp 267–271

    Google Scholar 

  • Black LL (1980) Aluminium’ mulch less virus disease, higher vegetable yields. Lousiana Agric 23:16–18

    Google Scholar 

  • Black LL, Rolston LH (1972a) Aluminium foil mulch reduces virus infection of peppers. Lousiana Agric 15:6–7

    Google Scholar 

  • Black LL, Rolston LH (1972b) Aphids repelled and virus diseases reduced in peppers planted on aluminium foil mulch. Phytopathology 62:747 (Abstr)

    Google Scholar 

  • Black LL, Hobbs HA, Gatti JM (1991) Tomato spotted wilt virus resistance in Capsicum chinense PI152225 and 159236. Plant Dis 75:863

    Google Scholar 

  • Black LL, Hobbs HA, Kammer-lohr DS (1996) Resistance of Capsicum chinense lines to Tomato spotted wilt virus isolates from Louisiana, USA and inheritance of resistance. Acta Hortic 431:393–401

    Google Scholar 

  • Blanchard RO (1974) Electrotherapy: a new approach to wound healing. Proc Am Phytopathol Soc 1:133–134

    Google Scholar 

  • Blattny C, Pozdena J, Prochazkova Z (1965) Virus-induced rough dwarf and stripe disease in Z. mays. Phytopathol Z 52:105–130

    Google Scholar 

  • Bleeker PM, Diergaarde PJ, Ament K, Guerra J, Weidner M, Schutz S, de Both MTJ, Haring MA, Schuurink RC (2009) The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiol 151:925–935

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blencowe JW, Tinsley TW (1951) The influence of density of plant population on the incidence of yellows in sugar-beet crops. Ann Appl Biol 38:395–401

    Google Scholar 

  • Bock KR (1973) Peanut mottle virus in East Africa. Ann Appl Biol 74:171–179

    Google Scholar 

  • Bock KR (1983) Epidemiology of cassava mosaic disease in Kenya. In: Plumb RT, Thresh JM (eds) Plant virus epidemiology. Blackwell Scientific Publications, Oxford, pp 337–347

    Google Scholar 

  • Boiteux LS, Nagata T, Dutra WP, Fonseca MEN (1993a) Sources of resistance to tomato spotted wilt virus (TSWV) in cultivated and wild species of Capsicum. Euphytica 67:89–94

    Google Scholar 

  • Boiteux LS, Nagata T, De Giordano B (1993b) Field resistance of tomato Lycopersicon esculentum lines to tomato spotted wilt disease. Tomato Genet Coop Rep 43:7–9

    Google Scholar 

  • Boize L, Gudin C, Purdue G (1976) The influence of leaf surface roughness on the spreading of oil spray drops. Ann Appl Biol 84:205–211

    Google Scholar 

  • Bond DA, Jellis GJ, Rowland GG, Le Guen J, Robertson ID, Khalil SA, Li Juan I (1994) Present status and future strategy in breeding faba bean (Vicia faba L.) for resistance to biotic and abiotic stresses. In: Muelbauer FJ, Kaiser WJ (eds) Expanding the production and use of cool season legumes. Kluwer Academic Publishers, Dordrecht, pp 592–616

    Google Scholar 

  • Bonfim K, Faria JC, Elsa OPL, Nogueira EO, Mendes EA, Aragao FJL (2007) RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Microbe Plant Mol Interact 20(6):717–726

    Google Scholar 

  • Bonnemaison L (1961) Protection des betteravesracines et des porte graines contre la jannisse basee sur la lutte contre les vecteurs. Ann Epiphyties 12:153–217

    Google Scholar 

  • Bora GC, Saikia AK, Shadeque A (1992) Screening of okra genotypes for resistance to yellow vein mosaic virus disease. Indian J Virol 8:55–57

    Google Scholar 

  • Borah RK (1995) Effect of synthetic pyrethroids and organophosphorus insecticides on the incidence of whitefly, Bemisia tabaci (Genn) and yellow mosaic virus in greengram, Vigna radiate (L.) Wilczek. Indian J Virol 11:75–76

    Google Scholar 

  • Boulcombe D (1994) Novel strategies for engineering virus resistance in plants. Curr Opin Biotechnol 5:117–124

    Google Scholar 

  • Bowers GR Jr, Goodman RM (1982) New sources of resistance to seed transmission of Soybean mosaic virus in soybeans. Crop Sci 22:155–156

    Google Scholar 

  • Bowers GR, Goodman RM (1991) Strain specificity of Soybean mosaic virus seed transmission in soybean. Crop Sci 31:1171–1174

    Google Scholar 

  • Bradley RHE (1956) Effects of depth of stylet penetration on aphid transmission of Potato virus Y. Can J Microbiol 2:539–547

    CAS  PubMed  Google Scholar 

  • Bradley RHE (1963) Some ways in which a paraffin oil impedes aphid transmission of Potato virus Y. Canad J Microbiol 9:369–380

    Google Scholar 

  • Bradley RHE, Wade CV, Wood FA (1962) Aphid transmission of Potato virus Y inhibited by oils. Virology 18:327–328

    CAS  PubMed  Google Scholar 

  • Bradley RHE, Moore CA, Pond DD (1966) Spread of Potato virus Y curtailed by oil. Nature 209:1370–1371

    Google Scholar 

  • Braverman SW (1975) Aseptic culture of soybean and peanut embryonic axes to improve phytosanitation of plant introductions. Seed Sci Technol 3:725–729

    Google Scholar 

  • Brederode FT, Taschner PEM, Posthumus E, Bol JF (1995) Replicase mediated resistance to alfalfa mosaic virus. Virology 207:467–474

    CAS  PubMed  Google Scholar 

  • Brierley P (1958) Tomato aspermy virus in chrysanthemums from Asia and Europe. Plant Dis Rep 42:61–62

    Google Scholar 

  • Brigneti G, Martin-Hernandez AM, Jin H, Chen J, Baulcombe DC, Baker B, Jones JD (2004) Virus-induced gene silencing in Solanum species. Plant J 39:264–272

    CAS  PubMed  Google Scholar 

  • Broadbent L (1948) Aphids migration and the efficiency of the trapping method. Ann Appl Biol 35:379–394

    CAS  PubMed  Google Scholar 

  • Broadbent L (1957) Investigations of virus diseases of brassica crops. A.R.C. Report Series No. 14. Cambridge University Press, London

    Google Scholar 

  • Broadbent L (1963) The epidemiology of tomato mosaic. III cleaning virus from hands and tools. Ann Appl Biol 52:225–232

    Google Scholar 

  • Broadbent L (1964) Control of plant virus diseases. In: Corbett MK, Sisler HD (eds) Plant virology. University of Florida Press, Gainsville, pp 330–364

    Google Scholar 

  • Broadbent L, Fletcher JT (1963) The epidemiology of tomato mosaic. IV. Persistance of virus on clothing and glasshouse structures. Ann Appl Biol 52:233–241

    Google Scholar 

  • Broadbent L, Tinsley TW, Buddin W, Roberts ET (1951) The spread of lettuce mosaic in the field. Ann Appl Biol 38:689–706

    Google Scholar 

  • Broadbent L, Heathcote GD, Mc Dermott N, Taylor CE (1957) The effect of date of planting and harvesting potatoes on virus infection and on yield. Ann Appl Biol 45:603–622

    Google Scholar 

  • Broadbent L, Heathcote GD, Burt PE (1960) Field trials on the retention of potato stocks in England. Eur Potato J 3:251–262

    Google Scholar 

  • Broadbent L, Read WH, Last FT (1965) The epidemiology of tomato mosaic. 12. Sources of TMV in commercial tomato crops under glass. Ann Appl Biol 57:113–120

    Google Scholar 

  • Broadbent DE, Cooper PF, FitzGerald P, Parkes KR (1982) The cognitive failures questionnaire (cfq) and its correlates. Br J Clin Psychol 21:1–16

    PubMed  Google Scholar 

  • Broadbent P, Forsyth JB, Hutton RJ, Bevington KB (1992) Guidelines for the commercial use of graft-transmissible dwarfing in Australia—potential benefits and risks. In: Proceedings of the International Society of Citriculture. Acireale, Italy, pp 697–701

    Google Scholar 

  • Brown RH (1978) The distribution of Tylenchulus semipenetrans and other parasitic nematodes associated with citrus in northern Victoria. Aust J Exper Agric Anim Husb 18:148–151

    Google Scholar 

  • Brown JK (2008) Plant resistance to viruses. Encycl Virol 4:164–170

    Google Scholar 

  • Brown JE, Dangler JM, Woods FM, Henshaw MC, Griffy WA, West MW (1993) Delay in mosaic virus onset and aphid vector reduction in summer squash grown on reflective mulches. Hortic Sci 28:895–896

    Google Scholar 

  • Brown SL, Culbreath AK, Todd JW, Gorbet DW, Baldwin JA, Beasley JP (2005) Development of a method of risk assessment to facilitate integrated management of spotted wilt of peanut. Plant Dis 89:348–356

    Google Scholar 

  • Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274

    CAS  PubMed  Google Scholar 

  • Bruckbauer H (1969a) Observations on the reaction of grapevine after the application of the soil fumigant Shell D-D. Weinberg u Keller 16:65–70

    Google Scholar 

  • Bruckbauer H (1969b) Economic importance and transmission of grapevine virus diseases. Dt Weinbau 24:774–777

    Google Scholar 

  • Brumin M, Stukalov S, Haviv S, Muruganantham M, Moskovitz Y, Batuman O, Fenigstein A, Mawassi M (2009) Post-transcriptional gene silencing and virus resistance in Nicotiana benthamiana expressing a Grapevine virus A minireplicon. Transgenic Res 18:331–345

    CAS  PubMed  Google Scholar 

  • Bruna A (1997) Effect of thermotherapy and meristem-tip culture on production of virus-free garlic in Chile. Acta Hortic 433:631–634

    Google Scholar 

  • Brunt AA, Jackson GVH, Frison EA (eds) (1989) FAO/IBPGR Technical Guidelines for the safe movement of yam germplasm. FAO, Rome/International Board for Plant Genetic Resources, Rome

    Google Scholar 

  • Brust GE (2000) Reflective and black mulch increase yield in pumpkins under virus disease pressure. J Econ Entomol 93:828–833

    CAS  PubMed  Google Scholar 

  • Bryan JE (1988) Implementation of rapid multiplication and tissue culture methods in the third world countries. Am Potato J 65:199–207

    Google Scholar 

  • Bua B, Adipala E, Gibson RW (2009) Quantification of the effects of roguing on growth and tuber yields of sweetpotato from Uganda. Afr Crop Sci Conf Proc 9:283–287

    Google Scholar 

  • Buitelaar K (1974) Choice of tomato variety for heated and cold glasshouse culture. Groenten en Fruit 30:845

    Google Scholar 

  • Burt PE, Heathcote GD, Broadbent L (1964) The use of insecticides to find where leaf roll and Y viruses spread within potato crops. Ann Appl Biol 54:13–22

    Google Scholar 

  • Butter NS, Rataul HS (1973) Control of Tomato leaf curl virus (TLCV) in tomatoes by controlling the vector whitefly Bemisia tabaci Gen. by mineral oil sprays. Curr Sci 42:864–865

    CAS  Google Scholar 

  • Buzzell RI, Tu JC (1984) Inheritance of soybean resistance to Soybean mosaic virus. J Hered 75:82

    Google Scholar 

  • Byoung-Cheorl K, Inhwa Y, Molly MJ (2005) Genetics of plant virus resistance. Annu Rev Phytopathol 43:581–621

    Google Scholar 

  • Cabunagan RC, Castilla N, Coloquio EL, Tiongco ER, Truong XH, Fernandez J, Du MJ, Zaragosa B, Hozak RR, Savary S, Azzam O (2001) Synchrony of planting and proportions of susceptible varieties affect rice tungro disease epidemics in the Philippines. Crop Prot 20:499–519

    Google Scholar 

  • Cadman CH, Chambers J (1960) Factors affecting the spread of aphid-borne viruses in potato in Eastern Scotland. III. Effects of planting date, rogueing and age of crop on the spread of potato leaf roll and Y viruses. Ann Appl Biol 48:729–738

    Google Scholar 

  • Calavan EC, Weathers JM (1959) Cachexia disease of citrus in California. Phytopathology 49:113

    Google Scholar 

  • Calavan EC, Goheen AC, Nyland G (1970) Technique for rapid multiplication of clean foundation stocks. In: Proceedings of the 18th international horticultural congress, vol III, pp 74–79

    Google Scholar 

  • Calavan EC, Roistacher CN, Nauer EM (1972) Thermotherapy of citrus for inactivation of certain viruses. Plant Dis Rep 56:976–980

    Google Scholar 

  • Callaway A, Giesman-Cookmeyer D, Gillock ET, Sit TL, Lommel SA (2001) The multifunctional capsid proteins of plant RNA viruses. Annu Rev Phytopathol 39:419–460

    CAS  PubMed  Google Scholar 

  • Calpouzos L (1966) Action of oil in the control of plant disease. Annu Rev Phytopathol 4:369–390

    CAS  Google Scholar 

  • Calvert EL, Harrison BD (1963) Out breaks of tomato black ring virus in onion and leek crops in Northern Ireland. Hortic Res 2:115–120

    Google Scholar 

  • Campbell RN (1980) Effect of benomyl and ribavirin on the lettuce big vein agent and its transmission. Phytopathology 70:1190–1192

    CAS  Google Scholar 

  • Campbell RN (1996) Fungal transmission of plant viruses. Annu Rev Phytopathol 34:87–108

    CAS  PubMed  Google Scholar 

  • Campbell RN, Greathead AS, Westerlund FV (1980) Big-vein of lettuce: infection and methods of control. Phytopathology 70:741–746

    CAS  Google Scholar 

  • Cann HJ (1952) Bunchy top virus of bananas’ at all time low’ in New South Wales. Agr Gaz (N S W) 63:73–76

    Google Scholar 

  • Capoor SP, Rao DG (1967) Tristeza virus infection of citrus in India. In: Proceedings of the international symposium on sub tropical and horticulture, Bangalore, India, pp 723–736

    Google Scholar 

  • Caranta CA, Palloix A, Gebre – Salassie K, Lefebvre V, Moury B, Daubeze AM (1996) A complementation of two genes originating from susceptible Capsicum annuum lines confers a new and complete resistance to Pepper veinal mottle virus. Phytopathology 86:739–743

    Google Scholar 

  • Caresche L, Cotterell GS, Peachy JE, Fayner RW, Jacques-Felix H (1969) Hand book for phytosanitary inspectors in Africa. Organization of African Unity/STRC, Lagos

    Google Scholar 

  • Carey EE, Gichuki ST, Ndolo G, Turyamureeba G, Kapinga R, Lutaladio G, Teri JM (1997) Collaborative sweet potato breeding in eastern central and southern Africa. In: CIP program report 1995–1996. CIP, Lima, Peru, pp 49–57

    Google Scholar 

  • Carr JP, Zaitlin M (1991) Resistance in transgenic tobacco plants expressing a nonstructural gene sequence of tobacco mosaic virus is a consequence of markedly reduced virus replication. Mol Plant Microbe Interact 4:579–585

    CAS  Google Scholar 

  • Carroll TW (1980) Barley stripe mosaic virus: its economic importance and control in Montana. Plant Dis 64:135–140

    Google Scholar 

  • Carroll TW (1983) Certification schemes against barley stripe mosaic. Seed Sci Technol 11:1033–1042

    Google Scholar 

  • Carroll TW, Hockett EA, Zaske SK (1983) Registration of mobet barley germplasm. Crop Sci 23:599–600

    Google Scholar 

  • Cartier JJ (1966) Aphid responses to colors in artificial rearings. Bull Entomol Soc Am 12:378–380

    Google Scholar 

  • Castle WS (1978) Controlling citrus tree size with rootstocks and viruses for higher density plantings. Proc Fla State Hortic Soc 91:46–50

    Google Scholar 

  • Castle WS (1987) Citrus rootstocks. In: Rom RC, Carlson RF (eds) Rootstocks for fruit crops. Wiley, New York, pp 361–399

    Google Scholar 

  • Castle S, Palumbo J, Prabhakar N (2009) Newer insecticides for plant virus disease management. Virus Res 141:131–139

    CAS  PubMed  Google Scholar 

  • Catherall PL (1972) Barley stripe mosaic virus. Report, Welsh Plant Breeding Station, 1971, p 62

    Google Scholar 

  • Catherall PL (1984) Resistance to sap and seed transmission of Barley stripe mosaic virus (BSMV) in some spring barley cultivars. Report, Welsh Plant Breeding Station, 1883, pp 167–169

    Google Scholar 

  • Cebolla-Cornejo J, Soler S, Gomer B, Soria DM, Nuez F (2003) Screening Capsicum germplasm for resistance to Tomato spotted wilt virus (TSWV). Ann Appl Biol 143:143–152

    Google Scholar 

  • Cembali T, Folwell R, Wandschneider P, Eastwell K, Howell W (2003) Economic implications of a virus prevention program in deciduous tree fruits in the US. Crop Prot 22:1149–1156

    Google Scholar 

  • Chalam VC, Khetarpal RK, Mishra A, Jain A, Gupta GK (2004) Seed transmission of Soybean mosaic potyvirus in soybean cultivars. Indian J Mycol Plant Pathol 34:86–87

    Google Scholar 

  • Chalam VC, Parakh DB, Khetarpal RK, Maurya AK, Jain A, Singh S (2008) Interception of seed-transmitted viruses in cowpea and mungbean germplasm imported during 2003. Indian J Virol 19:12–16

    Google Scholar 

  • Chalam VC, Bhalla S, Gupta K, Singh B, Rajan, Goswami S, Chhabra R, Maurya AK, Randhawa GJ, Kapur ML, Khetarpal RK (2009a) Methodology for processing transgenic germplasm in quarantine. In: Tyagi RK, Bhag Mal, Sharma SK, Khetarpal RK, Brahmi P, Singh N, Tyagi V, Archak S, Gupta K, Agarwal A (eds) National symposium on recent developments in the management of plant genetic resources, 17–18 Dec 2009. Souvenir and Abstracts, Indian Society of Plant Genetic Resources, New Delhi, pp 320–321

    Google Scholar 

  • Chalam VC, Khetarpal RK, Parakh DB, Deepti S, Kapoor P, Maurya AK (2009b) Detection and management of risk of introducing seed-transmitted viruses associated with legume germplasm imported into India. Plant Dis Res 24:98–99

    Google Scholar 

  • Chalam VC, Parakh DB, Khetarpal RK, Maurya AK, Pal D (2009c) Interception of seed transmitted viruses in broad bean germplasm imported into India during 1996–2006. Indian J Virol 20:83–87

    Google Scholar 

  • Chalam VC, Parakh DB, Maurya AK, Singh S, Khetarpal RK, Agarwal PC (2013) Diagnostics in biosecuring agriculture from transboundary plant viruses: a case study of India. In: 12th International symposium on plant virus epidemiology, 28th Jan–1st Feb 2013. Arusha, Tanzania (Abstract, pp 123, 224)

    Google Scholar 

  • Chalfant RB, Jaworski CA, Johhson AW, Summer DR (1977) Reflective film mulches, millet barriers and pesticides: Effects on watermelon mosaic virus, insect, nematodes, soil-borne fungi and yield of yellow summer squash. J Am Soc Hortic Sci 102:11–15

    Google Scholar 

  • Chamberlain EE, Baylis GJS (1948) Onion yellow dwarf. Successful eradication. N Z J Sci Technol A.29:300–301

    Google Scholar 

  • Chamberlain RB, Atkinson JD, Hunter JA (1964) Cross protection between strains of Apple mosaic virus. N Z J Agric Res 7:480–490

    Google Scholar 

  • Chan MS, Jeger MJ (1994) An analytical model of plant-virus disease dynamics with roguing and replanting. J Appl Ecol 31:413–427

    Google Scholar 

  • Chancellor TCB, Holt J (2008) Tungro disease dynamics. In: Tiongco ER, Angeles ER, Sebastian LS (eds) Rice tungro virus disease: a paradigm in disease management. Science City of Munoz, Nueva Ecija: Philippine Rice Research Institute and Chiba, Japan: Honda Research Institute, 2008, pp 92–115

    Google Scholar 

  • Chancellor TCB, Teng PS, Heong KL (eds) (1997) Rice tungro disease epidemiology and vector ecology: the development of sustainable and cost effective pest management practices to reduce yield losses in intensive rice cropping systems. IRRI Discussion Paper Series no. 19, International Rice Research Institute, Philippines

    Google Scholar 

  • Chancellor TCB, Holt J, Villarreal S, Tiongco ER, Venn J (2006) Spread of plant virus diseases to new plantings: a case study of rice tungro disease. Adv Virus Res 66:1–30

    CAS  PubMed  Google Scholar 

  • Chander Rao S, Bhatnagar-Mathur P, Lavakumar P, Sudarshana Reddy A, Sharma KK (2012) Pathogen-derived resistance using a viral nucleocapsid gene confers only partial non-durable protection in peanut against Peanut bud necrosis virus. Arch Virol 158:133–143

    PubMed  Google Scholar 

  • Chander Rao S, Lavakumar P, Reddy AS, Swamykrishna T, Waliyar F, Nigam S, Laxminarasu M, Sharma KK (2006) Development and evaluation of transgenic peanut plants against Peanut bud necrosis disease (PBND) under green house and field conditions. Indian J Virol 17:135

    Google Scholar 

  • Chandra K, Gupta BM, Varma HN (1978) Influence of age and host plant on the expression of acquired local and systemic antiviral resistance induced by treatment with Trichothecium polysachride in N. glutinosa. Curr Sci 47:168–170

    CAS  Google Scholar 

  • Chandra R, Birhman RK (1994) In vitro micropropagation in relation to pedigree in potato. J Indian Potato Assoc 21:87

    Google Scholar 

  • Chandra R, Dhingra MK (1990) Innovations in potato seed production. In: Grewal JS et al (eds) Current facets in potato research. Indian Potato Association and CPRI, Shimla, pp 66–76

    Google Scholar 

  • Chandra R, Dodds JH, Tover P (1988) In vitro tuberization in potato (Solanum tuberosum L.). Int Assoc plant Tissue Cult Newsl 55:10–20

    Google Scholar 

  • Chandra R, Chaudhuri DR, Birhman RK (1992a) Genotypic variability for microtubers production in potato. J Indian Potato Assoc 19:50–54

    Google Scholar 

  • Chandra R, Randhawa GJ, Chaudhuri DR (1992b) Use of ordinary sugar in vitro production of microtubers. J Indian Potato Assoc 19:87–89

    Google Scholar 

  • Chandra R, Randhawa GS, Chaudhuri DR, Upadhya MD (1992c) Efficacy of triazoles for in vitro microtuber production in potato. Potato Res 35:339–341

    CAS  Google Scholar 

  • Chandra R, Chaudhuri DR, Upadhya MD (1994) A simplified low cost medium for potato micropropagation. J Indian Potato Assoc 20:270–272

    Google Scholar 

  • Channon AG, Cheffins NJ, Hitchon GM, Barker J (1978) The effect of inoculation with an attenuated mutant strain of Tobacco mosaic virus on the growth and yield of early glasshouse tomato crops. Ann Appl Biol 88:121–129

    Google Scholar 

  • Chatenet M, Delage C, Ripolles M, Irey M, Lockhart BEL, Rott P (2001) Detection of Sugarcane yellow leaf virus in quarantine and production of virus-free sugarcane by apical meristem culture. Plant Dis 85:1177–1180

    Google Scholar 

  • Chattopadhyay SB, Bhowmik TP (1965) Control of ‘foorkey’ disease of larger cardamom in west Bengal. Indian J Agric Sci 35:272–275

    Google Scholar 

  • Chatzivassiliou EK (2008) Management of the spread of Tomato spotted wilt virus in tobacco crops with insecticides based on estimates of thrips infestation and virus incidence. Plant Dis 92:1012–1020

    CAS  Google Scholar 

  • Cha-um S, Thi-Thanh Hien N, Kirdmanee C (2006) Disease-free production of sugarcane varieties (Saccharum officinarum L.) using in vitro meristem culture. Biotechnology 5:443–448

    Google Scholar 

  • Cheema SS, Lore JS, Gosal SS (1999) Management of citrus ring spot disease through thermotherapy. Ind Phytopath 52:354–356

    Google Scholar 

  • Chen CC (1980) Rice wilted stunt in Taiwan: transmission by the brown planthopper Nila-parvata lugens and effect on the yield. Paper present on the 2nd Southeast Asian Sym. on Plant Disease in the Tropics, 20–26 Oct 1980, Bangkok, Thailand

    Google Scholar 

  • Chen MJ, Chen CC (1980) Plastic mulches for the control of viruses in peppers. In: Abstracts of experimental report on agriculture. Department of Agriculture and Forestry, Taiwan Provincial Government, Taiwan, Republic of China, p 72

    Google Scholar 

  • Chen CM, Chen CC (1983) Plastic cloth mulching for the control of viruses in peppers. In: Abstracts of experimental report on agriculture. Department of Agriculture and Forestry, Taiwan Provincial Government, Republic of China, p 106

    Google Scholar 

  • Chen WQ, Sherwood JL (1991) Evaluation of tip culture, thermotherapy and chemotherapy for elimination of Peanut mottle virus from Arachis hypogea. J Phytopathol 132:230–236

    Google Scholar 

  • Chen TH, Lu YT (2000) Application of Ribavirin in tissue culture of green bamboo (Bamboosa oldhami Muro) for elimination of Bamboo mosaic virus. Plant Prot Bull 42:159–168

    CAS  Google Scholar 

  • Chen ZC, White RF, Antoniw JF, Lin Q (1991) Effect of pokeweed antiviral protein (PAP) on the protection of plant viruses. Plant Pathol 40:612–620

    Google Scholar 

  • Chen LZ, Du ZS, Terao H, Tsuzuki E (2004) Establishment of propagation method in large quantities to produce virus-free plants of sweet potato, Ipomoea batatas (L.) Lam. by means of cultures of shoot apex and sucker. Bull Fac Agri Univ Miyazaki 50:1–9 (In Japanese)

    Google Scholar 

  • Chen Z, Wang X, Song B, Wang H, Bhadury PS, Yan K, Zhang H, Yang S, Jin L, Hu D, Xue W, Zeng S, Wang J (2008) Synthesis and antiviral activities of novel chiral cyanoacrylate derivatives with (E) configuration. Bioorg Med Chem. 16(6):3076–3083

    Google Scholar 

  • Cheng MF, Tung BK (1987) Studies on the management of sweet pepper virus diseases in the field. J Chin Soc Hortic Sci (Republic of China) 33:125–131

    Google Scholar 

  • Chiarappa L (1981) Manmade epidemiological hazards in major crops of developing countries. In: Maramorosch K, Harris KF (eds) Plant diseases and vectors ecology and epidemiology. Academic Press, New York, pp 319–339

    Google Scholar 

  • Chiari A, Bridgen MP (2002) Meristem culture and virus eradication in Alstromeria. Plant Cell Tissue Organ Cult 68:49–55

    Google Scholar 

  • Chitturi A, Riley DG, Joost PH (2007) Effect of pine pollen on settling behavior of Frankliniella occidentalis and Frankliniella fusca (Thysanoptera: Thripidae) on tomato and peanut. Environ Entomol 35:1396–1403

    Google Scholar 

  • Cho EK, Goodman RM (1979) Strains of soybean mosaic virus: classification based on virulence in resistant soybean cultivars. Phytopathology 69:467–469

    Google Scholar 

  • Cho EK, Goodman RM (1982) Evaluation of resistance in soybean mosaic virus strains. Crop Sci 22:1133–1136

    Google Scholar 

  • Cho JJ, Ullman DE, Wheatley E, Holly J, Gonsalves D (1992) Commercialization of ZYMV cross protection for zucchini production in Hawaii. Phytopathology 82:1073

    Google Scholar 

  • Choudhary N, Kapoor HC, Lodha ML (2008) Cloning and expression of antiviral/ribosome-inactivating protein from Bougainvillea xbuttiana. J Biosci 33:91–101

    CAS  PubMed  Google Scholar 

  • Chowfla SC, Parmar GS (1995) Management of bell pepper mosaic complex by cultural practices. In: Gupta VK, Sharma RC (eds) Integrated disease management and plant health. Scientific Publishers, Jodhpur, pp 187–192

    Google Scholar 

  • Chowrira GM, Cavileer TD, Gupta SK, Surquin PF, Berger PH (1998) Coat protein-mediated resistance to Pea enation mosaic virus in transgenic Pisum sativum L. Transgenic Res 7:265–271

    CAS  PubMed  Google Scholar 

  • Chu PWG, Waterhouse PM, Martin RR, Gerlach WI (1989) New approaches to the detection of microbial plant-pathogens. Biotechnol Genet Eng Rev 7:45–111

    CAS  Google Scholar 

  • Chung E, Seong E, Kim YC, Chung EJ, Oh SK, Lee S, Park JM, Joung YH, Choi D (2004) A method of high frequency virus induced gene silencing in chili pepper Capsicum annuum L. cv. Bukang). Mol Cell 17:377–380

    CAS  Google Scholar 

  • CIAT (2006) Recent products and developments at the International Center for Tropical Agriculture. A Newsletter from http://www.ciat.cgiar.org

  • Cieslinska M (2002) Elimination of Apple chlorotic leaf spot virus (ACLSV) from pear by in vitro thermotherapy and chemotherapy. Acta Hortic 596:481–484

    CAS  Google Scholar 

  • Cieslinska M (2003) Elimination of Strawberry mottle virus (SMoV) from Fragaria virginiana UC-11 indicator plants by thermotherapy and chemotherapy. Phytopathol Pol 30:51–59

    Google Scholar 

  • Clarke WC (1937) The close planting of ground nuts. E Abr Agri J 2:380

    Google Scholar 

  • Clark MF (1981) Immunosorbent assays in plant pathology. Annu Rev Phytopathol 19:83–106

    CAS  Google Scholar 

  • Clement SL, El. Din Sharaf N, Weigand S, Lateef SS (1994) Research achievements in plant resistance to insect pest of cool season legumes. Euphytica 73:41–50

    Google Scholar 

  • Clough GH, Hamm PB (1995) Coat protein transgenic resistance to Watermelon mosaic and Zucchini yellow mosaic virus in squash and cantaloupe. Plant Dis 79:1107–1109

    CAS  Google Scholar 

  • Cohen M (1968) Exocortis virus as a possible factor in producing dwarf citrus trees. Proc Fla State Hortic Soc 81:115–119

    Google Scholar 

  • Cohen S (1982) Control of whitefly vectors of viruses by color mulches. In: Harris KF, Maramorosch K (eds) Pathogens, vectors and plant diseases: approaches to control. Academic Press, New York, pp 45–56

    Google Scholar 

  • Cohen S, Antignus Y (1994) Tomato yellow leaf curl virus—a whitefly-borne geminivirus of tomatoes. Adv Dis Vector Res 10:259–288

    Google Scholar 

  • Cohen S, Berlinger MJ (1986) Transmission and cultural control of whitefly-borne viruses. Agric Ecosyst Environ 17:89–97

    Google Scholar 

  • Cohen S, Marco S (1973) Reducing the spread of aphid-transmitted viruses in peppers by trapping the aphids on sticky yellow polyethylene sheets. Phytopathology 63:1207–1209

    Google Scholar 

  • Cohen S, Marco S (1979) Reducing virus spread in vegetables and potato by net cover. Phytoparasitica 7:40–41

    Google Scholar 

  • Cohen S, Gertman E, Kedar N (1971) Inheritance of resistance to Melon mosaic virus in cucumbers. Phytopathology 61:253–255

    Google Scholar 

  • Colvin J, Muniyappa V (1999) Sustainable management of the whitefly, Bemisia tabaci, and tomato leaf curl virus (ToLCV) on tomato in India. DFID Crop Protection Programme, Final Technical Report, Project R6627. Natural Resources Institute, University of Greenwich, Chatham, Kent, UK, and Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bangalore, Karnataka, India, 79 pp

    Google Scholar 

  • Colvin J, Nagaraju N, Moreno-Leguizamon C, Govindappa MR, Manjunatha R, Joshi N, Seal SE, Muniyappa V (2012) Socio-economic and scientific impact created by white-fly transmitted, plant virus disease resistance tomato varieties in southern India. J Integr Agric 11:337–345

    Google Scholar 

  • Conover RA, Litz RE, Malo SE (1986) ‘Cariflora’- a Papaya ringspot virus - tolerant papaya for south Florida and the Caribbean. Hort Science 21:1072

    Google Scholar 

  • Constantin GD, Krath BN, MacFarlane SA, Nicolaisen M, Johansen IE, Lund OS (2004) Virus-induced gene silencing as a tool for functional genomics in a legume species. Plant J 40:622–631

    CAS  PubMed  Google Scholar 

  • Converse RH (1970) Effect of oil sprays on spread of strawberry viruses. Plant Dis Rep 54:479–482

    Google Scholar 

  • Cooper JL, Jones RAC, Harrison BD (1976) Field and glasshouse experiments on the control of potato mop top virus. Ann Appl Biol 83:215–230

    CAS  Google Scholar 

  • Cooper JI, Edwards ML, Rosenwasser O, Scott NW (1994) Transgenic resistance genes from nepoviruses: efficacy and other properties. N Z J Crop Hortic Sci 22:129–137

    CAS  Google Scholar 

  • Cooper B, Lapidot M, Heick JA, Dodds JA, Beachy RN (1995) Multivirus resistance in transgenic tobacco plants expressing a dysfunctional movement protein of tobacco mosaic virus. Virology 206:307–313

    CAS  PubMed  Google Scholar 

  • Cornwell PB (1958) Movement of vectors of virus disease of cacao in Ghana. I. Canopy movement in and between trees. Bull Entomol Res 49:613–630

    Google Scholar 

  • Costa AS (1956) Anthocyanosis, a virus of cotton in Brazil. Phytopathol Z 28:167–186

    Google Scholar 

  • Costa CL (1972) Controle de molestias de virus de plantas com superficies reflectivas repelentes as vector. Rev Per Entomol 15:135–139

    Google Scholar 

  • Costa CL, Costa AS (1971) Reducao da disseminacao de mosaico em abobora de moita com superficies reflectivas replentes aos afidios vectors. XIth Reuniao Annal da Soc. Oler. do Brasil, Piracicaba, 12–17 Julho

    Google Scholar 

  • Costa AS, Grant TJ, Moreira S (1954) Behavior of various citrus rootstock-scion combinations following inoculation with mild and severe strans of tristeza. Proc Fla State Hortic Soc 67:26–30

    Google Scholar 

  • Costa CL, Muller GW, Costa AS, Teofilo Sobrinho J (1974) Reducing tristeza infection of citrus seedlings by repelling Toxoptera citricidus with rice husk mulch. In: Proceedings of the 6th conference of the IOCV, pp 97–100

    Google Scholar 

  • Costa HS, Robb KL, Wilen CA (2002) Field trials measuring the effects of ultraviolet-absorbing green house plastic films on insect populations. J Econ Entomol 95:113–120

    CAS  PubMed  Google Scholar 

  • Coundriet DL, Prabhaker N, Meyerdirk DE (1985) Sweetpotato whitefly (Homoptera: Aleyrodidae): effects of neem-seed extract on oviposition and immature stages. Environ Entomol 14:776–779

    Google Scholar 

  • Courshee RJ (1960) Some aspects of the application of insecticides. Annu Rev Entomol 5:237–252

    Google Scholar 

  • Cousin MT, Grison C (1969) Note concernant I’action dúne huile minerale sur la transmission de la mosaique commune du pois (Pea virus Z) par Acyrtosiphum pisi. Ann Phytopathol 1:315–318

    Google Scholar 

  • Coutts BA, Jones RAC (2005) Suppressing spread of Tomato spotted wilt virus by drenching infected source or healthy recipient plants with neonicotinoid insecticides to control thrips vectors. Ann Appl Biol 146:95–103

    Google Scholar 

  • Coutts BA, Thomas-Carroll ML, Jones RAC (2004) Patterns of spread of Tomato spotted wilt virus in field crops of lettuce and pepper: spatial dynamics and validation of control measures. Ann Appl Biol 145:231–245

    Google Scholar 

  • Coutts BA, Prince RT, Jones RAC (2008) Further studies on Pea seed-borne mosaic virus in cool-season crop legumes: responses to infection and seed quality defects. Aust J Agric Res 59:1130–1145

    Google Scholar 

  • Cradock KR, da Graça JV, Laing MD (2001) Control of aphid virus-vectors in Cucurbita pepo L. in KwaZulu-Natal, South Africa. Subtrop Plant Sci 53:49–54

    Google Scholar 

  • Craig GW, Stephen JW, Michael GKJ (2004) Diagnosis of plant viral pathogens. Curr Sci 86:12–25

    Google Scholar 

  • Crane GL (1968) Mineral oil as a foliar spray for the potential control of cercospora leaf spot and virus yellows diseases by Beta vulgaris L. Ph.D. Thesis. University of Minnesota, 100 pp

    Google Scholar 

  • Crane GL, Calpouzos L (1967) Mineral oil suppressed symptoms of virus yellows on sugar beets. Phytopathology 57:807–808

    Google Scholar 

  • Crane GL, Calpouzos L (1969) Suppression of symptoms of sugar beet virus yellows by mineral oil. Phytopathology 59:697–698

    Google Scholar 

  • Crnko J (1969) Obtainment of mosaic free seed in lettuce cultivars of Argentina. Revta Investnes Agrop Ser 2(6):103–129

    Google Scholar 

  • Cropley R (1979) The production and practical benefits of virus-free propagating material of fruit crops. In: Hebbels DL, King JE (eds) Plant Health. Blackwell Scientific Publishers, Oxford, pp 121–127

    Google Scholar 

  • Crosse JE (1976) Plant path. Section—Virus and virus-like diseases. East Malling Research Station Report for 1976

    Google Scholar 

  • Crowdy SH, Posnette AF (1947) Virus diseases of cacao in West Africa. II. Cross immunity experiments with viruses 1A, 1B and 1C. Ann Appl Biol 34:403–411

    Google Scholar 

  • Csinos AS, Pappu HR, McPherson RM, Stephenson MG (2001a) Management of Tomato spotted wilt virus in flue-cured tobacco with acibenzolar-S-methyl and imidacloprid. Plant Dis 85:292–296

    CAS  Google Scholar 

  • Csinos AS, Pappu HR, McPherson RM, Stephenson MG (2001b) Acibenzolar S methyl (0.2 to 8 g a.i./7000 plants) free transplant application for suppression of TSWV. Plant Dis 85:290–296

    Google Scholar 

  • Culbreath AK, Todd DW, Gorbet FM, Shokes FM, Pappu HR (1997) Field response of new peanut cultivar UF 91108 to Tomato spotted wilt virus. Plant Dis 81:1410–1415

    Google Scholar 

  • Culbreath AK, Todd JW, Brown SL (2003) Epidemiology and management of tomato spotted wilt in peanut. Annu Rev Phytopathol 41:53–75

    CAS  PubMed  Google Scholar 

  • Culbreath AK, Tillman BL, Tubbs RS, Beasley JP Jr, Kamerait RC Jr, Brenneman TB (2010) Ineractive effects of planting date and cultivar on Tomato spotted wilt of peanut. Plant Dis 94:898–904

    Google Scholar 

  • Culver JN (1995) Molecular strategies to develop virus resistant plants. In: Singh RP, Singh US (eds) Molecular methods in plant pathology. CRC/Lewis Publishers, Boca Raton, pp 235–248

    Google Scholar 

  • Culver JN, Sherwood JL, Melouk HA (1987) Resistance to Peanut stripe virus in Arachis germplasm. Plant Dis 71:1080–1082

    Google Scholar 

  • Cuozzo M, O’Connell KM, Kaniewski W, Fang R, Chua NH, Tumer NE (1988) Viral protection in transgenic tobacco plants expressing the Cucumber mosaic virus coat protein or its antisense RNA. Bio Technology 6:649–557

    Google Scholar 

  • Dader B, Moreno A, Vinuela E, Fereres A (2012) Spatio-temporal dynamics of viruses are differentially affected by parasitoids depending on the mode of transmission. Viruses 4(11):3069–3089

    Google Scholar 

  • Dahal G, Neupane FP, Baral DR (1992) Effect of planting and insecticides on the incidence and spread of yellow vein mosaic of okra in Nepal. Int J Plant Dis 10:109–124

    Google Scholar 

  • Daiber CC, Donaldson JNI (1976) Watermelon mosaic virus in Vegetable marrows: the effect of aluminum foil on the vector. Phytoparasitica 8:85–86

    Google Scholar 

  • Dale JL (1987) Banana bunchy top: an economically important tropical plant virus disease. Adv Virus Res 33:301–325

    CAS  PubMed  Google Scholar 

  • Dale JL, Harding RM (1998) Banana bunchy top disease: current and future strategies for control. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant virus disease control. APS Press, St. Paul, pp 659–669

    Google Scholar 

  • Daly P, Tomkins B (1995) Production and post harvest handling of Chinese cabbage (Brassica rapa var. pekinensis). RIRDC Publication No. 97/1, Barton, pp 1–39

    Google Scholar 

  • Dalmasso A (1971) La desinfection nematicide du sol dans la prevention de la degenerescence infectieuse de la vigne (Soil disinfection for preventing infectious degeneration). Union Agric 315:55–66

    Google Scholar 

  • Dalmasso A, Boubals D, Bongiovanni M, Pistre R (1972a) Distribution des nematodes propagateurs du court-noue dans les vignobles mediterraneens français (Distribution of nematode vectors of fanleaf in vineyards of southern France). Progr Agric Vitic 89:456–462

    Google Scholar 

  • Dalmasso A, Cuany A, Joubert J (1972b) Utilisation de l’aldicarbe contre les nematodes vecteurs de maladies a virus (Use of aldicarb against nematodes that transmit viruses). Compte Rendus des Journees Aldicarbe, Versailles, Decembre 1972:221–230

    Google Scholar 

  • D’Anna F, Panattoni A, Triolo E (2006) Emerging antiviral drugs in plant chemotherapy. J Plant Pathol 88:39

    Google Scholar 

  • Damsteegt V (1976) A naturally occurring corn virus epiphytotic. Plant Dis Rep 60:858–861

    Google Scholar 

  • Dasgupta I, Malathi VG, Mukherjee SK (2003) Genetic engineering for virus resistance. Curr Sci 84:341–354

    CAS  Google Scholar 

  • Davies JC (1976) The incidence of rosette disease in groundnut in relation to plant density and its effect on yield. Ann Appl Biol 82:489–501

    Google Scholar 

  • Davis RF, Shifriss O (1983) Natural virus infection in silvery and non silvery lines of Cucurbita pepo. Plant Dis 67:379–380

    Google Scholar 

  • Davis MJ, Ying Z (2004) Development of papaya breeding lines with transgenic resistance to papaya ring spot virus. Plant Dis 88:352–358

    CAS  Google Scholar 

  • Dawson WO, Bubrick P, Crantham GL (1988) Modifications of Tobacco mosaic virus coat protein gene affecting replication, movement and symptomalogy. Phytopathology 78:783–789

    CAS  Google Scholar 

  • Day AG, Bejarano ER, Buck KW, Burrell M, Lichtenstein CP (1991) Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus. Proc Natl Acad Sci U S A 88:6721–6725

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Clercq E (2002) Highlights in the development of new antiviral agents. Mini-Rev Med Che 2:163–175

    Google Scholar 

  • De Haan P (1998) Mechanisms of RNA-mediated resistance in plant viruses. In: Methods in Molecular Biology, Plant Virology Protocols, Humana Press, Totowa, New Jersey 81:533–546

    Google Scholar 

  • Delanoy M, Salmon M, Kummert J, Frison E, Lepoivre P (2003) Development of real-time PCR for the rapid detection of episomal Banana streak virus (BSV). Plant Dis 87:33–38

    CAS  Google Scholar 

  • Delfosse P, Reddy AS, Devi KT, Legreve A, Risopoulos J, Doucet D, Devi PS, Maraite H, Reddy DVR (2002) Dynamics of Polymyxa graminis and Indian peanut clump virus (IPCV) infection on various monocotyledonous crops and groundnut during the rainy season. Plant Pathol 51:546–560

    Google Scholar 

  • Demski JW (1975) Source and spread of Peanut mottle virus in soybean and peanut. Phytopathology 65:917–920

    Google Scholar 

  • Demski JW, Kuhn CW (1975) Resistant and susceptible reaction of soybeans to Peanut mottle virus. Phytopathology 65:95–99

    Google Scholar 

  • Demski JW, Lovell GR (1985) Peanut stripe virus and the distribution of peanut seed. Plant Dis 69:734–738

    Google Scholar 

  • Deogratias JM, Lutz A, Dosba F (1986) In vitro micrografting of shoot tips from juvenile and adult Prunus avium (L.) and Prunus persica (L.) Batsch to produce virus-free plants. Acta Hortic 193:139–145

    Google Scholar 

  • Deol GS, Rataul HS (1978) Role of various barrier crops in reducing the incidence of Cucumber mosaic virus in chilli, Capsicum annuum Linn. Indian J Ent 40:261–264

    Google Scholar 

  • Deom CM (2004) Plant resistance to viruses: engineered resistance. In: Encyclopedia of virology, pp 1307–1314

    Google Scholar 

  • Deom CM, Schubert KR, Wolf S, Holt CA, Lucas WJ, Beachy RN (1990) Molecular characterization and biological function of the movement protein of tobacco mosaic virus in transgenic plants. Proc Natl Acad Sci U S A 87:3284–3288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deom CM, Lapidot M, Beachy RN (1992) Plant virus movement proteins. Cell 69:221–224

    CAS  PubMed  Google Scholar 

  • Dewar AM, Smith HG (1999) Forty years of forecasting virus yellows incidence in sugar beet. In: Smith HG, Barker H (eds) The Luteoviridae, Chapter 9, Epidemiology and control. CABI Publishing, Wallingford, pp 228–261

    Google Scholar 

  • de Wijs JJ (1980) The characteristics of mineral oils in relation to their inhibitory activity on the aphid transmission of potato virus Y. Neth J Plant Pathol 86:291–300

    Google Scholar 

  • de Wijs JJ, Saturm E, Schurinn FJ (1979) The Viscosity of mineral oils in relation to their ability to inhibit the transmission of stylet-borne viruses. Neth J Plant Pathol 85:19–22

    Google Scholar 

  • Dhanju KC, Lal T, Dhaliwal MS (1995) Screening muskmelon hybrids against mosaic viral complex. Indian J Virol 11:71–73

    Google Scholar 

  • Dhankar BS, Saharan BS, Hooda VS, Singh P (1991) Exploitation of alien genes for yellow vein mosaic resistance in okra. In: Prakash J, Pierik RLM (eds) Horticulture new technologies and applications. Kluwar Academic Publishers, Dordrecht, pp 45–48

    Google Scholar 

  • Dhillon NPS, Jellis GJ, Boulton RE, Jackson EA, Jack PL, Lacey CND (1995) Isozyme and RFLP mapping of Sbm-4, a gene in pea (Pisum sativum) conferring resistance to P4 pathotype of Pea seed-borne mosaic virus. Adv Hortic Sci 9:159–161

    Google Scholar 

  • Dhital SP, Lim HT, Sharma BP (2008) Electrotherapy and chemotherapy for eliminating double-infected potato virus (PLRV and PVY) from in vitro plantlets of potato (Solanum tuberosum L.). Hortic Environ Biotechnol 49:52–57

    CAS  Google Scholar 

  • Di R, Purcell V, Collins GB, Ghabrial SA (1996) Production of transgenic soybean lines expressing the bean pod mottle virus coat protein precursor gene. Plant Cell Rep 15:746–750

    CAS  PubMed  Google Scholar 

  • Diaz-Pendon JA, Fernandez-Munoz R, Gomez-Guillamon ML, Moriones E (2005) Inheritance of resistance to Watermelon mosaic virus in Cucumis melo that impairs virus accumulation, symptom expression and aphid transmission. Phytopathology 95:840–846

    PubMed  Google Scholar 

  • Diaz-Perez JC, Batal KD, Cranberry D, Bertrand D, Giddings D, Pappu H (2003) Growth and yield of tomato on plastic film mulches as affected by Tomato spotted wilt virus. Hort Sci 38:395–399

    Google Scholar 

  • Diaz JA, Mallor C, Soria C, Camero R, Garzo E, Fereres A, Alvarez JM, Gomez-Guillamon ML, Luis-Arteaga M, Moriones E (2003) Potential sources of resistance for melon to non-persistently aphid-borne viruses. Plant Dis 87:960–964

    Google Scholar 

  • Dickson RC, Laird EF Jr (1966) Aluminum foil to protect melons from Watermelon mosaic virus. Plant Dis Rep 50:305

    Google Scholar 

  • Dickson RC, Johnson MMcD, Flock RA, Laird EF (1956) Flying aphid populations in Southern California citrus groves and their relation to the transmission of the tristeza virus. Phytopathology 46:204–210

    Google Scholar 

  • Diez MJ, Rosello S, Nuez F, Costa J, Lacasa A, Catala MS (1999) Tomato production under mesh reduces crop loss to Tomato spotted wilt virus in some cultivars. Hortic Sci 34:634–637

    Google Scholar 

  • Dimov A, Stefanov I (1975) Interdependence between sowing times and infection of wheat by virus diseases. Zavisimost mezhdn srokovete na seitba I napadenieto na pshenitsatot virusni bolesti. Rastitelna Zashchita 23:31–33

    Google Scholar 

  • Ding XS, Schneider WL, Chaluvadi SR, Rouf Mian RM, Nelson RS (2006) Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts. Mol Plant Microbe Interact 19:1229–1239

    CAS  PubMed  Google Scholar 

  • Dobie ND, Vaughan EK, Miler PW, Waldo GF (1958) New facilities and procedures used for growing disease-free strawberry plants in Oregon. Plant Dis Rep 42:1048–1050

    Google Scholar 

  • Doidge EM (1939) Scaly bark or psorosis of citrus trees in South Africa. Dept Agr For Sci Bull 208:1–16

    Google Scholar 

  • Dogimont C, Slama S, Martin J, Lecoq H, Pitrat M (1996) Sources of resistance to Cucurbit aphid borne yellows luteo virus in melon germplasm collection. Plant Dis 80:1379–1382

    Google Scholar 

  • Domfeh O, Dzahini-Obiatey H, Ameyaw Akumfi G, Opoku IY (2009) The effect of mild strains on growth and yield of cocoa. 2008/2009 Progress Report and Work plan, Cocoa Research Institute of Ghana, July 2009, Akim Tafo pp 151–153

    Google Scholar 

  • Domier LL, Steinlage TA, Hobbs HA, Wang Y, Herrera Rodriguez G, Haudenshield J, McCoppin NK, Hartman GL (2007) Similarities in seed and aphid transmission among soybean virus isolates. Plant Dis 91:546–550

    CAS  Google Scholar 

  • Donald M, Bonde R (1954) Dissemination of spindle tuber by contaminated tractor wheels and by foliage contact with diseased potato plants. Phytopathology 44:111

    Google Scholar 

  • Doncaster JP, Gregory PH (1948) The spread of virus diseases in the potato crop. Agricultural Research council Report Series No. 7, London, H.M.S.O

    Google Scholar 

  • Drinkwater TW, Walters MC, Van Rensburg JBJ (1979) The application of systemic insecticides to the soil for the control of maize stalk borer, Busseola fusca (fuller) (Lep.: Noctuidae), and of Cicadulina mbila (Naude) (Hem.: Cicadellidae), the vector of maize streak virus. Phytophylactica 11(1):5–11

    Google Scholar 

  • Dubey GS, Nene YL (1974) Aphid transmission of Cowpea mosaic virus as influenced by oil sprays. Indian Phytopathol 27:325–330

    Google Scholar 

  • Duffus JE (1964) Host relationships of beet western yellows virus strains. Phytopathology 54:736–738

    Google Scholar 

  • Duffus JE (1971) Role of weeds in the incidence of virus diseases. Annu Rev Phytopathol 9:319–340

    Google Scholar 

  • Duncan JM, Torrance L (eds) (1992) Techniques for the rapid detection of plant pathogens. Blackwell Scientific, Oxford

    Google Scholar 

  • Duncan JH, Sproule RS, Bevington KB (1978) Commercial application of virus induced dwarfing. In: Carey PR (ed) Proceedings of the International Society of Citriculture, pp 317–319

    Google Scholar 

  • Dunn JA, Kirkley J (1966) Studies on the aphid, Cavariella aegopodii scop. II. On secondary hosts other than Carrot. Ann Appl Biol 58:213–217

    Google Scholar 

  • Duriat AA, Karyadi AK, Miura M, Sukarna E (1990) Influence of border crops on virus incidence of potato tuber. Bul Penel Hortic 19:94–108

    Google Scholar 

  • Dutrecq A, Vanderveken J (1969) Remanence de l’effect inhibiteur d’une huile minerale a l’egard de la transmission aphidienne du virus de la jannisse de la betterave. Bull Rech Agron Gembloux 4:66–75

    Google Scholar 

  • Dutta OP (1978) I.I.H.R. Annual Report

    Google Scholar 

  • Dzanini-Obiatey H, Domfeh O, Amoah FM (2010) Over seventy years of a viral disease of cocoa in Ghana: from researchers’ perspective. Afr J Agric Res 5:476–485

    Google Scholar 

  • Dziedzic E (2008) Elimination of Prunus necrotic ring spot (PNRSV) from plum ‘Earliblue’ shoot through thermotherapy in vitro. J Fruit Ornam Plant Res 16:101–109

    CAS  Google Scholar 

  • Ebbels DL (2003) Principles of plant health and quarantine. CAB International, Wallingford

    Google Scholar 

  • Edwards MC, Steffenson BJ (1996) Genetics and mapping of Barley stripe mosaic virus resistance in barley. Phytopathology 86:184–187

    Google Scholar 

  • El-Dougdoug KhA, Dawood RA, El-Shamy MMM, Korkar HM (2009) Eradication of banana viruses from naturally infected plants. 3 Disease management of banana through the use of virus free plant materials. J Appl Sci Res 5:1872–1880

    Google Scholar 

  • El-Khoury W, Makkouk K (2010) Integrated plant disease management in developing countries. J Plant Pathol 92(4):S4.35–S4.42

    Google Scholar 

  • El Far Mervat MM, Ashoub A (2009) Utility of thermotherapy and meristem tip for freeing sweetpotato from viral infection. Aust J Basic Appl Sci 3:153–159

    Google Scholar 

  • EPPO (1969–1978) Phytosanitary regulations of EPPO member countries. EPPO, Paris

    Google Scholar 

  • EPPO (1991) Certification scheme. Virus-free or virus-tested fruit trees and rootstocks. Part I: basic scheme and its elaboration. EPPO Bull 21:267–277

    Google Scholar 

  • EPPO (1992) Certification scheme. Virus-free or virus-tested fruit trees and rootstocks. Part II, III, IV: tables of viruses and vectors. EPPO Bull 22:255–283

    Google Scholar 

  • EPPO (1994) Certification scheme. Pathogen-tested material of grapevine varieties and rootstocks, Ribes, Rubus, Strawberry. EPPO Bull 24:347–367

    Google Scholar 

  • EPPO/CABI (1996) Quarantine pests for Europe, 2nd edn. CAB Int, Wallongford

    Google Scholar 

  • Esparza-Duque J, Verhoyen M (1975a) Lutte contre le virus de la mosaique du celeri par des pulverizations d’huile et des surfaces reflechissantes repulsives pour vecteurs. Meded Fakulteit Landbonw wetenschappen Genet 40:779–789

    Google Scholar 

  • Esparza-Duque J, Verhoyen M (1975b) Reduction des infections de virus de la mosaique, du celeri par des pulverizations d’huile et des surfaces reflechissantes repulsives pour vecteurs. Meded Fakulteit Landbonwwetenschappen Genet 40:779–789

    Google Scholar 

  • Eulitz EG (1977) Aluminium foil for the control of watermelon mosaic in vegetable marrow. Phytoparasitica 9:23

    Google Scholar 

  • Evans SG (1972) Trials with the Dutch mild strain of Tomato mosaic virus. Forward 56:13–14

    Google Scholar 

  • Evans TA, Miller LC, Vasilas BL, Taylor RW, Mulrooney RP (2007) Management of Xiphinema americanum and soybean severe stunt in soybean using crop rotation. Plant Dis 91:216–219

    Google Scholar 

  • Ewusie EA, Parajulee MN, Aba Adabie-Gomez D, Wester D (2010) Strip cropping: a potential IPM tool for reducing whitefly, Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) infestations in cassava. West Afr J Appl Ecol 17:109–119

    Google Scholar 

  • Faccioli G (2001) Control of Potato viruses using meristem and stem-cutting cultures, thermotherapy and chemotherapy. In: Loebenstein G et al. (ed) Virus and virus-like disease of potatoes and production of seed-potatoes. Kluwer Academic Publishers, Dordrecht, pp 365–390

    Google Scholar 

  • Faccioli G, Colombarini A (1991) PVS and PVM elimination by meristem culture, chemo- and thermotherapy. Phytoparasitica 19:3

    Google Scholar 

  • Faccioli G, Marani F (1998) Virus elimination by meristem tip culture and tip micrografting. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant virus disease control. APS Press, St. Paul, pp 346–380

    Google Scholar 

  • Fagbola O, Boulton RE, Jellis GJ, Dhillon NPS (1996) The reaction of some varieties of fababean (Vicia faba) to Pea seed-borne mosaic potyvirus. Plant Var Seeds 9:43–51

    Google Scholar 

  • Faivre-Rampant O, Gilroy EM, Hrubikova K, Hein I, Millam S, Loake GJ, Birch P, Taylor M, Lacomme C (2004) Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiol 134:1308–1316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fajardo TG (1930) Studies on the mosaic disease of the bean (Phaseolus vulgaris L.). Phytopathology 20:469–494

    Google Scholar 

  • Fajardo J, Lutaladio NB, Larinde M, Rosell C, Barker I, Roca W, Chujoy E (2010) Quality declared planting material. Protocols and standards for vegetatively propagated crops. FAO, Italy Rome 195:33–35

    Google Scholar 

  • Fallah M, Mozafari M, Sokhandan-Bashir N, Hashemi M (2007) Elimination of a DNA virus associated with yellow leaf curl disease in tomato using an electrotherapy technique. 2nd International symposium on tomato diseases, Kusadasy, Turkey, 8–12 Oct 2007

    Google Scholar 

  • Fang Y, Dhital SP, Li K, Khu D, Kim H, Song Y, Lim H (2005) Utilization of single nodal cuttings and therapies for eradicating double-infected potato virus (PLRV, PVY) from in vitro plantlets of potato (Solanum tuberosum). J K Soc Hort Sci 48:119–125

    Google Scholar 

  • FAO (2000) The stage of food insecurity in the world (SOFI). FAO, Rome. www.fao.org/focus/e/of/100/s0f1001.htm

  • FAO (2010) Quality declared planting material. Protocols and standards for vegetatively propagated crops. FAO Plant Production and Protection Paper 195. FAO, Rome

    Google Scholar 

  • Fargette D, Fauquet CM (1988) A preliminary study on the influence of intercropping maize and cassava on the spread of African cassava mosaic by whiteflies. Ann Appl Biol 17:195–202

    Google Scholar 

  • Fargette D, Jeger M, Fauquet C, Fishpool L (1994) Analysis and modelling of the temporal spread of African cassava mosaic virus. Phytopathology 84:91–98

    Google Scholar 

  • Fargette D, Leslie M, Harrison BD (1996) Serological studies on the accumulation and localization of three tomato leaf curl Gemini viruses in resistant and susceptible Lycopersicon species and tomato cultivars. Ann Appl Biol 128:317–328

    Google Scholar 

  • Farrell JAK (1976) Effects of groundnut sowing date and plant spacing on rosette virus disease in Malawi. Bull Entomol Res 66:159–171

    Google Scholar 

  • Fauquet CM (2013) War on African cassava viruses: a novel strategy against mighty foes of cassava. Paper presented at 12th International on plant virus epidemiology, 28 Jan–1st Feb 2013, Arusha, Tanzania (Abstract, OP-71), p 96

    Google Scholar 

  • Fauquet CM, Fargette D, Thouvenel JC (1987) Selection of healthy cassava plants obtained by reversion in cassava fields. In: Proceedings of the International Seminar on African Cassava Mosaic Disease and its control Yamoussoukro, Cote d’Ivoire 4–8 May 1987. CTA/FAO/ORSTOM/IITA/IAPC, pp 146–149

    Google Scholar 

  • Felix Nweke (2009) Controlling cassava mosaic disease. IFPRI discussion paper 00912 (Nov, 2009)

    Google Scholar 

  • Feng G, Vifu G, Pinto Z (2000) Production and development of virus-free sweet potato in China. Crop Prot 19:105–111

    Google Scholar 

  • Fenigstein A, Eliyo M, Kletter E, Ganmor S, Veierov D (2001) Relative activities and field evaluation of light vegetable oils for the control of sweet potato whitefly, Bemisia tabaci on cotton. In: Proceedings of the European Whitefly Symposium, Ragosa, Italy, 27th Feb–3rd March 2001, p 84

    Google Scholar 

  • Fereres A (2000) Barrier crops as a cultural control measure of non-persistently transmitted aphid-borne viruses. Virus Res 71:221–231

    CAS  PubMed  Google Scholar 

  • Fereres A, Moreno A (2011) Integrated control measures against viruses and their vectors. In: Caranta C, Aranda MA, Tepfer M, Lopez-Moya JJ (eds) Recent advances in plant virology. Academic press, Caister, 412 pp

    Google Scholar 

  • Ferreira SA, Mau RFL, Manshardt R, Pitz KY, Gonsalves D (1992) Field evaluation of Papaya ringspot virus cross protection. In: Proceedings of the 28th annual Hawaii Papaya Industry Association conference, Honolulu, pp 14–19, 25–26 Sept

    Google Scholar 

  • Fifaei R, Golein B, Taheri H, Tadjvar Y (2007) Elimination of Citrus tristeza virus of Washington Navel orange (Citrus sinensis L. Osbeck) through shoot-tip grafting. Int J Agric Biol 9:27–30

    Google Scholar 

  • Finnegan J, McElroy D (1994) Transgene inactivation: plants fight back! Biotechnology 12:883–884

    Google Scholar 

  • Fitch MM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1992) Virus resistant papaya derived from tissues bombarded with the coat protein gene of Papaya ringspot virus. Bio/Technology 10:1466–1472

    Google Scholar 

  • Fitch MMM, Lehrer AT, Komor E, Moore PH (2001) Elimination of Sugarcane yellow leaf virus from infected sugarcane plants by meristem tip culture visualized by tissue blot immunoassay. Plant Pathol 50:676–680

    Google Scholar 

  • Fitchen JH, Beachy RN (1993) Genetically engineered protection against viruses in transgenic plants. Annu Rev Microbiol 47:739–763

    CAS  PubMed  Google Scholar 

  • Fjelddalen J (1974) Organization of plant protection in Norway and research orientation. Bull Org Eur Med Plant Prot 4:241–249

    Google Scholar 

  • Fletcher JT, Rowe JM (1975) Observations and experiments on the use of an avirulent mutant strain of Tobacco mosaic virus as means of controlling tomato mosaic. Ann Appl Biol 81:171–179

    CAS  PubMed  Google Scholar 

  • Fletcher PJ, Fletcher JD, Lewthwaite SL (1998) In vitro elimination of onion yellow dwarf and shallot latent viruses in shallot (Allium cepa var. ascalonicum L.). N Z J Crop Hort 26:23–26

    Google Scholar 

  • Fofana IB, Sangare A, Collier R, Taylor C, Fauquet CM (2004) A geminivirus-induced gene silencing system for gene function validation in cassava. Plant Mol Biol 56:613–624

    CAS  PubMed  Google Scholar 

  • Fondong VN, Thresh JM, Zok S (2002) Spatial and temporal spread of Cassava mosaic virus disease in cassava grown alone and when intercropped with maize and/or cowpea. J Phytopathol 150:1–10

    Google Scholar 

  • Foster JA, Hadidi A (1998) Exclusion of plant viruses. In: Plant Virus Disease Control (ed. Hadidi A, Khetarpal RK, Koganezawa H). The American Phytopathological Society Press, St. Paul, Minnesota, USA. pp. 208–229

    Google Scholar 

  • Foxe MJ (1992) Breeding for viral resistance: Conventional methods. Netherlands J Plant Pathol 98:13–20

    Google Scholar 

  • Franklin RM (1966) Purification and properties of replicative intermediate of the RNA bacteriophage R17. Proc Natl Acad Sci U S A 55:1504–1511

    Google Scholar 

  • Fraselle J (1968) L’utilisation des produits huileux dans les traitements antiparasitaires. Annls Gembloux 74:37–46

    Google Scholar 

  • Fraser RSS (1982) Biochemical aspects of plant resistance to virus disease: a review. Acta Hortic 127:101–116

    Google Scholar 

  • Fraser RSS (1990) The genetics of resistance to plant viruses. Annu Rev Phytopathol 28:179–200

    Google Scholar 

  • Fraser RSS (1998) Biochemistry of resistance to plant viruses. Breeding for resistance to plant viruses. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant virus disease control. AP Press, St. Paul, pp 56–64

    Google Scholar 

  • Fraser LR, Broadbent P (1979) Virus and related diseases of citrus in New South Wales. Beatty and Sons Pty Ltd, Chipping Norton

    Google Scholar 

  • Fraser LR, Levitt EC (1959) Recent advances in the study of exocortis (scally butt) in Australia. In: Proceedings of the conference on citrus virus diseases, Riverside, CA, pp 129–133

    Google Scholar 

  • Fraser RSS, Vanloon LC (1986) Genes for resistance to plant viruses. CRC Crit Rev Plant Sci 3:257–294

    Google Scholar 

  • Fraser LR, Levitt EC, Cox J (1961) Relationship between exocortis and stunting of citrus varieties on Poncirus trifoliata rootstocks. In: Proceedings of the 2nd conference of the IOCV. University of Florida Press, Gainesville, pp 34–39

    Google Scholar 

  • Fraser LR, Singh D, Capoor SP, Nariani TK (1966) Greening virus-the likely cause of citrus die back in India. FAO Plant Prot Bull 14:127–130

    Google Scholar 

  • Frederick RD, Thilmony RL, Sessa G, Martin GB (1998) Recognition specificity for the bacterial avirulence protein AvrPto is determined by Thr-204 in the activation loop of the tomato Pto kinase. Mol Cell 2:241–245

    CAS  PubMed  Google Scholar 

  • Freitas AJ, Rezende JAM (1998) Odontoglossum ringspot virus-free Cymbidium obtained through meristem tip chemotherapy. Fitopatol Bras 23:158–160

    Google Scholar 

  • French N, Wilson WR (1976) Influence of crop rotation, weed control and nematicides on sparing in potatoes. Plant Pathol 25:167–172

    CAS  Google Scholar 

  • Freytag AH (1965) A ‘hot knife’ to prevent virus spread in orchid. Bull Am Orchid Soc 34:501–502

    Google Scholar 

  • Fridley R (1977) High density orchards facilitate harvest. Calif Agric 31:12–13

    Google Scholar 

  • Fridlund PR (1968) IR-2, a germplasm bank of virus-free fruit tree clones. Hortic Sci 3:227–229

    Google Scholar 

  • Fridlund PR (1980) The IR-2 program for obtaining virus-free fruit trees. Plant Dis 64:826–830

    Google Scholar 

  • Frison EA (1994) IBPGR concerns on seed-borne disease. In: Proceedings of the Conference on the potential of biotechnology to minimize seed-borne diseases, 28 Sept–1 Oct 1989. Research and Extension Center, Washington State University, Puyallup, WA. pp 32–40

    Google Scholar 

  • Frison EA, Diekmann M (1998) IPGRI’s in controlling virus disease in plant germplasm. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant virus disease control. APS Press, St. Paul, pp 230–236

    Google Scholar 

  • Frison EA, Putter CAJ (1988) FAO/IBPGR technical guidelines for the safe movement of germplasm, p 279. In: Abstract for the 5th International congress of plant pathology, 20–27 Aug, 1988, Kyoto

    Google Scholar 

  • Frison EA, Bos L, Hamilton RI, Mathur SB, Taylor JW (1990) FAO/IBPGR Technical guide lines for the safe movement of legume germplasm. FAO/IBPGR, Rome 88 pp

    Google Scholar 

  • Fuchs M, Gonsalves D (1995) Resistance of transgenic hybrid squash ZW-20 expressing the coat protein genes of zucchini yellow mosaic virus and watermelon mosaic virus 2 to mixed infections by both potyviruses. Bio/Technology 13:1466–1473

    CAS  Google Scholar 

  • Fuchs M, Gonsalves D (2007) Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Annu Rev Phytopathol 45:173–202

    CAS  PubMed  Google Scholar 

  • Fuchs M, Provvidenti R, Slighton JL, Gonsalves D (1996) Evaluation of transgenic tomato plants expressing the coat protein gene of Cucumber mosaic virus strain WL under field conditions. Plant Dis 80:270–275

    Google Scholar 

  • Fuchs M, Ferreira S, Gonsalves D (1997) Management of virus diseases by classical and engineered protection. Molecular plant pathology on line. http://www.Bspp.org.uk.mppol/1997/01161fuchs

    Google Scholar 

  • Fuchs M, Chirco EM, McFerson J, Gonsalves D (2004) Comparative fitness of a free-living squash species and free-living x virus-resistant transgenic squash hybrids. Environ Biosaf Res 3:17–28

    Google Scholar 

  • Fuchs M, Cambra M, Capote N, Jelkmann W, Kundu J, Laval V, Martelli GP, Minafra A, Petrovic N, Pfeiffer P, Pompe-Novak M, Ravelonandro M, Saldarelli P, Stussi-Garaud C, Vigne E, Zagrai I (2007) Safety assessment of transgenic plum and grapevines expressing viral coat protein genes: new insight into real environmental impact of perennial plants engineered for virus resistance. J Plant Pathol 89:2–12

    Google Scholar 

  • Fuji S, Iida T, Nakamae H (2000) Selection of an attenuated of Japaneese yam mosaic virus and its use for protecting yam plants against severe strains. Jpn J Phytopathol 66:35–39

    Google Scholar 

  • Fulton RW (1986) Practices and precautions in the use of cross protection for plant virus disease control. Annu Rev Phytopathol 24:67–81

    Google Scholar 

  • Fulton RA, Romney VE (1940) The chloroform-soluble components of beet leafhoppers as an indication of the distance they move in the spring. J Agr Res 61:737–743

    CAS  Google Scholar 

  • Fulton JP, Seymour C (1957) The Arkansas strawberry certification program. Plant Dis Rep 41:749–754

    Google Scholar 

  • Funderburk J (2009) Management of the western flower thrips (Thysanoptera: Thripidae) in fruiting vegetables. Fla Entomologist 92:1–6

    Google Scholar 

  • Furmidge CGL (1968) Use of hydrocarbon oils in agricultural sprays. J Proc Inst Agric Eng 23:173–182

    Google Scholar 

  • Furutani N, Hidaka S, Kosaka Y, Shizukawa Y, Kanematsu S (2006) Coat protein gene-mediated resistance to soybean mosaic virus in transgenic soybean. Breed Sci 56:119–124

    CAS  Google Scholar 

  • Gabova RN (1989) Virus free pome fruits through meristem tip culture. Acta Hortic 235:69–76

    Google Scholar 

  • Gal-On A, Shiboleth YM (2006) Cross-protection. In: Loebenstein G, Carr JP (eds) Natural resistance mechanisms of plants to viruses. Springer, Dordrecht, pp 261–288

    Google Scholar 

  • Galun E, Breiman A (1997) Transgenic plants. Imperial College Press, London, pp 124–211

    Google Scholar 

  • Ganesan U, Suri SS, Shanmugam R, Rajam MV, Indranil I (2009) Transgenic expression of coat protein gene of Rice rungro bacilliform virus in rice reduces the accumulation of viral DNA in inoculated plants. J Virus Genes 39:113–119

    CAS  Google Scholar 

  • Garcia-Cano E, Castillo JN, Moriones E, Fernandez-Munoz R (2010) Resistance to Tomato chlorosis virus in wild tomato species that impair virus accumulation and disease symptom expression. Phytopathology 100:582–592

    CAS  PubMed  Google Scholar 

  • Gardner RG, Panthee DR (2012) Tomato spotted wilt virus-resistant fresh-market tomato breeding lines: NC 585, NC 1235, NC 1275 and NC 1325. Hortic Sci 47:531–532

    Google Scholar 

  • Garnsey SM, Jones WJ (1968) Relationship of symptoms to the presence of tatter leaf virus in several citrus hosts. In: Childs JFL (ed) Proceedings of the 4th conference of the International Organization of Citrus Virologists. University of Florida Press, Gainesville, pp 207–212

    Google Scholar 

  • Garnsey SM, Randles JW (1987) Biological interactions and agricultural implications of viroids. In: Semancik JS (ed) Viroids and viroid-like pathogens. CRC Press, Boca Raton, pp 127–160

    Google Scholar 

  • Garnsey SM, Weathers LG (1972) Factors affecting mechanical spread of exocortis virus. In: Price WC (ed) Proceedings of the 5th conference of the International Organization of Citrus Virologists. University of Florida Press, Gainesville, pp 105–111

    Google Scholar 

  • Garnsey SM, Whidden R (1971) Decontamination treatments to reduce the spread of Citrus exocortis virus (CEV) by contaminated tools. Proc Fla State Hortic Soc 84:63–67

    CAS  Google Scholar 

  • Garnsey SM, Youtsey CO, Bridges GD, Burnett HC (1976) A necrotic ring spot-like virus found in a ‘Star Ruby’ grapefruit tree imported without authorization into Florida. Proc Fla State Hortic Soc 89:63–67

    Google Scholar 

  • Garnsey SM, Gottwald TR, Yokomi RK (1998) Control strategies for citrus tristeza virus. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant virus disease control. APS Press, St. Paul, pp 639–658

    Google Scholar 

  • Garrett RG, McLean GD (1983) The epidemiology of some aphid-borne viruses in Australia. In: Plumb RT, Thresh JM (eds) Plant virus epidemiology. Blackwell, Oxford, pp 199–209

    Google Scholar 

  • Gasser CG, Fraley TT (1989) Genetically engineering plants for crop improvements. Science 244:1293–1299

    CAS  PubMed  Google Scholar 

  • Gay JD, Johnson AW, Chalfant RB (1973) Effects of a trap-crop on the introduction and distribution of cowpea virus by soil and insect vectors. Plant Dis Rep 57:684–688

    CAS  Google Scholar 

  • Geering ADW, Thomas JE (1996) A comparison of four serological tests for the detection of Banana bunchy top virus in banana. Aus J Agric Res 47:403–412

    Google Scholar 

  • Genereux H (1973) L’emploi diinsecticides et de l’huile “Control” comme mogen repressif des viruses de la pomme de terre. Phytoprotection 54:91

    Google Scholar 

  • George EF (1996) Commercial micropropagation In: George EF (ed) Plant propagation by tissue culture. Exegeties Ltd., London, pp 761–833

    Google Scholar 

  • George WL Jr, Kring JB (1971) Virus protection of late-season summer squash with aluminium mulch. Circular of the Connecticut Agricultural Experiment Station No. 239

    Google Scholar 

  • Ghanekar AM (1980) Groundnut virus research at ICRISAT. In: Gibbons RW, Mertin JV (eds) Proceedings of the international workshop on groundnuts. ICRISAT, Patancheru, pp 211–216

    Google Scholar 

  • Ghanekar AM, Sheila VK, Beniwal SPS, Reddy MV, Nene YL (1992) Sterility mosaic of pigeonpea. In: Singh US, Mukuopadhyay AN, Kumar J, Chaubey HS (eds) Plant diseases of international importance: diseases of cereals and pulses, vol-1. Prentice Hall, Eaglewood Cliffs, pp 415–428

    Google Scholar 

  • Ghosh DK, Ahlawat YS, Gupta MD (1997) Production of virus free garlic (Allium sativum) plants by thermotherapy and meristem tip culture. Ind J Agr Sci 67:391–393

    Google Scholar 

  • Ghosh D, Latha SK, Biswas NK (2009) Effect of different pesticides on incidence of Mungbean yellow mosaic incidence. Int J Plant Prot 2:67–70

    Google Scholar 

  • Giacometti DC, Araujo CM (1965) Cross protection from tristeza in different species of citrus. In: Rice WC (ed) Proceedings of the 3rd conference of the International Organization of Citrus Virologists. University of Florida Press, Gainesville, pp 14–17

    Google Scholar 

  • Gibson RW, Plumb RT (1976) The transmission and effect on yield of Ryegrass mosaic virus in a filtered air environment. Ann Appl Biol 82:79–84

    Google Scholar 

  • Gibson RW, Pickett JA, Dawson GW, Rice AD, Stribley MF (1984) Effects of aphid alarm pheromone derivatives and related compounds on non- and semi-persistent plant virus transmission by Myzus persicae. Ann Appl Biol 104:203–209

    CAS  Google Scholar 

  • Gibson RW, Aritua V, Byamukama E, Mpembe I, Kayongo J (2004) Control strategies for sweet potato virus disease in Africa. Virus Res 100:115–122

    CAS  PubMed  Google Scholar 

  • Gichuki S, La Bonte D, Burg K, Kapinga R, Simon JC (2005) Assessment and genetic diversity, farmer participatory breeding and sustainable conservation of Eastern Africa sweet potato germ-plasm. Annual report April 2004–March 2005

    Google Scholar 

  • Gielen J, de Haan JLP, Kool AJ, Peters D, van Grinsven MQJM, Goldbach (1991) Engineered resistance to Tomato spotted wilt virus, a negative-strand RNA virus. Bio/Technology 9:1363–1367

    Google Scholar 

  • Gielen J, Ultzen T, Bontems S, Loots W, Schepen VA, van Schepen A (1996) Coat protein mediated protection to Cucumber mosaic virus infection in cultivated tomato. Euphytica 88:139–149

    CAS  Google Scholar 

  • Gilbert RZ, Kyle MM, Munger HM, Gray SM (1994) Inheritance of resistance to Watermelon mosaic virus in Cucumis melo L. Hortic Sci 29:107–110

    Google Scholar 

  • Gilbert-Albertini F, Lecoq H, Pitrat M, Nicolet JL (1993) Resistance of Cucurbita moschatato Watermelon mosaic virus type 2 and its genetic relation to resistance to Zucchini yellow mosaic virus. Euphytica 69:231–237

    Google Scholar 

  • Gilbertson RL (2011) Implementation and success of host-free periods for managing tomato-infecting Begomoviruses in developing countries. Phytopathology 101:S210

    Google Scholar 

  • Gilbertson RL, Rojas MR, Kon T, Jaquez J (2007) Introduction of Tomato yellow leaf curl virus into the Dominican Republic: the development of a successful integrated pest management strategy. In: Czosnek H (ed) Tomato yellow leaf curl virus disease. Springer, Dordrecht, pp 279–303

    Google Scholar 

  • Gill SS, Singh H, Sandhu KS (1982) Effect of sowing dates and plant density on the incidence of yellow vein mosaic virus on seed crop of okra (Abelmoschus esculentus L. Moench). Indian J Ecol 9:160–162

    Google Scholar 

  • Gillaspie AG Jr (2001) Resistance to Cucumber mosaic virus in Cowpea and implications for control of cowpea stunt disease. Plant Dis 85:1004–1005

    Google Scholar 

  • Ginarte A (2010) Evaluacion de variedades frente al insecto Tagosodes orizicolus (Muir) y el virus de la hoja blanca. I Curso de Capacitacion en mejoramiento genetico del arroz. 2006 [cited 2010]. http://agr.unne.edu.ar/fao/Cuba-ppt

  • Gippert R, Schmelzer K (1973) Experience with meristem tip cultures of pelargonium (Pelargonium zonale hybrids). Archiv fur Phytopathologie und Pflanzenechutz 9:353–362

    Google Scholar 

  • Goheen AC (1955) Methods for determining the success of graft unions between plants in strawberry virus studies. Plant Dis Rep 39:31–32

    Google Scholar 

  • Goheen AC (1980) Grape pathogens and prospects for controlling grape diseases. In: Proceedings of the Grape and Wine Centenary symposium, Davis, CA, pp 24–27

    Google Scholar 

  • Goheen AC, Luhn CF, Hewitt WB (1966) Inactivation of grape viruses in vivo. In: Proceedings of the International conference on virus and vector on Perennial Hosts. University of California, Davis, pp 255–265

    Google Scholar 

  • Goldbach RW, Bucher EC, Prins AH (2003) Resistance mechanisms to plant viruses: an overview. Virus Research 92:207–212

    Google Scholar 

  • Golemboski DB, Lomonossoff GP, Zaitlin M (1990) Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc Natl Acad Sci U S A 87:6311–6315

    CAS  PubMed Central  PubMed  Google Scholar 

  • Golino DA, Savino V (2005) Certification and international regulation of planting material. In: Wilcox WF, Gubler WG, Uyemoto JK (eds) Compendium of grape diseases. APS Press, St. Paul

    Google Scholar 

  • Gonsalves D (1989) Cross protection techniques for control of plant virus diseases in the tropics. Plant Dis 73:592–597

    Google Scholar 

  • Gonsalves D (1998) Control of Papaya ringspot virus in papaya: a case study. Annu Rev Phytopathol 36:415–437

    CAS  PubMed  Google Scholar 

  • Gonsalves D (2002) Coat protein transgenic papaya “acquired” immunity for controlling papaya ringspot virus. Curr Top Microbiol Immunol 266:73–83

    CAS  PubMed  Google Scholar 

  • Gonsalves D (2004) Transgenic papaya in Hawaii and beyond. Agric Bio Forum 7:36–40

    Google Scholar 

  • Gonsalves D, Garnsey SM (1989) Cross-protection techniques for control of plant virus diseases in the tropics. Plant Dis 73:592–597

    Google Scholar 

  • Gonsalves C, Xue B, Yepes M, Fuchs M, Ling K, Namba S, Chee P, Slightom JL, Gonsalves D (1994) Transferring cucumber mosaic virus-white leaf strain coat protein gene into Cucumis melo L. and evaluating transgenic plants for protection against infections. J Am Soc Hortic Sci 119:345–355

    CAS  Google Scholar 

  • Goodman RM, Nene YL (1976) Identification of virus-resistant tropically adopted soybean germplasm. Annual Report on contract AID/TA-C-1294, 1 April 1977–21 March 1978, pp 73–103

    Google Scholar 

  • Goodman RM, Oard JH (1980) Seed transmission and yield losses in tropical soybeans infected by soybean mosaic virus. Plant Dis 64:913–914

    Google Scholar 

  • Goregaoker SP, Eckhardt LG, Culver JN (2000) Tobacco mosaic virus replicase-mediated cross-protection: Contributions of RNA and protein-derived mechanisms. Virology 273:267–275

    CAS  PubMed  Google Scholar 

  • Gossele VV, Fache II, Meulewaeter F, Cornelissen M, Metzlaff M (2002) SVISS-a novel transient gene silencing system for gene function discovery and validation in tobacco. Plant J 32:859–866

    CAS  PubMed  Google Scholar 

  • Goto T, Komochi S, Oshima N (1966) Study on control of plant virus diseases by vaccination with attenuated virus. 2. Effects of concentration and time elapsed after inoculation of tomato with attenuated TMV against infection with virulent parent strain. Ann Phytopathol Soc Jpn 32:221–226

    Google Scholar 

  • Gould B, Kramer EM (2007) Virus-induced gene silencing as a tool for functional analyses in the emerging model plant Aquilegia (columbine, Ranunculaceae). BMC Plant Methods 12:6

    Google Scholar 

  • Gracia O, Boninsegna JA (1977) Use of mineral oils to control viruses on pepper. J IDIA 349/354:34–40

    Google Scholar 

  • Grancini P (1958) I, sintomi del ‘Namismo ruvido’ del Mais. Maydica 3:67–79

    Google Scholar 

  • Grant TJ (1959) Tristeza virus strains in relation to different citrus species used as test plants. Phytopathology 49:823–827

    Google Scholar 

  • Grant TJ, Costa AS (1951) A mild strain of the tristeza virus of citrus. Phytopathology 41:114–122

    Google Scholar 

  • Gray SM, Bergstrom GC, Vanghan R, Smith DM, Kalb DW (1996) Insecticidal control of cereal aphids and its impact on the epidemiology of the barley and yellow dwarf luteoviruses. Crop Prot 15:687–697

    Google Scholar 

  • Gray SM, Moyar JW, Kennedy GG, Campbell CL (1986) Virus suppression and aphid resistance effects on spatial and temporal spread of watermelon mosaic virus-2. Phytopathology 76:1254–1259

    Google Scholar 

  • Greathead A (1966) An effective program for controlling lettuce mosaic. Mimeo. Agricultural experiment series 4. California University

    Google Scholar 

  • Greber RS (1966) Passionfruit woodiness virus as cause of passion vine tip blight disease. Qld J Agric Animal Sci 23:533–538

    Google Scholar 

  • Green SK (1991) Integrated control of virus diseases of vegetables in Taiwan. In: Proceedings of the 1990 International Workshop Implementation Integrated Control of Virus Disease Important Crops, Taichung, Taiwan, pp 35–68

    Google Scholar 

  • Green SK, Lee DR (1989) Occurrence of Peanut stripe virus (PStV) on soybean in Taiwan-effect on yield and screening for resistance. Trop Pest Manag 35:123–126

    Google Scholar 

  • Green SK, Luo CY, Wu SF (1992) Elimination of leafcurl virus of sweet potato by meristem tip culture, heat and ribavirin. Plant Prot Bull Taipei 34:1–7

    Google Scholar 

  • Greenough DR, Black LL, Bond WP (1990) Aluminum-surfaced mulch: an approach to control of tomato spotted wilt virus in solanaceous crops. Plant Dis 74:805–808

    Google Scholar 

  • Greer L, Dole JM (2003) Aluminum foil, aluminum-painted, plastic, and degradable mulches increase yields and decrease insect-vectored viral diseases of vegetables. Hortic Tech 13:176–184

    Google Scholar 

  • Gregorimi G, Lorenzi R (1974) Meristem-tip culture of potato plants as a method of improving productivity. Potato Res 17:24–33

    Google Scholar 

  • Gregory PH (1948) The multiple-infection transformation. Ann Appl Biol 35:412–417

    CAS  PubMed  Google Scholar 

  • Griffiths HM, Slack SA, Dodds JH (1990) Effect of chemical and heat therapy in virus concentrations in vitro potato plantlets. Can J Bot 68:1515–1521

    CAS  Google Scholar 

  • Grogan RG (1980) Control of lettuce mosaic virus with virus-free seed. Plant Dis 64:446–449

    Google Scholar 

  • Grogan RG (1983) Control of Lettuce mosaic virus by use of virus indexed seed. Seed Sci Technol 11:1043–1049

    Google Scholar 

  • Grogan RG, Welch JE, Bardin R (1952) Common lettuce mosaic and its control by the use of mosaic free seed. Phytopathology 42:573–578

    Google Scholar 

  • Grout BWW (1990) Meristem-tip culture for propagation and virus elimination. In: Hall RD (ed) Plant cell culture protocols. Humana Press Inc, Totowa, pp 115–125

    Google Scholar 

  • Grumet R (1994) Development of virus resistant plants via genetic engineering. Plant Breed Rev 12:47–79

    Google Scholar 

  • Grumet R, Gifford F (1998) Plant biotechnology in the United States: issues and challenges en route to commercial production. Hortic Sci 33:187–192

    Google Scholar 

  • Gudin C, Syratt WJ, Boize L (1976) The mechanisms of photosynthetic inhibition and the development of scorch in tomato plants treated with spray oils. Ann Appl Biol 84:213–219

    Google Scholar 

  • Gunasinghe UB, Irwin ME, Kampmeier GE (1988) Soybean leaf pubescence affects aphid vector transmission and field spread of soybean mosaic virus. Ann Appl Biol 112:259–272

    Google Scholar 

  • Gupta BM (1985) Development in antiviral chemotherapeutic research. Indian Phytopath 38:401–412

    CAS  Google Scholar 

  • Gupta Y, Chowfla SC (1990) Screening of French bean germplasm for resistance to Bean common mosaic virus. Indian Phytopathol 43:434–436

    Google Scholar 

  • Gururaj S, Kenchanagoudar PV, Naragund VB (2002) Identification of sources for field resistance to Peanut bud necrosis disease in groundnut. Karnataka J Agric Sci 15:646–648

    Google Scholar 

  • Guta IC, Buciumeanu EC, Gheorghe RN, Teodorescu A (2010) Solutions to eliminate grapevine leafroll associated virus serotype 1 + 3 from V. vinifera L. cv. Ranai Magaraci, Romanian Biotechnol Lett 15:72–78

    CAS  Google Scholar 

  • Guzman EV, de Manuel GC (1975) Improved root growth in embryo and seedling cultures of coconut “Makapuno” by the incorporation of charcoal in the growth medium. Paper Fourth Session, FAO Technical Working Party on Coconut Production, Protection and Processing, Kingston (Jamaica)

    Google Scholar 

  • Hackland AF, Rybicki EP, Thomson JA (1994) Coat protein mediated resistance in transgenic plants. Arch Virol 139:1–22

    CAS  PubMed  Google Scholar 

  • Haddad NI, Muehlbauer FJ, Hampton RO (1978) Inheritance of resistance to Pea seed-borne mosaic virus in lentils. Crop Sci 18:613–615

    Google Scholar 

  • Hadidi A (1995) Elimination of apple scar skin viroid from pears by in vitro thermotherapy and apical meristem culture. Acta Hortic 386:536–543

    Google Scholar 

  • Hadidi A, Hansen AJ, Parish CL, Yang X (1991) Scar skin and dapple apple viroids are seed borne and persistant in infected apple trees. Res Virol 142:289–296

    CAS  PubMed  Google Scholar 

  • Hagio T, Kasiawazaki S, Hirabayashi T (1996) Genetic transformation of barley (Hordium vulgare L.) using coat protein genes of Barley mild mosaic virus (BaMMV) and Barley yellow mosaic virus (BaYMV) in vitro. Plant J Sivb 32:309

    Google Scholar 

  • Hakkaart FA (1967) Effects of aluminum stripes on the spread of two aphid borne chrysanthemum viruses. Neth J Plant Pathol 73:181–185

    Google Scholar 

  • Hakkaart FA (1968) Het tegengaan van de versprelding van non-persistente plante virussen door toepassing van oliepreparaten. Meded Dir Tuinb 31:262–268

    Google Scholar 

  • Hakkaart FA, Quak F (1964) Effect of heat treatment of young plants on freeing chrysanthemums from virus B by means of meristem culture. Neth J Plant Pathol 70:154–157

    Google Scholar 

  • Halk EL, Merlo DJ, Liao LW, Jarvis NP, Nelson SE, Krahn KJ, Hill KK, Rashka KE, Loesch-Fries LS (1989) Resistance to Alfalfa mosaic virus in transgenic tobacco and alfalfa. In: Staskawicz BJ, Ahlquist P, Yoder O (eds) Molecular biology of plant pathogen interactions. Alan R. Liss Inc, New York, pp 283–296

    Google Scholar 

  • Hamilton RI (1980) Defenses triggered by previous invaders: viruses. In: Horsfall JG, Cowling EB (eds.) Plant disease: an advanced treatise, vol 5. Academic Press, New York, pp 279–303

    Google Scholar 

  • Hamilton RI (1983) Certification schemes against seed-borne viruses in leguminous hosts, present status and further areas for research and development. Seed Sci Technol 11:1051–1062

    Google Scholar 

  • Hamilton RI, Nichols C (1978) Serological methods for detection of Pea seed-borne mosaic virus in leaves and seeds of Pisum sativum. Phytopathology 68:539–543

    Google Scholar 

  • Hampton RO (1967) Seed transmission of viruses in red clover. Phytopathology 57:98

    Google Scholar 

  • Hampton RO (1980) Pea seedborne mosaic symptom variation among Pisum plant introduction accessions: expressions and variation in symptom expression among different genotypes of Pisum and pathological implications. Pisum News Lett 12:29–30

    Google Scholar 

  • Hampton RO, Braverman SW (1979a) Occurrence of Pea seed-borne mosaic virus and new virus-immune germplasm in the plant introduction collection of Pisum sativum. Plant Dis Rep 63:95–99

    Google Scholar 

  • Hampton RO, Braverman SW (1979b) Occurrence of Pea seed-borne mosaic virus in North American pea breeding lines and new virus-immune germplasm in the plant introduction collection of Pisum sativum. Plant Dis Rep 79:631–633

    Google Scholar 

  • Hampton RE, Sill WH Jr, Hansing ED (1957) Barley stripe mosaic virus in Kansas and its control by greenhouse seed-lot testing technique. Plant Dis Rep 41:735–740

    Google Scholar 

  • Hampton R, Ball E, De Boer S (1990) Serological methods for detection and identification of viral and bacterial plant pathogens. APS Press, St Paul 389 pp

    Google Scholar 

  • Hanafi A, Bouharoud R, Miftah S, Amouat S (2003) Performance of two insect screens as a physical barrier against Bemisia tabaci and their impact on TyLCV incidence in greenhouse tomato in Souss valley of Morocco. IOBC Wprs Bull 26:39–42

    Google Scholar 

  • Handa A, Thakur PD (1999) Virus and virus-like diseases of Apple. In: Verma LR, Sharma RC (eds) Diseases of horticultural crops fruits. Indus Publishing Company, New Delhi, pp 120–139

    Google Scholar 

  • Handizi J, Legorburu FT (2002) Escaping from Potato virus Y: Aphid repellants and planting dates. In: Proceedings of the 8th international plant viruses epidemiology symposium: Aschersleben, 12–17 May, Germany

    Google Scholar 

  • Hansen HP (1950) Investigations on virus yellows of beets in Denmark. Trans Danish Acad Technol Sci 1:1–68

    Google Scholar 

  • Hansen AJ (1984) Effect of Ribavirin on green ring mottle causal agent and necrotic ringspot virus in prunus species. Plant Dis 68:216–218

    Google Scholar 

  • Hansen AJ, Lane WD (1985) Elimination of apple chlorotic leafspot virus from apple shoot cultures by ribavirin. Plant Dis 69:134–135

    Google Scholar 

  • Hansen JL, Shiel PS, Zenetra RS, McCarthy PL, Wyatt SD, Berger PH (1995) Expression of barley yellow dwarf or wheat streak mosaic virus coat proteins in transgenic wheat. Phytopathology 85:1146

    Google Scholar 

  • Hanson PM, Dernacchi D, Green SD, Tanskley SD, Muniyappa V, Padmaja AS, Chen HM, Kuo George, Fang Denise, Tzu Chen Jen (2000) Mapping wild tomato introgression associated with Tomato yellow leaf curl virus resistance in cultivated tomato line. J Am Hortic Sci 125:15–20

    CAS  Google Scholar 

  • Hansing ED (1943) A study of the control of the yellow-dwarf disease of potatoes. Cornell Univ Agric Exp Stn Bull 792:1–28

    Google Scholar 

  • Hare WW, Lucas GB (1959) Control of contact transmission of Tobacco mosaic virus with milk. Plant Dis Rep 43:152–154

    CAS  Google Scholar 

  • Harpaz I (1961) Calligypona marginata, the vector of maize rough dwarf virus. FAO Plant Prot Bull 9:144–147

    Google Scholar 

  • Harpaz I (1982) Nonpesticidal control of vector-borne viruses. In: Harris KF, Maramorosch K (eds) Pathogens, vectors and plant diseases: approaches to control. Academic Press, New York, pp 1–21

    Google Scholar 

  • Harris D (2004) On-farm seed priming reduces risk and increases yield in tropical crops. In: New directions for a diverse planet. Proceedings of the 4th International crop science congress, 26 Sep–1 Oct 2004, Brisbane, Australia

    Google Scholar 

  • Harrison BD (1966) Further studies on a British form of pea early browning virus. Ann Appl Biol 57:121–129

    Google Scholar 

  • Harrison BD (1977) Ecology and control of viruses with soil-inhabiting vectors. Annu Rev Phytopathol 15:331–360

    Google Scholar 

  • Harrison BD, Hopper DJ (1963) Longevity of Longidorus elongates (de Man) and other nematodes in soil kept in polythene bags. Nematologica 9:158–160

    Google Scholar 

  • Hartmann HT, Kester DE, Davies FT, Geneve RL (2002) Plant propagation, principles and practices, 7th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Harvey TL, Seifers DL, Kofoid KD (1996) Effect of sorghum hybrid and imidacloprid seed treatment on infestations by corn leaf aphid and greenbug (Homoptera: Aphididae) and the spread of Sugarcane mosaic virus strain MDMV-Bl. J Agric Entomol 13:9–15

    Google Scholar 

  • Hassall KA (1969) World crop protection. Vol. 2. Pesticides, lliffe, London, 249 pp

    Google Scholar 

  • Hawkes R, Niday E, Gordon J (1982) A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem 119:142–147

    CAS  PubMed  Google Scholar 

  • Heathcote GD (1968) Protection of sugarbeet stecklings against aphids and viruses by cover crops and aluminum foil. Plant Pathol 17:158–161

    Google Scholar 

  • Heathcote GD (1970) Weeds, herbicides and plant virus diseases. In: Proceedings of the 10th British weed control conference, pp 934–941

    Google Scholar 

  • Heathcote GD (1972) Influence of cultural factors on incidence of aphids and yellows in beet. J Int Inst Sugar Beet Res 6:6–14

    Google Scholar 

  • Heathcote GD (1973) Control of viruses spread by invertebrates to plants. In: Gibbs AJ (ed) Viruses and invertebrates’. North-Holland Publishing Company, London, pp 587–609

    Google Scholar 

  • Heathcote GD (1978) Review of losses caused by virus yellows in English sugar beet crops and the cost of partial control with insecticide. Plant Pathol 27:12–17

    Google Scholar 

  • Hegde V, Makeskumar T, Ganga G, Edison S (2005) Meristem culture and virus indexing for management of cassava mosaic disease. J Mycol Plant Pathol 35:482

    Google Scholar 

  • Hein A (1964) Die wirkung eines Milchfilms auf die. Z. Pfl. Krankh. 71:267–270 (RPP 44:309)

    Google Scholar 

  • Hein A (1965) Die Wirkung emul gierter Fette auf die Ubertragung nicht-persistenter viren durch Myzus persicae Sulz. Phytopath Z 52:29–36

    Google Scholar 

  • Hein A (1971) Zur wirkung von oel auf die Virusuebertragung durch Blattlaeuse. Phytopath Z 49:313–324

    Google Scholar 

  • Hein A (1972) Untersuchungen zur Wirkung von Olen bei der Virusubertragung durch Blattlause 1. Wirkung von Olen auf mechanische virusubertragung. Phytopath Z 74:126–130

    Google Scholar 

  • Hein A (1975) Spritzungen in Nelken-Mutter-Pflanzenbestanden zum schutz for virus infektionen. Z Pflanzenkrankh 82:77–83

    Google Scholar 

  • Heinlein M, Epel BL, Padgett HS, Beachy RN (1995) Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 270:1983–1985

    CAS  PubMed  Google Scholar 

  • Heinrichs EA, Aequino GB, Palis F (1986) Integration of host plant resistance and insecticides in the control of Nephotettix virescence (Homoptera: Cicadellidae), a vector of rice tungro virus. J Econ Entomol 79:437–443

    CAS  Google Scholar 

  • Heinze K (1966) Die Vergilbungs – krankheit der Konl – und wasserrube als Krankheitsursache auf Zierpflanzen. Mitt boil Bund Aust Ld-u Forstw 121:132–139

    Google Scholar 

  • Helliot B, Panis B, Hernandez R, Swennen R, Lepoivre P, Frison E (2004) Development of in vitro techniques for the elimination of Cucumber mosaic virus from banana (Musa spp.). In: Mohan JS, Swennen R (eds) Banana improvement. Cellular, molecular biology, and induced mutations. Sci Publishers, Inc, Enfield, pp 183–191

    Google Scholar 

  • Hellwald KH, Palukaitis P (1995) Viral RNA as a potential target for two independent mechanisms of replicase-mediated resistance against cucumber mosaic virus. Cell 83:937–946

    CAS  PubMed  Google Scholar 

  • Hemenway C, Fan RX, Kaniewski WK, Chua NH, Tumer NE (1988) Analysis of the mechanism of protection in transgenic plants expressing the Potato virus x coat protein or its antisense RNA. EBO J 7:1273–1280

    CAS  Google Scholar 

  • Henson JM, French R (1993) The polymerase chain reaction and plant disease diagnosis. Annu Rev Phytopathol 31:81–109

    CAS  PubMed  Google Scholar 

  • Henzell RG, Persley DM, Greber RS, Fletcher DS, Van Slobbe I (1982) Development of grain sorghum lines with resistance to sugarcane mosaic and other sorghum diseases. Plant Dis 66:900–901

    Google Scholar 

  • Hermence C, Mtunda K, Muhanna M, Boniface S, Jeremiah S, Kanju E, Legg JP (2013) Managing the spread of cassava viruses through clean ‘seed’ systems. In: 12th International symposium on plant virus epidemiology, 28th Jan–1st Feb 2013, Arusha, Tanzania (Abstract, pp 076, p 177)

    Google Scholar 

  • Hernandez R, Fontanella J, Noa JC, Pichardo T, Manzo R, Cardenas H (1997) Electrotherapy a novel method for eliminating viruses from garlic (Allium sativum L.). Hortic Argent 16:68–71

    Google Scholar 

  • Hernandez R, Bertrand H, Lepoivre P, Gonzalez JE, Rojas X, Pairol A, Gonzalez Y, Gonzalez GY, Cortes C (2002) Diagnostico y saneaniento de Banana Streak Virus (BSV) en Musa spp. Centro Agricola 2:42–47

    Google Scholar 

  • Herr AJ (2005) Pathways through the small RNA world of plants. Fed Eur Biol Soc Lett 579:5879–5888

    Google Scholar 

  • Hewitt WB (1975) Graft transmission of a grapevine wood pitting and a flat trunk disease. Plant Dis Rep 59:845–848

    Google Scholar 

  • Hewitt WB, Chiarappa L (1977) Plant Health and Quarantine in International Transfer of Genetic Resources. CRC, Cleveland, Ohio

    Google Scholar 

  • Hewitt WB, Goheen AC, Raski DJ, Gooding GV (1962) Studies on virus diseases in the grapevine in California. Vitis 3:57–83

    Google Scholar 

  • Hewitt WB, Goheen AC, Cory L, Luhn CF (1972) Grapevine fleck disease, latent in many varieties, is transmitted by graft inoculation. Ann Phytopathol Hors Ser:43–47

    Google Scholar 

  • Hidaka Z (1960) Proceedings of the symposium of the soil-borne viruses, July 1960

    Google Scholar 

  • Hileman LC, Drea S, Martino G, Litt A, Irish VF (2005) Virus induced gene silencing is an effective tool for assaying gene function in the basal eudicot species Papaver somniferum (opium poppy). Plant J 44:334–341

    CAS  PubMed  Google Scholar 

  • Hilje L, Stansly PA (2008) Living mulch ground covers for management of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and Tomato yellow mottle virus (ToYMoV) in Costa Rica. Crop Prot 27:10–16

    Google Scholar 

  • Hilje L, Costa HS, Stansly PA (2001) Cultural practices for managing Bemisia tabaci and associated viral diseases. Crop Prot 20:801–802

    Google Scholar 

  • Hill SA (1977) Virus testing of home-saved seed potatoes. Agricultural Development and Advisory Service Agricultural Science Service Annual Report for 1976, pp 195–200

    Google Scholar 

  • Himel CM (1969) The optimum size for insecticide spray droplets. J Econ Entomol 62:919–925

    Google Scholar 

  • Hochmuth GJ, Kostewicz SR, William S (2000) Row covers for commercial vegetable culture in Florida, Florida Cooperative Extension Service, University of Florida, Circular 728

    Google Scholar 

  • Hoekema A, Huisman MJ, Molendijk L, van der Elzen PJM, Cornelissen BJC (1989) The genetic engineering of two commercial potato cultivars for resistance to Potato virus X. Bio/Technology 7:273–278

    Google Scholar 

  • Hollings M (1957) Investigations of chrysanthemum viruses. 11. Virus B (mild mosaic) and chrysanthemum latent virus. Ann Appl Biol 45:589–602

    Google Scholar 

  • Hollings M (1965) Disease control through virus free stock. Annu Rev Phytopathol 3:367–396

    Google Scholar 

  • Hollings M, Stone OM (1979) Viruses of forage crops. Annual report, The Glasshouse Crops Research Institute, Littlehampton, UK, pp 160–16 l

    Google Scholar 

  • Holt CA, Beachy RN (1991) In vivo complementation of infectious transcripts from mutant tobacco mosaic virus cDNAs in transgenic plants. Virology 181:109–117

    CAS  PubMed  Google Scholar 

  • Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30:315–327

    CAS  PubMed  Google Scholar 

  • Honma S, Muraskishi HH, Wetter SH (1968) A Tobacco mosaic virus resistant greenhouse tomato. Q Bull Mich St Univ Agric Exp Stn 50:285–287

    Google Scholar 

  • Hooks CR, Fereres A (2006) Protecting crops from non-persistently aphid-transmitted viruses: a review on the use of barrier plants as a management tool. Virus Res 120:1–16

    CAS  PubMed  Google Scholar 

  • Horak I, Schlosser E (1978) Wirkung von Prothiocarb auf Polymyxa betae und Olpidium brassicae. Med Fac Landbouww Rijksuniv Gent 43:979–987

    CAS  Google Scholar 

  • Hormozi-Nejad MH, Mozafari J, Rakhshandehroo F (2010) Elimination of Bean common mosaic virus using an electrotherapy technique. J Plant Dis Prot 117:201–205

    Google Scholar 

  • Horowitz AR, Isshaaya I (2004) Biorational insecticides-mechanisms, selectivity and importance in pest management. In: Horiwitz AR, Ishaaya I (eds) Insect pest management-field and protected crops. Springer, Berlin, pp 1–28

    Google Scholar 

  • Hosokawa M, Ohishi K, Sugawara Y, Hayashi T, Yazawa S (2004a) Rescue of shoot apical meristems of chrysanthemum by culturing on root tips. Plant Cell Rep 22:443–448

    CAS  PubMed  Google Scholar 

  • Hosokawa M, Otake A, Ohishi K, Ueda E, Hayashi T, Yazawa S (2004b) Elimination of Chrysanthemum stunt viroid from an infected chrysanthemum cultivar by shoot regeneration from a leaf primordium-free shoot apical meristem dome attached to a root tip. Plant Cell Rep 22:859–863

    CAS  PubMed  Google Scholar 

  • Hou HW, Qiu W (2003) A novel co-delivery system consisting of a tomato bushy stunt virus and a defective interfering RNA for studying gene silencing. J Virol Methods 111:37–42

    CAS  PubMed  Google Scholar 

  • Howell WE, Mink GI (1971) The relationship between volunteer sugarbeets and occurrence of Beet mosaic and Beet western yellow viruses in Washington beet fields. Plant Dis Rep 55:676–678

    Google Scholar 

  • Howell WE, Mink GI (1977) The role of weed hosts, volunteer carrots, and overlapping growing seasons in the epidemiology of Carrot thin leaf and Carrot motley dwarf viruses in central Washington. Plant Dis Rep 61:217–222

    Google Scholar 

  • Huang SC, Millikan DF (1980) In vitro micrografting of apple shoot tips. Hortic Sci 15:741–743

    Google Scholar 

  • Huffman JH, Sidweell RW, Khare GP, Witkowski JT, Allen LB, Robins RK (1973) In vitro effect of 1-ß-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (Virazole, ICN 1229) on deoxyribonucleic acid and ribonucleic acid viruses. Antimicrob Agents Ch 3:235–241

    CAS  Google Scholar 

  • Hughes Jd’A, Ollennu AA (1994) Mild strain protection of cocoa in Ghana against Cocoa swollen shoot virus—a review. Plant Pathol 43:442–457

    Google Scholar 

  • Hull R (1952) Control of virus yellows in sugarbeet seed crops. J R Agric Soc 113:86–102

    CAS  Google Scholar 

  • Hull R (1964) Spread of groundnut rosette virus by Aphis craccivora (Koch). Nature 202:213–214

    CAS  PubMed  Google Scholar 

  • Hull R (1965) Virus diseases of sweet peas in England. Plant Pathol 14:150–153

    Google Scholar 

  • Hull R (1969) The spray warning scheme for the control of virus yellows. Br Sug Beet Rev 37:169–172

    Google Scholar 

  • Hull R (1990) Non-conventional resistance to viruses in plants—concepts and risks. In: Gustafson JP (ed) Gene manipulation in plant improvement II. Plenum Press, New York, pp 289–303

    Google Scholar 

  • Hull R (2002) Matthews’ plant virology. Academic Press, London, p 1001

    Google Scholar 

  • Hull R, Davies JW (1992) Approaches to non-conventional control of plant virus diseases. Crit Rev Plant Sci 11:17–33

    CAS  Google Scholar 

  • Hussein MY, Samad NA (1993) Intercropping chilli with maize or brinjal to suppress populations of Aphis gossypii Glov., and transmission of chilli viruses. Int J Pest Manag 39:216–222

    Google Scholar 

  • Hutton RJ, Broadbent P, Bevington K (2000) Viroid dwarfing for high density citrus planting. Hortic Rev 24:277–317

    Google Scholar 

  • Idris AM (1990) Cotton leaf curl virus disease in the Sudan. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent, 55(2a):263–267

    Google Scholar 

  • Igarza-Castro J, Hernandez PR, Cruz Castellanos B (2001) Electrotherapy as an alternative for elimination of the Dasheen Mosaic Virus in Tania. Span Manejo Integrado de plagas 60:57–60

    Google Scholar 

  • IIPR (2006) Annual report of 2005-2006. Indian Institute Pulses Research (IIPR), Kanpur

    Google Scholar 

  • Ingelbrecht IL, Irvine JE, Mirkov TE (1999) Post transcriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploid genome. Plant Physiol 119:1187–1197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inouye T (1962) Studies on barley stripe mosaic in Japan. Ber Ohara Inst Landw Biol 11:413–496

    Google Scholar 

  • Inter-African Phyto-sanitary Commission (1962) A memorandum for phytosanitary procedures in Africa. Scientific Council for African South of the Sahara. Publication no. 82. London, CCTA

    Google Scholar 

  • Ioannou N (1987) Cultural management of yellow leaf curl disease in Cyprus. Plant Pathol 36:367–373

    Google Scholar 

  • Irwin ME, Goodman RM (1981) Ecology and control of Soybean mosaic virus in soybeans. In: Maramorosch K, Harris KF (eds) Plant diseases and vectors: ecology and epidemiology. Academic Press, New York, pp 182–215

    Google Scholar 

  • Irwin ME, Nault LR (1996) Virus/vector control. In: GJ Persley (ed) Biotechnology and integrated pest management. CAB International, London, pp 304–322

    Google Scholar 

  • ISTA (1966) International rules for seed testing. Proc Int Seed Test Assoc 32:1–152

    Google Scholar 

  • Iwo GA, Olorunju PE (2009) Yield stability and resistance to leaf spot diseases and rosette in Groundnut. Czech J Genet Plant Breed 45:18–25

    Google Scholar 

  • Jackson AO, Lane LC (1981) Hordeiviruses. In: Kurstakk E (ed) Hand book of plant viurs infections and comparative diagnosis. Elsevier/North-Holland, Amsterdam, pp 565–625

    Google Scholar 

  • Jadot R, Vanderveken J (1973) Action de pulverizations huilenses sur la dissemination de virus de la betterave. Medad Fakulteit Landbonwwetenschappen Gent 38:1677–1683

    Google Scholar 

  • Jaeger S (1966) Milch-und olspritzungen Zur Einsch rankung der Blattlau Suber tragung des Slatmosaik virus bei Freiland Salat. Nachr Bl Dt PflSchuz dienstes (Braunschweig) 18:82–84

    Google Scholar 

  • Jagadish K, Krishnamurthy KB, Chandrasekara KN, Rashmi S, Akella Vani (2006) Generation and evaluation of transgenic tomato cv. Arka Vikas resistant to Peanut bud necrosis virus. In: XVI annual convention of IVS and international symposium on management of vector-borne viruses, held at ICRISAT, Patancheru, Hyderabad (India). Abstract OP 10/11

    Google Scholar 

  • Jain RK, Varma A (2000) Biotechnological management of viral diseases of plants. In: Trivedi PC (ed) Plant diseases. Pointer Publisher, Jaipur, pp 1–20

    Google Scholar 

  • Jain RK, Sharma Jyoti, Sivakumar AS, Sharma PK, Byadgi AS, Varma A (2004a) Variability in the coat protein gene of Papaya ringspot virus isolates from multiple locations in India. Arch Virol 149:2435–2442

    CAS  PubMed  Google Scholar 

  • Jain RK, Khurana SMP, Bhat AI, Chaudary Vikas (2004b) Nucleocapsid protein gene sequence studies confirm that Potato stem necrosis disease is caused by a strain of Groundnut bud necrosis virus. Indian Phytopathol 57:169–173

    CAS  Google Scholar 

  • Jambhale ND, Nerkar YS (1986) ‘Parbhani Kranti’, a yellow vein mosaic resistant okra. Hortic Sci 21:1470–1471

    Google Scholar 

  • James AP, Fowler AR, Hekmeijer S, Braithwaite KS, Whittle PJL, Smith GR (2001) Implementation of molecular assays for the routine screening of quarantined germplasm. In: Hogarth DM (ed) Proceedings of the 24th International Society of Sugarcane Technology, vol II. ASSCT, Brisbane, pp 604–606

    Google Scholar 

  • Jameson JD, Thomas DG (1954) Groundnut rosette disease record of investigations of the Department of Agriculture, Uganda, No. 3, pp 17–20

    Google Scholar 

  • Janeckova M (1993) Elimination of a virus complex (PPV, PNRSV, PDV) from plum varieties using a combination of in vivo and in vitro cultures. Vedecke Prace Ovocnrske 13:51–64

    Google Scholar 

  • Jarret RL, Rodriguez W, Fernandez R (1985) Evaluation, tissue culture propagation and dissemination of ‘Saba’ and ‘Pelipita’ plantains in Costa-Rica. Sci Hortic 25:137–147

    Google Scholar 

  • Jayasinghe U, Salazar LF (1997) Virus eradication: tissue culture of meristem, thermotherapy and chemotherapy. In: Jayasinghe U, Salazar LF (eds) Techniques in plant virology. International Potato Center, La Molina, pp 1–8

    Google Scholar 

  • Jay Shankar Singh (2013) Plant Growth Promoting Rhizobacteria. Resonance 18:275–281

    Google Scholar 

  • Jeeva ML, Balakrishnan S, Edison S, Rajmohan K (2004) Meristem culture and thermotherapy in the management of Sweet Potato Feathery Mottle Virus (SPFMV). J Root Crops 30:135–142

    Google Scholar 

  • Jeger MJ, Chan MS (1995) Theoretical aspects of epidemics: uses of analytical models to make strategic management decisions. Can J Plant Pathol 17:109–114

    Google Scholar 

  • Jeger MJ, Eden-Green S, Thresh JM, Johannson A, Waller JM, Brown AE (1995) Banana diseases. In: Gowen S (ed) Bananas and plantains. Chapman and Hall, London, pp 3117–3381

    Google Scholar 

  • Jenkinson JG (1955) The incidence and control of cauliflower moaic in broccoli in South-west England. Ann Appl Biol 43:409–422

    Google Scholar 

  • Johnson CG (1969) Migration and dispersal of insects by light. Methuen, London 763 pp

    Google Scholar 

  • Johnson BV, Bing A, Smith FF (1967) Reflective surfaces used to repel dispersing aphids and reduce spread of aphid-borne cucumber mosaic virus in gladiolus plantings. J Econ Entomol 60:16–18

    Google Scholar 

  • Johnson WC, Guzman P, Mandala D, Mkandawire ABC, Temple S, Gilbertson RL, Gepts P (1997) Molecular tagging of the bc-3 gene for introgression into Andean common bean. Crop Sci 37:248–254

    CAS  Google Scholar 

  • Johnstone GR, Rapley PEL (1979) The effect of time of sowing on the incidence of Subterranean clover red leaf virus infection in broad bean (Vicia faba). Ann Appl Biol 91:345–351

    Google Scholar 

  • Johnstone GR, Rapley PEL (1981) Control of Subterranean clover red leaf virus in broad bean crops with aphicides. Ann Appl Biol 99:135–141

    Google Scholar 

  • Jonah PM, Bello LL, Lucky O, Midau A, Moruppa SM (2011) Review: the importance of molecular markers in plant breeding programmes. Glob J Sci Frontier Res 11(5):5–12

    Google Scholar 

  • Jones DR (1987) Seed-borne diseases and the international transfer of plant genetic resources; an Australian perspective. Seed Sci Technol 15:765–776

    Google Scholar 

  • Jones DR (1991) Status of banana disease in Australia. In: Valmayor RV et al (eds) Banana diseases in Asia and the Pacific. INIBAP/ASPNET, Los Banos, pp 21–37

    Google Scholar 

  • Jones RAC (1993) Effects of cereal borders, admixture with cereals and plant density on the spread of bean yellow mosaic potyvirus into narrow-leafed lupins (Lupinus angustifolius). Ann Appl Biol 122:501–518

    Google Scholar 

  • Jones J (2001a) Harpin. Pestic Outlook 12:134–135

    Google Scholar 

  • Jones RAC (2001b) Developing integrated disease management strategies against nonpersistently aphid borne viruses. Integr Pest Manag Rev 6:15–46

    Google Scholar 

  • Jones RAC (2004) Using epidemiological information to develop effective integrated virus disease management strategies. Virus Res 100:5–30

    CAS  PubMed  Google Scholar 

  • Jones RAC (2009) Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res 141:113–130

    CAS  PubMed  Google Scholar 

  • Jones LK, Burnett G (1935) Virus diseases of green house grown tomatoes. Wash State Univ Agric Exp Stn Bull 308:1–36

    Google Scholar 

  • Jones FR, Chapman RK (1968) Aluminum foil and other reflective surfaces to manipulate the movement of aphid vectors of plant viruses. Proc North Central Branch Entom Soc Am 23:146–148

    Google Scholar 

  • Jones RAC, Cowling WA (1995) Resistance to seed transmission cucumber mosaic in narrow-leafed lupins (Lupinus angustifolius). Aust J Agric Res 46:1339–1352

    Google Scholar 

  • Jones AL, Johansen IE, Bean SJ, Bach I, Maule AJ (1998) Specificity of resistance to Pea seed-borne mosaic potyvirus in transgenic peas expressing the viral replicase (Nlb) gene. J Gen Virol 79:3129–3137

    CAS  PubMed  Google Scholar 

  • Jones RAC, Pearce RM, Prince RT, Coutts BA (2008) Natural resistance to Alfalfa mosaic virus in different lupin species. Aust Plant Pathol 37:112–116

    Google Scholar 

  • Joshi RD, Gupta UP (1974) Prevention of natural spread of Soybean mosaic virus with some oils. Proc Natl Acad Sci (India) B 44:1–4

    Google Scholar 

  • Joyce PA, McQaualter RB, Handley JA, Dale JL, Harding RM, Smith GR (1998) Transgenic sugarcane resistant to Sugarcane mosaic virus. Proc Aust Soc Sugar Cane Technol 20:204–210

    Google Scholar 

  • Jutras PJ, Coppock GE (1958) Mechanization of citrus fruit picking. Proc Fla State Hortic Soc 71:201–204

    Google Scholar 

  • Kabierson W (1962) Seed potato production in Western Germany. Outlook Agric 3:268–273

    Google Scholar 

  • Kadian MS, Iiangantileke S, Arif M, Hossain M, Roder W, Sakha BM, Singh SV, Farooq K, Mazeen ACM (2007) Status of potato seed systems in South West Asia (SWA). Potato J 34:25–30

    Google Scholar 

  • Kahn RP (1979) A concept of pest risk analysis. EPPO Bull 9:119–130

    Google Scholar 

  • Kahn RP (1980) Ornamental plants as virus vectors: regulatory considerations. Acta Hortic 110:153–160

    Google Scholar 

  • Kahn RP (1988) The importance of seed health in international exchange seed exchange. In: Rice seed health. IRRI, Manila, pp 7–20

    Google Scholar 

  • Kahn RP (1989) Plant protection and quarantine: selected pests and pathogens of quarantine significance, vol II. CRC Press Inc, Boca Raton, 265 pp

    Google Scholar 

  • Kahn RP, Monroe RL (1970) Virus infection in plant introductions collected as vegetative propagations: 1. wild vs. cultivated solanum species. FAO Plant Prot Bull 18:97–101

    Google Scholar 

  • Kahn RP, Sowell G Jr (1970) Virus infection in plant introductions collected as vegetative propagations, 2, wild vs cultivated (Arachis) sp. FAO Plant Prot Bull 18:142–144

    Google Scholar 

  • Kahn RP, Monroe RL, Hewitt WB, Goheen AC, Wallace JM, Roistacher CN, Nauer EM, Ackerman WL, Winters HF, Seaton CA, Pifer W (1967) Incidence of virus detection in vegetatively propagated plant introduction under quarantine in the United States, 1957–1967. Plant Dis Rep 51:715–741

    Google Scholar 

  • Kairo MTK, Kiduyu PK, Mutinda CJM, Empig LT (1995) Maize streak virus: evidence for resistance against Cicadulina mbila Naude, the main vector species. Euphytica 84:109–114

    Google Scholar 

  • Kaiser WJ, Teemba LR (1979) Use of tissue culture and thermotherapy to free East-African cassava cultivars of African cassava mosaic and cassava brown streak diseases. Plant Dis Rep 63:780–784

    Google Scholar 

  • Kalita MK (2003) Epidemiology and management of yellow vein mosaic and leaf curl begomovirus diseases of okra. Ph.D. thesis, CCS Haryana Agricultural University, Hisar, 129 pp

    Google Scholar 

  • Kallerhoff J, Perez P, Bouzoubaa S, Ben Tahar S, Perret J (1990) Beet necrotic yellow vein virus coat protein mediated protection in sugarbeet (Beta vulgaris L.) protoplasts. Plant Cell Rep 9:224–228

    CAS  PubMed  Google Scholar 

  • Kalleshwaraswamy CM, Krishna Kumar NK, Dinesh MR, Chandrashekar KN, Manjunatha M (2009) Evaluation of insecticides and oils on aphid vectors for the management of papaya ringspot virus (PRSV). Karnataka J Agric Sci 22(3-Spl Issue):552–553

    Google Scholar 

  • Kalyani G, Sonali S, Reddy AS, Reddy AGS, Waliyar F, Nigam SN (2005) Resistance to Tobacco streak virus in groundnut, Arachis hypogaea L. J Oilseeds Res 22:105–107

    Google Scholar 

  • Kalyani G, Reddy AS, Kumar PL, Rao RDVJP, Aruna R, Waliyar F, Nigam SN (2007) Sources of resistance to Tobacco streak virus in wild Arachis (Fabaceae: Papilionoidae) germplasm. Plant Dis 91:1585–1590

    Google Scholar 

  • Kamala V, Prasad Rao RDVJ, Varaprasad KS (2007) Resistance to Black eye cowpea mosaic virus in cowpea germplasm collections from Andhra Pradesh. Indian J Plant Prot 35:144–145

    Google Scholar 

  • Kamanna BC, Shankarappa TH, Arunkumar GS (2010) Evaluation of fungicides for the management of chrysanthemum leaf blight caused by Aternaria alternata (Fr.) Keissler. Plant Arch 10:595–597

    Google Scholar 

  • Kang BC, Yeam I, Jahn MM (2005) Genetics of plant virus resistance. Annu Rev Phytopathol 43:581–621

    CAS  PubMed  Google Scholar 

  • Kaniewski WK, Lawson EC, Sammons B, Haley L, Hart J, Delannay X, Tumer NE (1990) Field resistance of transgenic Russet Burbank potato to effect of infection by Potato virus X and Potato virus Y. Bio/Technology 8:750–754

    Google Scholar 

  • Karchi Z, Cohen S, Govers A (1975) Inheritance of resistance to Cucumber mosaic virus in melons. Phytopathology 65:479–481

    Google Scholar 

  • Kartha KK (1981) Tissue culture technique for virus elimination and germplasm preservation. Genetic Engineering Crop Improvement, Rock feller Foundation Conference, 1980, pp 123–141

    Google Scholar 

  • Kartha KK, Gamborg OL, Constabel F, Shyluk JP (1974) Regeneration of Cassava plants from apical meristems. Plant Sci Lett 2:107–113

    CAS  Google Scholar 

  • Kassanis B (1957) The use of tissue cultures to produce virus-free clones from infected potato varieties. Ann Appl Biol 45:422–427

    Google Scholar 

  • Kassanis B, Govier DA (1971) New evidence on the mechanism of aphid transmission of Potato C and Potato aucuba mosaic viruses. J Gen Virol 10:99–101

    CAS  PubMed  Google Scholar 

  • Kassanis B, Posnette AF (1961) Thermotherapy of virus infected plants. Recent Adv Bot 1:557–563

    Google Scholar 

  • Kassanis B, Slykhuis JT (1959) Some properties of Barley stripe mosaic virus. Ann Appl Biol 47:254–263

    CAS  Google Scholar 

  • Kassanis B, Tinsley TW (1958) The freeing of tobacco tissue cultures from potato virus Y by 2-thiouracil. In: Proceedings of the 3rd conference on potato virus disease, Lisse-Wageningen, 1957, pp 153–155

    Google Scholar 

  • Kawazu Y, Ryoi F, Yuji N (2009) Transgenic resistance to Mirafiori lettuce virus in lettuce carrying inverted repeats of the viral coat protein gene. Transgenic Res 18:113–120

    CAS  Google Scholar 

  • Kawchuk LM, Martin RR, McPherson J (1990) Resistance in transgenic potato expressing the Potato leafroll virus coat protein gene. Mol Plant-Microbe Interact 3:301–307

    CAS  Google Scholar 

  • Kawchuk LM, Martin RR, McPherson J (1991) Sense and antisense RNA-mediated resistance to Potato leafroll virus in Russet Burbank potato plants. Mol Plant-Microbe Interact 4:247–253

    CAS  Google Scholar 

  • Keener PD (1956) Virus diseases of plants in Arizona. II. Field and experimental observations on curly top affecting vegetable crops. Bull Ariz Agric Exp Stn 271:1–28

    Google Scholar 

  • Kelly JD (1997) A review of varietal response to bean common mosaic potyvirus in Phaseolus vulgaris. CAB Abstracts AN. 971605689

    Google Scholar 

  • Kemper A (1962) Zum anfttreten Von Salat mosaik virus an salt (Lactuca sativa L.) und an Krenz krant (Senecio vulgaris L.). Z pfl kranckh pfl schutz 69:653–663

    Google Scholar 

  • Kenganal MY, Amudai JA, Patil FS, Kulikarni UG (2008) Feasibility of meristem culture for management of Banana streak virus (BSV) through micropropagation. Res Crop 9:605–609

    Google Scholar 

  • Kennedy JS (1976) Host plant resistance and the spread of plant viruses. Environ Entomol 5:827–832

    Google Scholar 

  • Kennedy GG (2003) Tomato, pests, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Annu Rev Entomol 48:51–72

    CAS  PubMed  Google Scholar 

  • Kennedy JS, Booth CO, Kershaw WJS (1961) Host finding by aphids in the field. III. Visual attraction. Ann Appl Biol 49:1–21

    Google Scholar 

  • Khan RP (1991) Exclusion as a disease control strategy. Annu Rev Phytopathol 29:219–246

    Google Scholar 

  • Khan MA, Mukhopadhyay S (1985) Effect of different pesticide combinations on the incidence of yellow vein mosaic virus disease of okra (Abelmoschus esculentus) and its whitefly vector Bemisia tabaci Genn. Indian J Virol 1:147–151

    Google Scholar 

  • Khanam D, Khatun MM, Faisal SM, Hoque MA (1998) In vitro propagation of strawberry through meristem tip culture. Plant Tissue Cult 8:35–39

    Google Scholar 

  • Khatri HL, Sekhon IS (1973) Effect of oil spray on aphid transmission of Chilli-mosaic virus. Indian J Agric Sci 43:667–669

    Google Scholar 

  • Khetarpal RK (2002) Biosafety of genetically modified crops and its implications. In: Chadha KL, Choudhary ML, Prasad KV (eds) Hitech horticulture. Horticulture Society of India, New Delhi, pp 444–453

    Google Scholar 

  • Khetarpal RK (2004) A critical appraisal of seed health certification and transboundary movement of seeds under WTO regime. Indian Phytopathol 57:408–427

    Google Scholar 

  • Khetarpal RK, Gupta K (2002) Implications of sanitary and phytosanitary agreement of WTO on plant protection in India. Annu Rev Plant Pathol I:1–26

    Google Scholar 

  • Khetarpal RK, Gupta K (2007) Plant biosecurity in India-Preparedness. Indian J Plant Prot 35:168–178

    Google Scholar 

  • Khetarpal RK, Nath R (1998) Evolving national plant quarantine system: harmonization of current quarantine regulations with sanitary and phytosanitary (SPS) agreement. In: National dialogue (ISPGR dialogue 1998). Losses on plant Genetic Resources, 1–2 Dec 1998. National Bureau of plant Genetic Resources, New Delhi, 47 pp

    Google Scholar 

  • Khetarpal RK, Maury Y, Cousin R, Burghoufer A, Varma A (1990) Studies on resistance of pea to Pea seed-borne mosaic virus and new pathotypes. Ann Appl Biol 116:297–304

    Google Scholar 

  • Khetarpal RK, Maisonneuve B, Maury Y, Chaloub B, Dinant S, Lecoq H, Varma A (1998) Breeding for resistance to plant viruses. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant virus disease control. APS Press, St. Paul, pp 14–32

    Google Scholar 

  • Khetarpal RK, Singh Shamsher, Parakh DB, Maurya AK, Chalam VC (2001) Viruses intercepted in exotic germplasm during 1991–2000 in quarantine. Indian J Pl Genet Resour 14:127–129

    Google Scholar 

  • Khetarpal RK, Chalam VC, Dhillon BS (2002) Diagnostics and development of seed certification protocols for management of seed-transmitted viral diseases of grain legumes Leaflet on activities and achievements of the project. NBPGR, New Delhi, 4 pp

    Google Scholar 

  • Khetarpal RK, Chalam VC, Prakash HS, Shetty HS, Mishra A (2003) Diagnostics and development of seed certification protocols for management of seed-transmitted viral diseases of grain legumes. In: Singh A, Trivedi TP, Sharma HR, Sharma OP, Sabir N (eds) Recent advances in integrated pest management (Proceedings and recommendations of the NATP interactive workshop on Integrated Pest Management, 26–28 Feb 2003). National Centre for Integrated Pest Management, New Delhi, pp 220–223

    Google Scholar 

  • Khetarpal RK, Nath R, Raghunathan V (2004) Safe movement of plant germplasm. In: Dhillon BS, Tyagi RK, Lal A, Saxena S (eds) Plant genetic management. Narosa Publishing House, New Delhi, pp 172–178

    Google Scholar 

  • Khurana SMP (2004) Potato viruses and their management. In: Naqvi SAMH (ed) Diseases of fruits and vegetables, vol II. Kluwer Academic Publishers, Dordrecht, pp 389–440

    Google Scholar 

  • Khurana SMP, Garg ID (1993) New techniques for detection of viruses and viroids. In: Chadha KL, Grewal JS (eds) Advances in horticulture, vol 7-Potato. Malhotra Publishing House, New Delhi. pp 529–566

    Google Scholar 

  • Khurana SMP, Pandey SK, Srivastava KK (2000) Tuber treatment with imidacloprid is effective for control of Potato stem necrosis disease. Indian Phytopathol 53:142–145

    Google Scholar 

  • Kimble KA, Grogan RG, Greathead AS, Paulus AO, House JK (1975) Development, application and comparison of methods for indexing lettuce seed for mosaic virus in California. Plant Dis Rep 59:461–464

    Google Scholar 

  • Kiranmai G, Sreenivasulu P, Nayudu MV (1996) Comparison of three different tests for detection of Cucumber mosaic cucumovirus (CMV) in banana (Musa paradisiaca). Curr Sci 71:764–767

    CAS  Google Scholar 

  • Kiritani K, Su HJ (1999) Papaya ringspot, banana bunchy top and citrus greening in the Asia and Pacific region: occurrence and control strategy. JARQ 33:23–30

    Google Scholar 

  • Kitaba GN (1979) Preliminary attempts to control the insect transmitted Watermelon mosaic virus (WMV-K) on baby marrows. Kenya Entomologists Newsl 9:8–9

    Google Scholar 

  • Klesser PJ, Le Roux PM (1957) Groundnut rosette prevention the best method of control. Fmg S Afr 33:40–41

    Google Scholar 

  • Klotz LJ, Calavan EC, Weathers LG (1972) Virus and virus-like diseases of citrus. Circular No. 559, Division of Agricultural Science, University of California, 42 p

    Google Scholar 

  • Knapp E, Hanzer V, Weiss HH, da Camara Machado A, Weiss B, Wang Q, Katinger H, da Camara Machado ML (1995) New aspects of virus elimination in fruit trees. Acta Hortic 386:409–418

    Google Scholar 

  • Knorr LC (1965) Serious diseases of citrus foreign to Florida. Bull Fla Dep Agric 5:1–59

    Google Scholar 

  • Knutson KW, Bishop GW (1964) Potato leaf roll virus-effect of date of inoculation on percentage of infection and symptoms expression. Am Potato J 41:227–238

    Google Scholar 

  • Koehler B, Bever WM, Bennett OT (1952) Soil-borne wheat mosaic. Bull III Agric Exp Stn 556:567–599

    Google Scholar 

  • Koike H, Tippett RL (1972) Roguing mosaic diseased ratoon seed plots with herbicides in Louisiana. Sugarcane Path Newsl 8:20

    Google Scholar 

  • Kolbanova EV, Kukharchik NV, Barai VN, Zinchenko AI (2004) Production of black currant free from raspberry ringspot virus using virazole in in vitro culture. Vestsi Natsyyanal nai Akademii Navuk Belarusi Seryya Biyalagichnykh Navuk 2:90–93

    Google Scholar 

  • Komar V, Vigne V, Demangeat G, Lemaire O, Fuchs M (2008) Cross protection as control strategy against Grapevine fan leaf virus in naturally infected vineyards. Plant Dis 92:1689–1694

    Google Scholar 

  • Konate G, Fargette D (2001) Rice yellow mottle virus: an overview. Plant virology in sub-Saharan Africa, 4–8 June, Ibadan, Nigeria, p 2

    Google Scholar 

  • Konate G, Barro N, Fargette D, Swanson MM, Harrison BD (1995) Occurrence of whitefly transmitted geminiviruses in crops in Burkina Faso and their serological detection and differentiation. Ann Appl Biol 126:121–129

    Google Scholar 

  • Kooner BS, Cheema HK (2007) Screening of mungbean germplasm against whitefly (Bemisia tabaci Genn.) and Mungbean yellow mosaic virus. Acta Hortic 752:307–309

    Google Scholar 

  • Kosaka Y, Fukunishi T (1993) Attenuated isolates of Soybean mosaic virus derived at a low temperature. Plant Dis 77:882–886

    Google Scholar 

  • Kosaka Y, Fukunishi T (1994) Application of cross-protection to the control of black soybean mosaic disease. Plant Dis 78:339–341

    Google Scholar 

  • Kosaka Y, Ryang B, Kobori T, Shiomi H, Yasuhara H, Kataoka M (2006) Effectiveness of an attenuated Zucchini yellow mosaic virus isolate for cross-protecting cucumber. Plant Dis 90:67–72

    CAS  Google Scholar 

  • Koshimizu Y, Iizuka N (1963) Studies on soybean virus diseases in Japan. Bull Tohoku Natl Agric Expt Stn 27:1–103

    Google Scholar 

  • Kostiw M, Iskrzycka T (1976) Mozliwosc organiczenia szerzenia sie nietrwalych wirusow Zimniaka przy pomocy opryskiwania substancjami obejowymi. Biueletyn Instytutu Ziemniaka 18:59–64

    Google Scholar 

  • Kouassi NK, Chen L, Sire C, Bangratz-Reyser M, Beachy RN, Fauquet CM, Brugidou C (2006) Expression of Rice yellow mottle virus coat protein enhances virus infection in transgenic plants. Arch Virol 151:2111–2122

    CAS  PubMed  Google Scholar 

  • Koubouris GC, Maliogka VI, Efthimiou K, Katis NI, Vasilakakis MD (2007) Elimination of Plum pox virus through in vitro thermotherapy and shoot tip culture compared to conventional heat treatment in apricot cultivar Bebecou. J Gen Plant Pathol 73:370–373

    Google Scholar 

  • Kousalya G, Ayyavoo R, Krishnamurthy CS, Bhaskaran S (1971) Effect of spacing, roguing and weeding on the incidence of rosette disease of groundnut with observation on the aphid vector, Aphis craccivora Koch. Madras Agric J 58:495–505

    Google Scholar 

  • Kraft JM, Coffman VA (2000) Registration of 97–261 and 97–2154 pea germplasm lines. Crop Sci 40:302

    Google Scholar 

  • Kramer W, Sass O, Fritzsche R, Proesler G (1978) Mineralol-insektizid-Kombinationen Zur Eioschrankung der virus ausbreitung. bei der production Von Beta Ruben-Saatgut. Nachirichtenblatt fur den Pflanzen schutz in der DDR 32:29–30

    Google Scholar 

  • Krczal G (1998) Virus certification of ornamental plants-the European strategy. In: Plant virus disease control. APS Press—The American Phytopathological Society, St Paul, pp 277–287

    Google Scholar 

  • Kring JB (1964) New ways to repel aphids. Frontiers Sci Conn Agric Exp Stn 17:6–7

    Google Scholar 

  • Krishnakumar NK, Eswara Reddy SG (2006) Incidence and extent of yield loss due to Tomato leafcurl gemivirus (ToLCV) in tomato grown under protected and open field cultivation. Abstract PP 9/16. In: XVI Annual convention of IVS and International symposium on management of vector-borne viruses, held at ICRISAT, Patancheru, Hyderabad (India)

    Google Scholar 

  • Krishnakumar NK, Venkatesh N, Kalleshwaraswamy CM, Ranganath HR (2006a) Seasonal incidence of thrips and bud necrosis virus on watermelon. Pest Manag Hortic Eco-Syst 12:85–92

    Google Scholar 

  • Krishnakumar NK, Ranganath HR, Venkatesh N, Kalleshwaraswamy CM (2006b) Thrips vectors of watermelon bud necrosis virus (tospovirus) and their management. Abstract, OP 9/11. In: XVI Annual convention of IVS and International symposium on management of vector-borne viruses, held at ICRISAT, Patancheru, Hyderabad (India)

    Google Scholar 

  • Krishnareddy M (1989) Studies on yellow mosaic and leaf crinkle diseases of blackgram. Ph.D. Thesis submitted to the P.G. School, IARI, New Delhi, India, 263 pp

    Google Scholar 

  • Kuhn CW, Demski JW (1975) The relationship of Peanut mottle virus to peanut production. Res Rep Georgia Agric Exp Stn 213:1–18

    Google Scholar 

  • Kuhn CW, Sowell G Jr, Chakley JH, Stubbs HF (1968) Screening for immunity. Plant Dis Rep 56:467–468

    Google Scholar 

  • Kulps G (1968) Untersuchungen zur Schutzwirkung von Olen bei der Virusubertragung durch Blattlause. Z Pflkrankh Pfl Schutz 75:213–217

    Google Scholar 

  • Kulps G (1969) Untersuchungen zum Verhalten von Mineralolen im Hinblick aufihre Wirking bei der Virussu – bertragung durch Blattlanse. Universitat Hohenneim, Dissertation, 85 pp

    Google Scholar 

  • Kulps G (1971) Untersuchungen zum Verhalten von Mineralolen im Hinblick auf ihre Wirkung bei der Virusubertragung durch Blattlanse. I. Verhalten von Mineralol auf. Blattoberflachen Z Pflkrankh Pfl Schutz 78:126–129

    Google Scholar 

  • Kulps G (1972) Untersuchungen zum verhalten von Mineralolen im Hinblick auf ihre Wirkung bei der Virusubertragung durch Blattlanse III. Verteilung und Wirkungs daner von Mineralol in der Pflanze. Phytopathol Z 73:263–276

    Google Scholar 

  • Kulps G, Hein A (1972) Untersuchungen zum Verhalten von Mineralolen im Hinblick auf ihre Wirking bei der Virus ubertragung durch Blattlanse II. VErhalten von Mineralol in der Epidermis. Phytopathol Z 73:149–162

    Google Scholar 

  • Kumagai MH, Donson J, Della-Cioppa G, Harvey D, Hanley K, Grill LK (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci U S A 92:1679–1683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar P, Singh DK (2013) Evaluation of okra germplasm against yellow vein mosaic virus during rainy season under Tarai region. Pantnagar Journal Res 11:112–117

    Google Scholar 

  • Kumar NKK, Ullman DE, Cho JJ (1993) Evaluation of Lycopersicon germ plasm for Tomato spotted wilt tospovirus resistance by mechanical and thrips transmission. Plant Dis 77:938–941

    Google Scholar 

  • Kumar S, Khan MS, Raj SK, Sharma AK (2009) Elimination of mixed infection of Cucumber mosaic and Tomato aspermy virus from Chrysanthemum morifolium Ramaty. cv. Pooja by shoot meristem culture. Scientia Horticulturae 119:108–112

    CAS  Google Scholar 

  • Kumar CA, Khetarpal RK, Parakh DB, Singh S, Nath R (1994) Check-list on seed-transmitted viruses: Leguminous hosts. Technical Bulletin, NBPGR, New Delhi

    Google Scholar 

  • Kundu P, Mandal RK (2001) Transgenic approaches for producing virus resistant plants. Proc Indian Natl Sci Acad 67:53–80

    CAS  Google Scholar 

  • Kunik T, Salmon R, Zamir D, Navot N, Zeidan M, Michelson I, Gafni Y, Czosnek H (1994) Transgenic tomato plants expressing the Tomato yellow leaf curl virus capsid protein are resistant to the virus. Biotechnology (N Y) 12:500–504

    Google Scholar 

  • Kunkel LO (1934) Tobacco and aucuba-mosaic infections by single units of virus. Phytopathology 24:13

    Google Scholar 

  • Kuo FY, Wu SW (1989) The problem of crop succession and management of disease and pest on the vegetable facility culture. In: Sheen TF, Hsu MM (eds.) Proceedings of second congress on horticultural production under structure, 23–24 Feb, TARI, Taichung. FTHES, pp 172–191, 252 pp (in Chinese)

    Google Scholar 

  • Kvist K, Morner J (1977) Oil sprays in seed potato fields—a method to control spread of virus? Växtskyddsnotiser 41:123–124

    Google Scholar 

  • Kwon SH, Oh JH (1980) Resistance to a nenotic strain of Soybean mosaic virus in soybean. Crop Sci 20:403–404

    Google Scholar 

  • Ladipo JL, Allen DJ (1979) Identification of resistance to Cowpea aphid-borne mosaic virus. Trop Agric (Trinidad) 56:353–360

    Google Scholar 

  • Laimer M, Hanzer V, Kriston V, Toth EK, Mendonca D, Kirilla Z, Balla I (2006) Elimination and detection of pathogens from tissue cultures of Prunus sp. Acta Hort 725:319–323

    CAS  Google Scholar 

  • Laird EFJ, Dickson RC (1972) Turnip mosaic virus vector relationships in field grown statice Limonium-Perezii. Plant Dis Rep 56:722–725

    Google Scholar 

  • Lamberti F (1981a) Combating nematode vectors of plant viruses. Plant Dis 65:113–117

    Google Scholar 

  • Lamberti F (1981b) Plant nematode problems in the Mediterranean region. Helminthol Abstr Ser B Plant Nematol 50:145–166

    Google Scholar 

  • Lana AF (1976) Mosaic virus and leaf curl diseases of okra in Nigeria. PANS 22:474–478

    Google Scholar 

  • Lange E, Hammi M (1977) Oil spray trials against virus diseases of Capsicum transmitted by aphids in Tunisia. Phytopath Medit 16:18–21

    Google Scholar 

  • Lapidot M (2002) Screening common bean (Phaseolus vulgaris) for resistance to Tomato yellow leafcurl virus. Plant Dis 86:429–432

    Google Scholar 

  • Lapidot M, Friedmann M (2002) Breeding for resistance to whitefly transmitted geminiviruses. Ann Appl Biol 140:109–127

    Google Scholar 

  • Lapidot M, Gafny R, Ding B, Wolf S, Lucas WJ, Beachy RN (1993) A dysfunctional movement protein of tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. Plant J 2:959–970

    Google Scholar 

  • Lapidot M, Friedmann M, Lachman O, Yehezkel A, Nahon S, Cohen S, Pilowsky M (1997) Comparison of resistance level to Tomato yellow leafcurl virus among commercial cultivars and breeding lines. Plant Dis 81:1425–1428

    Google Scholar 

  • Lapidot M, Ben-Joseph R, Cohen L, Machbash Z, Levy D (2006) Development of a scale for evaluation of Tomato yellow leafcurl virus resistance level in tomato plants. Phytopathology 96:1404–1408

    CAS  PubMed  Google Scholar 

  • Larentzaki E, Plate J, Nault BA, Shelton AM (2008) Impact of straw mulch on populations of onion thrips (Thysanoptera: Thripidae) in onion. J Econ Entomol 101: 1317–1324

    Google Scholar 

  • Larew HG (1988) Limited occurrence of foliar-, root-, and seed-applied neem seed extract toxin in untreated plant parts. J Econ Entomol 81:593–598

    Google Scholar 

  • Latham LJ, Jones RAC (1998) Selection of resistance breaking strains of Tomato spotted wilt tospovirus. Ann Appl Biol 133:385–402

    Google Scholar 

  • Latham LJ, Jones RAC (2001a) Incidence of virus infection in experimental plots, commercial crops and seed stocks of cool season crop legumes. Aust J Agric Res 52:397–413

    Google Scholar 

  • Latham LJ, Jones RAC (2001b) Alfalfa mosaic and pea seed-borne mosaic viruses in cool season crop, annual pasture and forage legumes: Susceptibility, sensitivity and seed transmission. Aust J Agric Res 52:771–790

    Google Scholar 

  • Latham LJ, Jones RAC (2004) Deploying partially resistant genotypes and plastic mulch on the soil surface to suppress spread of lettuce big-vein disease in lettuce. Australian Journal of Agricultural Research 55:131–138

    Google Scholar 

  • Lawson C, Kaniewski W, Haley L, Rozman R, Newell C, Sanders P, Tumer NE (1990) Engineering resistance to mixed virus infection in a commercial potato cultivar. Resistance to Potato virus X and Potato virus Y in transgenic Russet Burbank. Bio/Technology 8:127–134

    CAS  PubMed  Google Scholar 

  • Lazar J, Mikulas J, Farkas G, Kolber M (2002) Certification programme for production of virus-free propagation material of grapevine and its results in Hungary. Int J Hortic Sci 8:39–43

    Google Scholar 

  • Lecoq H (1998) Control of plant virus diseases by cross protection. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant virus disease control. APS Press, St. Paul, pp 33–41

    Google Scholar 

  • Lecoq H, Pitrat M (1983) Field experiments on the integrated control of aphid-borne viruses in muskmelon. In: Plumb RJ, Thresh JM (eds) Plant virus epidemiology—the spread and control of insect-borne viruses. Blackwell Scientific publication, London, pp 169–183

    Google Scholar 

  • Lecoq H, Cohen S, Pitrat M, Labonne G (1979) Resistance to Cucumber mosaic virus transmission by aphids in Cucumis melo. Phytopathology 69:1223–1225

    Google Scholar 

  • Lecoq H, Lemaire JM, Wipf-Scheibel C (1991) Control of zucchini yellow mosaic virus in squash by cross protection. Plant Dis 75:208–211

    Google Scholar 

  • Lee RF (2004) Certification programs for citrus. In: Diseases of fruits and vegetables: diagnosis and management, vol I. Kluwer Academic Publishers, Dordrecht, pp 247–290

    Google Scholar 

  • Lee HY, Lee V (1973) Plant protection. Agric Hong Kong 1:161–164

    Google Scholar 

  • Lee RF, Lehman PS, Navarro L (1999) Nursery practices and certification program for budwood and rootstocks. In: Citrus health management. APS Press, St. Paul, pp 35–45

    Google Scholar 

  • Lee YH, Jung M, Shin SH, Lee JH, Choi SH, Her NH, Lee JH, Ryu KH, Pack KY, Ham CH (2009) Transgenic peppers that are highly tolerant to a new CMV pathotype. Springer. Genetic transformation and Hybridization. Plant Cell Rep 28:223–232

    CAS  PubMed  Google Scholar 

  • Legg JT (1979) The campaign to control the spread of Cocoa swollen shoot virus in Ghana. In: Ebbels DL, King JE (eds) Plant health. Black well Scientific Publications, London, pp 285–293

    Google Scholar 

  • Legin R, Vuittenez A (1973) Comparison des symptomes et transmission par greffage d’une mosaique nervaire de Vitis vinifera, de la marbrure de V. rupestris et d’une affection necrotique des nervures de l’hybride Rupestris Berlandieri 110R. Rivista di Patologia Vegetale 9(Suppl):57–63

    Google Scholar 

  • Lehmann P, Jenner CE, Kozubek E, Greenland AJ, Walsh JA (2003) Coat protein-mediated resistance to Turnip mosaic virus in oilseed rape (Brassica napus). Mol Breeding 11:83–94

    CAS  Google Scholar 

  • Lenardon SL, Bazzalo ME, Abratti G, Cimino C, Galella MT, Grondona M, Giolitti F, Leon AJ (2005) Screening sunflower for resistance to Sunflower chlorotic mottle virus and mapping the Rcmo-1 resistance gene. Crop Sci 45:735–739

    CAS  Google Scholar 

  • Leppik EE (1964) Some epiphytotic aspects of squash mosaic. Plant Dis Rep 48:41–42

    Google Scholar 

  • Leu LS (1978) Apical meristem culture and re-differentiation of callus masses to free some sugarcane systemic diseases. Plant Prot Bull Taiwan 20:77–82

    Google Scholar 

  • Lewandowski DJ, Hayes AJ, Adkins S (2010) Surprising results from a search for effective disinfectants for Tobacco mosaic virus-contaminated tools. Plant Dis 94:542–550

    CAS  Google Scholar 

  • Li YW, Xu C, Chen JS (2002) Establishment of virus-free taro (Colocasia esculenta cv Fenghuayunaitou) by meristemtip culture combined with thermotherapy. Pak J Plant Pathol 1:40–43

    Google Scholar 

  • Lim M (1985) Resistance to Soybean mosaic virus in soybeans. Phytopathology 75:199–201

    Google Scholar 

  • Linford MB (1943) Influence of plant populations upon incidence of pineapple yellow spot. Phytopathology 33:408–410

    Google Scholar 

  • Ling KC (1972) Rice virus diseases. International Rice Research Institute, Los Banos

    Google Scholar 

  • Ling KS, Zhu HY, Drong RF, Slighton JL, Gonsalves D (1997) Nucleotide sequencing and genome organisation of grapevine leafroll associated closterovirus 3 and development of transgenic plants expressing its coat protein and other genes. In: Extended abstracts 12th meeting ICVG, Lisbon, Portugal, 28 Sept–2 Oct, p 18

    Google Scholar 

  • Ling KS, Zhu HY, Gonsalves D (2009) Resistance to Grapevine leafroll associated virus-2 is conferred by post-transcriptional gene silencing in transgenic Nicotiana benthamiana. Transgenic Res 17:733–740

    Google Scholar 

  • Linn MB (1940) The yellows disease of lettuce and endive. Cornell Univ Agric Exp Stn Bull 742:1–33

    Google Scholar 

  • Lius S, Manshardt M, Fitch MMM, Slightom JL, Sanford JC, Gonsalves D (1997) Pathogen-derived resistance provides papaya with effective protection against Papaya ringspot virus. Mol Breeding 3:161–168

    Google Scholar 

  • Loebenstein G, Alper M, Dentsch M (1964) Preventing aphid spread Cucumber mosaic virus with oils. Phytopathology 54:960–962

    Google Scholar 

  • Loebenstein G, Alper M, Levy S (1970) Field tests with oil sprays for the prevention of aphid-spread viruses in peppers. Phytopathology 60:212–215

    Google Scholar 

  • Loebenstein G, Deutsch M, Frankel H, Sabar Z (1966) Field tests with oil sprays for the prevention of Cucumber mosaic virus in cucumbers. Phytopathology 56:512–516

    Google Scholar 

  • Loebenstein G, Alper M, Levy S, Palevitch D, Menagem E (1975) Protecting peppers from aphid-borne viruses with aluminium foil or plastic mulch. Phytoparasitica 3:43–53

    Google Scholar 

  • Loebenstein G, Berger PH, Brunt AA, Lawson RH (2001) Virus and virus-like diseases of potatoes and production of seed potatoes. Kluwer Academic Publisher, Dortrecht

    Google Scholar 

  • Loesch-Fries LS, Merlo D, Zinnen T, Burhop L, Hill K, Krahn K, Jarvis N, Nelson S, Halk E (1987) Expression of Alfalfa mosaic virus RNA 4 in transgenic plants confers virus resistance. EMBO J 7:1845–1851

    Google Scholar 

  • Loevinsohn ME (1984) The ecology and control of rice pests in relation to the intensity and synchrony of cultivation. Ph.D. thesis, University of London, London, UK

    Google Scholar 

  • Lokko Y, Danquah EY, Offei SK, Dixon AGO, Gedil MA (2005) Molecular markers associated with a new source of resistance to the Cassava mosaic disease. Afr J Biotechnol 4:873–881

    CAS  Google Scholar 

  • Lomonossoff GP (1995) Pathogen-derived resistance to plant viruses. Annu Rev Phytopathol 33:323–343

    CAS  PubMed  Google Scholar 

  • Long RD, Cassells AC (1986) Elimination of viruses from tissue cultures in the presence of antiviral chemicals. In: Withers LA, Alderson PG (eds) Plant tissue culture and its agricultural applications. Butterworths, London, pp 239–248

    Google Scholar 

  • Long JK, Fraser LR, Cox JE (1972) Possible value of close-planted, virus dwarfed orange trees. In: Price WC (ed) Proceedings of the 5th conference on international organization of citrus virologist. University of Florida Press, Gainesville, pp 262–267

    Google Scholar 

  • Louie R (1968) Epidemiology of onion yellow dwarf. Ph.D. thesis, Cronell University, Ithaca, NY, 112 pp

    Google Scholar 

  • Louie R (1980) Sugarcane mosaic virus in Kenya. Plant Dis 64:944–947

    Google Scholar 

  • Louis HE (2000) Genetically modified plants in developing countries. Plant Physiol 124:923–926

    Google Scholar 

  • Louws FJ, Rademaker JLW, Brujin FJ (1999) The three Ds of PCR-based genomic analysis of phytobacteria: diversity, detection, and disease diagnosis. Annu Rev Phytopathol 37:81–125

    CAS  PubMed  Google Scholar 

  • Love SL, Rhodes BB, Moyer JW (1989) Meristem-tip culture and virus indexing of sweet potatoes, 2nd edn. International Board for Plant Genetic Resources, Rome

    Google Scholar 

  • Lowery DT, Eastwell KC, Smirle MJ (1997) Neem seed oil inhibits aphid transmission of Potato virus Y to pepper. Ann Appl Biol 130:217–225

    CAS  Google Scholar 

  • Lozoya-Saldana HF, Abello J, Garcia G (1996) Electrotherapy and shoot-tip culture eliminate Potato Virus X in potatoes. Am J Potato Res 73:149–154

    Google Scholar 

  • Lu J (1970) Essai in vivo de repression de la mosaique due soja par l’huile. Phytoprotection 51:149

    Google Scholar 

  • Lutman PJW (1979) The control of volunteer potatoes in cereal stubbles. I. Factors affecting potato regrowth. Ann Appl Biol 93:41–47

    Google Scholar 

  • Luvisi A, Panattoni A, Triolo E (2012) Eradication trials of Tobacco mosaic virus using chemical drugs. Acta Virol 56:155–158

    Google Scholar 

  • Ma SS, Shii CT (1974) Growing banana plantlets from adventitious buds. J Chin Soc Hortic Sci 20:6–12

    Google Scholar 

  • Ma SS, Shii CT, Wang SO (1978) Regeneration of banana plants from shoot meristem tips and inflorescence sections in vitro. In: Abstract of the 20th international horticulture congress, Sydney, Australia, 15–23 Aug 1978. Abstract No. 1639

    Google Scholar 

  • MacFarlane SA, Davies JW (1992) Plants transformed with a region of the 201-kilodalton replicase gene from pea early browning virus RNA 1 are resistant to virus infection. Proc Natl Acad Sci U S A 89:5829–5833

    CAS  PubMed Central  PubMed  Google Scholar 

  • MacKenzie DJ, Ellis PJ (1992) Resistance to Tomato spotted wilt virus infection in transgenic tobacco expressing the viral nucleocapsid gene. Mol Plant-Microbe Interact 5:34–40

    CAS  PubMed  Google Scholar 

  • MacKenzie DJ, Tremaine JH (1990) Transgenic Nicotiana debneyi expressing viral coat protein are resistant to Potato virus S infection. J Gen Virol 71:2167–2170

    CAS  PubMed  Google Scholar 

  • Mackie AE, McKirdy SJ, Rodoni B, Kumar S (2002) Potato spindle tuber viroid eradicated in Western Australia. Australasian Plant Pathology 31:311–312

    Google Scholar 

  • Maddock DA (1997) Implications of new technologies for seed health testing and the worldwide movement of seed. In: Symposium on seed biology and technology: applications and advances, 13–16 August 1997, Fort Collins, Colorado. Seed Sci Res (1998) 8(2):227–284

    Google Scholar 

  • Madhavi Reddy K, Krishna Reddy M, Kumar R, Rai AB, Mathura R, Singh HB (2010) Breeding for virus resistance. In: Kumar R, Rai AB, Mathura R, Singh AB (eds) Advances in chilli research. Studium Press, New Delhi, pp 119–132

    Google Scholar 

  • Maelzer DA (1986) Integrated control of vectors of plant virus diseases. In: Plant virus epidemics: monitoring, modelling and predicting out breaks. Academic Press, Sydney, p 550

    Google Scholar 

  • Magalhaes LC, Hunt TE, Siegfried BD (2009) Efficacy of neonicotinoid seed treatments to reduce soybean aphid populations under field and controlled conditions in Nebraska. J Econ Entomol 102:187–195

    CAS  PubMed  Google Scholar 

  • Magee CJ (1948) Transmission of bunchy top to banana cultivars. J Aust Inst Agric Sci 14:18–24

    Google Scholar 

  • Magee CJP (1967) Report to the Government of Western Samoa. The control of banana bunchy top. Soth Pacific Commission, Technical paper no 150, 13 pp

    Google Scholar 

  • Mahbub A, Zahoor A, Talib H, Muhammad T (1992) Cotton leaf curl virus in the Punjab 1991–1992. Hoechst Pakistan Limited

    Google Scholar 

  • Mahmoud YM, Hosseny MH, Abdel-Ghaf MH (2009) Evaluation of some therapies to eliminate Potato Y potyvirus from potato plants. Int J Virol 5:64–76

    CAS  Google Scholar 

  • Mahungu NM, Dixon AGO, Kumbira JM (1994) Breeding for multiple pest resistance to Africa. Afr Crop Sci J 2:539–552

    Google Scholar 

  • Makkouk KM, Kumari SG (2009) Epidemiology and integrated management of persistently transmitted aphid borne virus of legume and cereal crops in West Asia and North America. Virus Res 141:209–218

    CAS  PubMed  Google Scholar 

  • Malathi VG, Thankappan M, Nair NG, Nambisan B, Ghosh SP (1987) Cassava mosaic disease in India. In: Proceedings of the international seminar on African Cassava Mosaic Disease and its control. Yamoussoukro, Cote d’Ivoire 4–8 May. CTA/FAO/ORSTOM/IITA/IAPC, pp 189–198

    Google Scholar 

  • Malaurie B (1998) In vitro storage and safe international exchange of yam (Dioscorea spp.) germplasm. http://ejb.org/content/voll.issue3:full.2.bip.index.asp

  • Mali VR (1986) Identification of source of combined resistance to some viruses and seed transmission in cowpea. 2nd annual convention of Indian Virological Society, New Delhi, 3–5 Oct 1986

    Google Scholar 

  • Mali VR, Kulthe KS, Patil FS, Mundhe GE, Dhond VM, Deshmukh RV (1987) Identification of source of resistance to some viruses and seed transmission in cowpea. Indian J Virol 3:99–109

    Google Scholar 

  • Mandahar CL (1999) Molecular biology of transgenic plants. In: Mandahar CL (ed) Molecular biology of plant viruses. Kluwer Academic Publishers, Boston, pp 241–269

    Google Scholar 

  • Mannan MA (2003) Some aspects of integrated management of potato aphid, Myzus persicae (Sulz.) (Homoptera: Aphididae). Thai J Agric Sci 36:97–103

    Google Scholar 

  • Mannerlof M, Lennerfors BL, Tenning P (1996) Reduced titre of BNYVV in transgenic sugar beets expressing the BNYVV coat protein. Euphytica 90:293–299

    Google Scholar 

  • Mansour A, Akkawi M, Al-Musa A (2000) A modification of aluminum foil technique for controlling Aphid borne mosaic diseases of Squash. Dirasat Agric Sci 27:1–9

    Google Scholar 

  • Mantell SH (1980) Apical meristem-tip culture for eradication of flexuous rod viruses in yams (Dioscorea alata). Trop Pest Manag 26:170–179

    Google Scholar 

  • Mantell SH, Haque SQ, Whitehall AP (1978) Clonal multiplication of Dioscorea alata L. and Dioscorea rotundata Poir. yams by tissue culture. J Hortic Sci 53:95–98

    Google Scholar 

  • Mantell SH, Haque SQ, Whitehall AP (1979) A rapid propagation system for yams. Yam Virus Project Bull. No. 1. CARDI. 19 pp

    Google Scholar 

  • Marco S (1993) Incidence of nonpersistently transmitted viruses in pepper sprayed with whitewash, oil, and insecticide, alone or combined. Plant Dis 77:1119–1122

    CAS  Google Scholar 

  • Marenaud G, Dunez J, Bernhard R (1976) Identification and comparison of different strains of Apple chlorotic leaf spot virus and possibilities of cross protection. Acta Hortic 67:219–226

    Google Scholar 

  • Mariappan V, Saxena RC (1983) Effect of custard apple oil on survival of Nephotettix virescens (Homoptera: cicadellidac) and in rice tungro virus transmission. J Econ Entomol 76:573–576

    Google Scholar 

  • Maris PC, Joosten NN, Goldbach RW, Peters D (2003) Restricted spread of Tomato spotted wilt virus in Thrips-Resistant Pepper. Phytopathology 93:1223–1227

    Google Scholar 

  • Martelli GP (1992) Classification and nomenclature of plant viruses: state of the art. Plant Dis 76:436–442

    Google Scholar 

  • Martelli GP (2001) Virus diseases of grapevine. Wiley Online Library. doi:10.1038

  • Martelli GP, Walter B (1998) Virus certification of grape vines. In: Khetarpal RK, Koganezawa H (eds) Plant virus disease control Hadidi A. APS Press, St Paul, pp 261–276

    Google Scholar 

  • Martin WJ, Kantack EJ (1960) Control of internal cork of sweet potato by isolation. Phytopathology 50:150–152

    Google Scholar 

  • Maruthi MN, Muniyappa V, Green SK, Colvin J, Hanson P (2003) Resistance of tomato and sweet-pepper genotypes Tomato leaf curl Bangalore virus and its vector Bemisia tabaci. Int J Pest Management 49:297–303

    Google Scholar 

  • Maruthi MN, Alam SN, Kader KA, Rekha AR, Cork A, Colvin J (2005) Nucleotide sequencing, whitefly transmission and screening of tomato for resistance against two newly described begomoviruses in Bangladesh. Phytopathology 95:1472–1482

    CAS  PubMed  Google Scholar 

  • Maruthi MN, Mohammed IU, Hillocks R (2013) Exploiting reversion and tissue culture techniques for eliminating cassava brown streak viruses from infected cassava plants. In: 12th International symposium on plant virus epidemiology, 28th Jan–1st Feb 2013, Arusha, Tanzania (Abstract, pp 051, p 152)

    Google Scholar 

  • Matthiew JL, Verhoyen M (1979) Lutte contre le virus de la mosaique du Celeri par l’application d’une haile emulsifiable. Parasitica 35:107–122

    Google Scholar 

  • Mau RFL, Gonsalves D, Bautista R (1989) Use of cross protection to control Papaya ringspot virus at Waianae. In: Proceedings of the 25th annual Papaya Industry Association conference, Hilo, pp 77–84

    Google Scholar 

  • Maude RB (1996) Seedborne diseases and their control: principles and practice. CAB International, Tucson

    Google Scholar 

  • Maule A (1991) Virus movement in infected plants. Crit Rev Plant Sci 9:457–473

    CAS  Google Scholar 

  • Maule AJ, Caranta C, Boulton M (2007) Sources of natural resistance to plant viruses: status and prospects. Mol Plant Pathology 8:223–231

    CAS  Google Scholar 

  • Mauro MC, Toutain S, Walter B, Pinck L, Otten L, Coutos-Thevenot P, Deloire A, Barbier P (1995) High efficiency regeneration of grapevine plants transformed with the GFLV coat protein gene. Plant Sci 112:97–106

    CAS  Google Scholar 

  • Maury Y, Dubey C, Khetarpal RK (1998a) Seed certification for viruses. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant virus disease control. APS Press, St Paul, pp 237–248

    Google Scholar 

  • Maury Y, Khetarpal RK, Albrechtsen SE (1998b) Challenge in standardization of diagnostic method for quality control of seed for viruses in relation to world seed trade. ISAT News Bull 116:42–43

    Google Scholar 

  • Maury Y, Khetarpal RK, Chaube HS (1992) Pea seed borne mosaic virus. In: Kumar J, Mukhopadhyay AN, Singh US (eds) Plant disease of international importance, vol II. Diseases of vegetables and oil seeds crops. Prentice Hall, Inc., Englewood Cliffs, pp 74–92

    Google Scholar 

  • Mba REC, Dixon AGO (1997) Heritability estimates for ACMD resistance for some newly developed cassava clones in Nigeria. Afr J Root Tuber Crops 2:49–52

    Google Scholar 

  • McClean APD (1977) Tristeza disease of citrus trees, and sources of tristeza virus that cause the disease. Citrus Subtrop Fruit J 523:7–19

    Google Scholar 

  • McKenry MV (1978) Selection of preplant fumigation. Calif Agric 32:15–16

    Google Scholar 

  • McKenry MV, Thomason IJ (1974) Dosage values obtained following pre-plant fumigation for perennials. I 1,3-dichloropropene nematicides in eleven field situations. Pestic Sci 7:521–534

    Google Scholar 

  • McKinney HH (1929) Mosaic disease in the Canary Islands, West Africa, and Gibraltar. J Agric Res 39:557–578

    Google Scholar 

  • McKinney HH, Paden WR, Koehler B (1957) Studies on chemical control and over seasoning of, and natural inoculation with the soil borne viruses of wheat and oat’s. Plant Dis Rep 41:256–266

    CAS  Google Scholar 

  • Mckirdy SJ, Jones RAC (1995a) Bean yellow mosaic poty virus infection of alternative hosts associated with subterranean and narrow leafed lupins (Lupinus angustifolius); Field Screening procedure, relative, subceptibility/resistance rankings, seed transmission and persistence between growing season. Aust J Agri Res 46:135–152

    Google Scholar 

  • Mckirdy SJ, Jones RAC (1995b) Occurance of Alfa-alfa mosaic and Subterranean clover red leaf viruses in legume pastures in western Australia. Aust J Agri Res 46:763–774

    Google Scholar 

  • McKirdy SJ, Jones RAC (1996) Use of imidacloprid and newer generation synthetic pyrethroids to control the spread of Barley yellow dwarf luteovirus in cereals. Plant Dis 80:895–901

    CAS  Google Scholar 

  • McKirdy SJ, Jones RAC (1997) Effect of sowing time on Barley yellow dwarf virus infection in wheat: virus incidence and grain yield losses. Australian Journal of Agricultural Research 48(2):199–206

    Google Scholar 

  • McKnight T (1953) The woodiness virus of the passion vine (Passiflora edulis Sims). Ql J Agric Sci I0:4–35

    Google Scholar 

  • McLean GD, Burt JR, Thomas DW, Sproul AN (1982) The use of reflective mulch to reduce the incidence of Watermelon mosaic virus in Western Australia. Crop Prot 1:491–496

    Google Scholar 

  • McLean BG, Zupan J, Zambryski PC (1995) Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco cells. Plant Cell 7:2101–2114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meijneke CAR (1982) Ideal schemes and associated problems in the production, maintenance, multiplication, distribution and certification of fruit crops. Acta Hortic 130:29–31

    Google Scholar 

  • Meister G, Tsuchl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    CAS  PubMed  Google Scholar 

  • Melouk HA, Sanborn MR, Banks DJ (1984) Sources of resistance to Peanut mottle virus in Arachis germplasm. Plant Dis 68:563–564

    Google Scholar 

  • Mendel K (1968) Interrelations between tree performance and some virus diseases. In: Childs JFL (ed) Proceedings of the 4th international conference on Organization of Citrus Virologists. University of Florida Press, Gainesville, pp 310–313

    Google Scholar 

  • Miano DW, La Bonte DR, Clark CA (2008) Identification of molecular markers associated with sweet potato resistance to Sweet potato virus disease in Kenya. Euphytica 160:15–24

    CAS  Google Scholar 

  • Miao H, Di D, Wu H (1998) A preliminary study on the effects of seed-borne virus rate and resistance level of maize by inoculating MDMV in different growth periods. J Hebrew Agric Univ 21:27–30

    Google Scholar 

  • Migliori A, Ginous G, Peyriere J, Marrou J, Musard M, Fauvel M (1972) The use of immunisation against tobacco mosaic virus in glass house tomato crops. Application de la premunition centre le virus de la mosaique du tabac dans les cultuies de tomate sous serre. Pepinieristes Horticulteurs Maraichers 132:15–19

    Google Scholar 

  • Mignouna HD, Dixon AGO (1997) Genetic relationships among cassava clones with varying levels of resistance to African mosaic disease using RARD markers. Afr J Root Tuber Crops 2:28–32

    Google Scholar 

  • Milbrath DG (1948) Control of western celery mosaic. State Calif Dep Agric Bull 37:3–7

    Google Scholar 

  • Milkus BN, Avery JD, Pinska VN (2000) Elimination of grapevine viruses by heat treatment and meristem shoot tip culture. In: Proceedings of the 13th international council of virus and virus-like of Grapevine, Adelaide (Australia), 12–17 March, 174 pp

    Google Scholar 

  • Miller SA, Martin RR (1988) Molecular diagnosis of plant diseases. Annu Rev Phytopathol 26:409–432

    CAS  Google Scholar 

  • Milosevic S, Subotic A, Bulajic A, Dekic I, Jevremovic S, Vucurovic A, Krstic B (2011) Elimination of TSWV from Impatiens hawkerii Bull and regeneration of virus-free plant. Electron J Biotechnol 14 (1). doi:10.2225, ISSN: 0717-3458

    Google Scholar 

  • Mink GI, Wample R, Howell WE (1998) Heat treatment of perennial plants to eliminate phytoplasmas, viruses and viroids while maintaining plant survival. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant virus disease control. APS Press, St Paul, pp 332–345

    Google Scholar 

  • Minnini F (2007) Hot water treatment and field coverage of mother plant vineyards to prevent propagation material from phytoplasma infections. Bull of Insectlo 60:311–312

    Google Scholar 

  • Mishra MD, Ghosh A, Niazi FR, Basu AN, Raychudhuri SP (1973) The role of graminaceous weeds in the perpetuation of rice Tungro virus. J Indian Bot Soc 52:176–183

    Google Scholar 

  • Mishra S, Singh D, Tiwari AK, Lal M, Rao GP (2010) Elimination of Sugarcane mosaic virus and Sugarcane streak mosaic virus by tissue culture. Sugar Cane Intern 28:119–122

    Google Scholar 

  • Moericke V (1954) New investigations on color in relation to Homoptera. In: Proceedings of the 2nd conference on potato virus diseases, Lisse Wageningen, June 25–29, pp 55–69

    Google Scholar 

  • Mohammad Roff MN, Ho BL (1991) Maize as a barrier crop in reducing aphids, the virus vector of chilli. MARDI Res J 19(1):251–258

    Google Scholar 

  • Mohanty SK, Bhaktavatsalam G, Anjaneyulu A (1989) Identification of field resistant rice cultivars for tungro disease. Trop Pest Manag 35:48–50

    Google Scholar 

  • Momol MT, Funderburk JE, Olson S, Stavisky J (2001) Management of TSWV on tomatoes with UV-reflective mulch and acibenzolar-S-methyl. In: Thrips and Tospoviruses: Proceedings of the 7th international symposium of Thysanoptera, Reggio Calabria, Italy, 2–7th July 2001, pp 105–110

    Google Scholar 

  • Momol T, Olson SM, Funderburk JE, Stavisky J, Marois JJ (2004) Integrated management of tomato spotted wilt in field-grown tomato. Plant Dis 88:882–890

    CAS  Google Scholar 

  • Moniau M, Ionita C, Coman T, Gheorghiu E, Suta V, Parnia P, Modoran I, Casavela S, Cocia V, Ivan I, Pattatynus K (1977) The system of production of virus-free planting material in fruit growing. Probleme de Protectia Plantelor 5:1–15

    Google Scholar 

  • Moore WD, Smith FF, Johnson GV, Wolfenbarger DO (1965) Reduction of aphid populations and delayed incidence of virus infection on yellow straight neck squash by use of aluminum foil. Proc Fla State Hortic Soc 78:187–191

    Google Scholar 

  • Morales FJ (2007) Tropical whitefly IPM Project. Adv Virus Res 69:249–306

    CAS  PubMed  Google Scholar 

  • Morales FJ, Castano M (1987) Seed transmission characteristics of selected Bean common mosaic virus strains in differential bean cultivars. Plant Dis 71:51–53

    Google Scholar 

  • Morales FJ, Castano M (1992) Increased disease severity induced by some comoviruses in bean genotypes possessing monogenic dominant resistance to Bean common mosaic poty virus. Plant Dis 76:570–573

    Google Scholar 

  • Morales FJ, Niessen AI (1988) Comparative responses of selected Phaseolus vulgaris germplasm inoculated artificially and naturally with Bean golden mosaic virus. Plant Disease 72: 1020-1023

    Google Scholar 

  • Mori R (1971) Production of virus-free plants by means of meristem culture. Jpn Agri Res Q 6:1–7

    Google Scholar 

  • Mossop DW, Procter CH (1975) Cross protectionof glasshouse tomatoes against Tobacco mosaic virus. N Z J Exp Agric 3:343–348

    Google Scholar 

  • Mound LA (1962) Studies on the olfaction and colour sensitivity of Bemisia tabaci (Genn.) (Homoptera: Aleyrodidae). Entomol Exp et Applic 5:99–104

    Google Scholar 

  • Mowat WP, Woodford JAT (1976) Virology section. Scottish Horticulture Research Institute, 22nd Annual report for the year 1975, pp 65–80

    Google Scholar 

  • Mtunda KJ, Legg JP, Ndyetabura I, Jeremiah S, Mvanda K, Mutasingwa G, Shumbusho E (2013) Community action in cassava brown streak disease control through clean seed. In: 12th International Symposium on plant virus epidemiology, 28th Jan–1st Feb 2013, Arusha, Tanzania (Abstract pp 077, p 178)

    Google Scholar 

  • Muehlbauer FJ (1983) Eight germplasm lines of pea resistant to Pea seed-borne mosaic virus. Crop Sci 23:1019

    Google Scholar 

  • Mukhopadhyay S (1980) Ecology of Nephotettix spp. and its relation with Rice tungro virus. Final report Ecology of Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Mukhopadhyay S (1984) Ecology of Rice tungro virus and its vectors. In: Mishra A, Polasa H (eds) Virus ecology. South Asian Publishers, New Delhi, pp 139–164

    Google Scholar