Skip to main content

Late Cenozoic Climate Change in Monsoon-Arid Asia and Global Changes

Part of the Developments in Paleoenvironmental Research book series (DPER,volume 16)

Abstract

Based on the geological and biological findings, and climate model simulations, current understanding of the Asian monsoon-arid environment has been synthesized here. This chapter addresses the evolution of the Asian monsoon-arid environment and how it is related to the growth of the Tibetan Plateau (TP), and global environmental change since the Cenozoic. Asian monsoon appearance may begin in the late Eocene. The basic structure of the monsoon-arid environment was established by late Oligocene, and the modern pattern of the monsoon-arid environment developed in the late Pliocene. Conceptual models for Asian monsoon-arid environmental change mechanisms at various time scales are proposed here. The occurrence of great Northern hemisphere glaciation has been discussed. Differentiation of the natural background and anthropogenic signals are examined. Policies and countermeasures for sustainable development on the Loess Plateau and arid areas are proposed for future reference.

Keywords

  • Cenozoic
  • Monsoon-arid environment evolution
  • Tibetan plateau
  • Monsoon initiation
  • Numerical Simulations
  • Conceptual models
  • Global Changes
  • Tectonic-orbital-Millennial Monsoon dynamics
  • Sustainable development

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Netherlands)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   85.59
Price includes VAT (Netherlands)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   108.99
Price includes VAT (Netherlands)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   108.99
Price includes VAT (Netherlands)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 6.6
Fig. 6.7
Fig. 6.8
Fig. 6.9
Fig. 6.10
Fig. 6.11
Fig. 6.12
Fig. 6.13
Fig. 6.14
Fig. 6.15
Fig. 6.16
Fig. 6.17
Fig. 6.18
Fig. 6.19
Fig. 6.20
Fig. 6.21
Fig. 6.22
Fig. 6.23
Fig. 6.24
Fig. 6.25
Fig. 6.26
Fig. 6.27
Fig. 6.28
Fig. 6.29
Fig. 6.30
Fig. 6.31
Fig. 6.32
Fig. 6.33
Fig. 6.34
Fig. 6.35
Fig. 6.36

References

  • Abe M, Kitoh A, Yasunari T (2003) An evolution of the Asian Summer monsoon associated with mountain uplift-simulation with the mri atmosphere-ocean coupled GCM-.J Meteorol Soc Jpn 81(5):909–933

    Google Scholar 

  • Abels HA, Dupont-Nivet G, Xiao GQ, Bosboom R, Krijgsman W (2011) Step-wise change of Asian interior climate preceding the Eocene-Oligocene Transition (EOT). Palaeogeogr Palaeoclimatol Palaeoecol 299(3–4):399–412. doi:10.1016/j.palaeo.2010.11.028

    Google Scholar 

  • Academic Division of CAS (2000) Some suggestions for ecology and environment restoration and industrial structure adjustment in the China Western Development. Bull Chin Acad Sci 6:403–406 (in Chinese)

    Google Scholar 

  • Adams CG, Benson RH, Kidd RB, Ryan WBF, Wright RC (1977) The Messinian salinity crisis and evidence of late Miocene eustatic changes in the world ocean. Nature 269(5627):383–386. doi:10.1038/269383a0

    Google Scholar 

  • Adams WM (2006) The future of sustainability: re-thinking environment and development in the twenty-first century. In: IUCN Renowned Thinkers Meeting

    Google Scholar 

  • Akhmetyev MA, Dodoniv AE, Somikova MV, Spasskaya II, Kremenetsky KV, Klimanov VA (2005) Chapter 8: Kazakhstan and Central Asia (Plains and Foothills). Geol Soc Am Spec Pap 382:139–161. doi:10.1130/0-8137-2382-5.139

    Google Scholar 

  • Alley RB (2007) Wally was right: predictive ability of the North Atlantic “Conveyor belt” hypothesis for abrupt climate change. Annu Rev Earth Planet Sci 35:241–272. doi:10.1146/annurev. earth.35.081006.131524

    Google Scholar 

  • Alley RB, Clark PU, Keigwin LD, Webb RS (1999) Making sense of millennial-scale climate change. In: Clark PU, Webb RS, Keigwin LD (eds) Mechanisms of global climate change at millennial time scales, Geophysical Monograph. American Geophysical Union, Washington, Vol 112: 385-394

    Google Scholar 

  • Altabet MA, Higginson MJ, Murray DW (2002) The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2. Nature 415(6868):159–162. doi:10.1038/415159a

    Google Scholar 

  • Amidon WH, Burbank DW, Gehrels GE (2005) U-Pb zircon ages as a sediment mixing tracer in the Nepal Himalaya. Earth Planet Sc Lett 235(1–2):244–260. doi:10.1016/j.epsl.2005.03.019

    Google Scholar 

  • An CB, Tang LY, Barton L, Chen FH (2005) Climate change and cultural response around 4000 cal yr BP in the western part of Chinese Loess Plateau. Quat Res 63(3):347–352. doi:10.1016/j.yqres.2005.02.004

    Google Scholar 

  • An ZS (2000) The history and variability of the East Asian paleomonsoon climate. Quat Sci Rev 19(1–5):171–187

    Google Scholar 

  • An ZS, Clemens SC, Shen J, Qiang XK, Jin ZD, Sun YB, Prell WL, Luo JJ, Wang SM, Xu H, Cai YJ, Zhou WJ, Liu XD, Liu WG, Shi ZG, Yan LB, Xiao XY, Chang H, Wu F, Ai L, Lu FY (2011) Glacial-Interglacial Indian Summer Monsoon Dynamics. Science 333(6043):719–723. doi:10.1126/science.1203752

    Google Scholar 

  • An ZS, Colman SM, Zhou WJ, Li XQ, Brown ET, Jull AJT, Cai YJ, Huang YS, Lu XF, Chang H, Song YG, Sun YB, Xu H, Liu WG, Jin ZD, Liu XD, Cheng P, Liu Y, Ai L, Li XZ, Liu XJ, Yan LB, Shi ZG, Wang XL, Wu F, Qiang XK, Dong JB, Lu FY, Xu XW (2012) Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Sci Rep- Uk 2:619. doi:10.1038/Srep00619

    Google Scholar 

  • An ZS, Kukla G, Porter SC, Xiao JL (1991a) Late quaternary dust flow on the Chinese Loess Plateau. Catena 18(2):125–132

    Google Scholar 

  • An ZS, Kukla GJ, Porter SC, Xiao JL (1991b) Magnetic-susceptibility evidence of monsoon variation on the Loess Plateau of Central China during the last 130,000 years. Quat Res 36(1):29– 36. doi:10.1016/0033-5894(91)90015-W

    Google Scholar 

  • An ZS, Kutzbach JE, Prell WL, Porter SC (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411(6833):62–66. doi:10.1038/35075035

    Google Scholar 

  • An ZS, Porter SC (1997) Millennial-scale climatic oscillations during the last interglaciation in central China. Geology 25(7):603–606

    Google Scholar 

  • An ZS, Porter SC, Kutzbach JE, Wu XH, Wang SM, Liu XD, Li XQ, Zhou WJ (2000) Asynchronous Holocene optimum of the East Asian monsoon. Quat Sci Rev 19(8):743–762

    Google Scholar 

  • An ZS, Wang SM, Wu XH, Chen MY, Sun DH, Liu XM, Wang FB, Li L, Sun YB, Zhou WJ, Zhou J, Liu XD, Lu HY, Zhang YX, Dong GG, Qiang XK (1999) Eolian evidence from the Chinese Loess Plateau: the onset of the Late Cenozoic Great Glaciation in the Northern Hemisphere and Qinghai-Xizang Plateau uplift forcing. Sci China Ser D 42(3):258–271

    Google Scholar 

  • An Z, Zhou J, Wang S (2006a) Paleo-environmental map for typical Periods. SinoMaps Press, Beijing (in Chinese)

    Google Scholar 

  • An ZS, Zhang PZ, Wang EQ, Wang SM, Qiang XK, Li L, Song YG, Chang H, Liu XD, Zhou WJ, Liu WG, Cao JJ, Li XQ, Shen J, Liu Y, Ai L (2006b) Changes of the monsoon-arid environment in China and geowth of the Tibetan Plateau since the Miocene. Quat Sci 26 (5):678–693 (in Chinese with English abstract)

    Google Scholar 

  • Arimoto R (2001) Eolian dust and climate: relationships to sources, tropospheric chemistry, transport and deposition. Earth-Sci Rev 54(1–3):29–42

    Google Scholar 

  • Ashrit RG, Douville H, Kumar KR (2003) Response of the Indian monsoon and ENSO-monsoon teleconnection to enhanced greenhouse effect in the CNRM coupled model. J Meteorol Soc Jpn 81(4):779–803. doi:10.2151/Jmsj.81.779

    Google Scholar 

  • Ashrit RG, Kitoh A, Yukimoto S (2005) Transient response of ENSO-monsoon teleconnection in MRI-CGCM2.2 climate change simulations. J Meteorol Soc Jpn 83(3):273–291. doi:10.2151/ Jmsj.83.273

    Google Scholar 

  • Bard E, Raisbeck G, Yiou F, Jouzel J (2000) Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B 52(3):985–992

    Google Scholar 

  • Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10 (4):297–317. doi:10.1016/0277-3791(91)90033-q

    Google Scholar 

  • Berner RA, Lasaga AC, Garrels RM (1983) The Carbonate-silicate geochemical cycle and its effect on atmospheric carbon-dioxide over the past 100 million years. Am J Sci 283(7):641–683

    Google Scholar 

  • Besse J, Courtillot V, Pozzi JP, Westphal M, Zhou YX (1984) Palaeomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo suture. Nature 311(5987):621–626

    Google Scholar 

  • Bickle MJ (1994) The role of metamorphic decarbonation reactions in returning strontium to the silicate sediment mass. Nature 367 (6465):699–704. doi:10.1038/367699a0

    Google Scholar 

  • Blunier T, Chappellaz J, Schwander J, Dallenbach A, Stauffer B, Stocker TF, Raynaud D, Jouzel J, Clausen HB, Hammer CU, Johnsen SJ (1998) Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394(6695):739–743. doi:10.1038/29447

    Google Scholar 

  • Bond G, Broecker W, Johnsen S, McManus J, Labeyrie L, Jouzel J, Bonani G (1993) Correlations between climate records from North-Atlantic Sediments and Greenland Ice. Nature 365(6442):143–147

    Google Scholar 

  • Bond G, Kromer B, Beer J, Muscheler R, Evans MN, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294(5549):2130-2136

    Google Scholar 

  • Boos WR, Kuang Z (2010) Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463(7278):218–222

    Google Scholar 

  • Bosboom RE, Dupont-Nivet G, Houben AJP, Brinkhuis H, Villa G, Mandic O, Stoica M, Zachariasse WJ, Guo Z, Li C, Krijgsman W (2011) Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change. Palaeogeogr Palaeoclimatol Palaeoecol 299(3–4):385–398. doi:10.1016/j.palaeo.2010.11.019

    Google Scholar 

  • Bovet PM, Ritts BD, Gehrels G, Abbink AO, Darby B, Hourigan J (2009) Evidence of Miocene Crustal Shortening in the North Qilian Shan from Cenozoic Stratigraphy of the Western Hexi Corridor, Gansu Province, China. Am J Sci 309(4):290–329

    Google Scholar 

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt C (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum-Part 1: experiments and large-scale features. Clim Past 3(2):261–277

    Google Scholar 

  • Braun H, Christl M, Rahmstorf S, Ganopolski A, Mangini A, Kubatzki C, Roth K, Kromer B (2005) Possible solar origin of the 1,470-year glacial climate cycle demonstrated in a coupled model. Nature 438(7065):208–211. doi:10.1038/Nature04121

    Google Scholar 

  • Broecker WS (1957) Application of radiocarbon to oceanography and climate chronology. Columbia University, New York

    Google Scholar 

  • Broecker WS (2010) The great ocean conveyor: discovering the trigger for abrupt climate change. Princeton University Press, Princeton

    Google Scholar 

  • Broecker WS, Denton GH (1989) The role of ocean-atmosphere reorganizations in glacial cycles. Geochim Cosmochim Ac 53(10):2465–2501

    Google Scholar 

  • Broecker WS, Kennett JP, Flower BP, Teller JT, Trumbore S, Bonani G, Wolfli W (1989) Routing of meltwater from the Laurentide Ice-Sheet during the Younger Dryas Cold Episode. Nature 341(6240):318–321

    Google Scholar 

  • Broecker WS, Peteet DM, Rind D (1985) Does the ocean-atmosphere system have more than one stable mode of operation. Nature 315(6014):21–26

    Google Scholar 

  • Burg JP, Chen GM (1984) Tectonics and structural zonation of Southern Tibet, China. Nature 311(5983):219–223. doi:10.1038/311219a0

    Google Scholar 

  • Burtman VS (2000) Cenozoic crustal shortening between the Pamir and Tien Shan and a reconstruction of the Pamir-Tien Shan transition zone for the Cretaceous and Palaeogene. Tectonophysics 319(2):69–92

    Google Scholar 

  • Cai YJ, An ZS, Cheng H, Edwards RL, Kelly MJ, Liu WG, Wang XF, Shen CC (2006) High-resolution absolute-dated Indian Monsoon record between 53 and 36 ka from Xiaobailong Cave, southwestern China. Geology 34(8):621–624. doi:10.1130/G22567.1

    Google Scholar 

  • Cao JJ, An ZS (2011) Atmospheric iron loading in Asia during 6.0-2.0 Myr and implications for the onset of Northern Hemisphere Glaciation. J Earth Envron 1(1):52–59

    Google Scholar 

  • Cao S (2011) Impact of China’s large-scale ecological restoration program on the environment and society in arid and semiarid areas of China: achievements, problems, synthesis, and applications. Crit Rev Env Sci Tec 41(4):317–335. doi:10.1080/10643380902800034

    Google Scholar 

  • Cao SX, Chen L, Shankman D, Wang CM, Wang XB, Zhang H (2011) Excessive reliance on afforestation in China’s arid and semi-arid regions: lessons in ecological restoration. Earth-Sci Rev 104(4):240–245. doi:10.1016/j.earscirev.2010.11.002

    Google Scholar 

  • Chang H, Ao H, An ZS, Fang XM, Song YG, Qiang XK (2012) Magnetostratigraphy of the Suerkuli Basin indicates Pliocene (3.2 Ma) activity of the middle Altyn Tagh Fault, northern Tibetan Plateau. J Asian Earth Sci 44:169–175

    Google Scholar 

  • Charles CD, Lynch-Stieglitz J, Ninnemann US, Fairbanks RG (1996) Climate connections between the hemisphere revealed by deep sea sediment core ice core correlations. Earth Planet Sc Lett 142(1-2):19–27

    Google Scholar 

  • Chen FH, Bloemendal J, Wang JM, Li JJ, Oldfield F (1997) High-resolution multi-proxy climate records from Chinese loess, evidence for rapid climatic changes over the last 75 kyr. PalaeoPalaeogeogr Palaeoclimatol Palaeoecol 130(1-4):323–335

    Google Scholar 

  • Chen Z, Li L, Liu J, Gong H, Jiang R, Li S, Han X, Li X, Wang C, Wang G, Wang G, Lu K (2008) Preliminary study on the uplifting-exhumation process of the western Tianshan range, northwestern China. Acta Petrol Sin 24:625–636

    Google Scholar 

  • Cheng H, Edwards RL, Broecker WS, Denton GH, Kong XG, Wang YJ, Zhang R, Wang XF (2009) Ice age terminations. Science 326(5950):248–252. doi:10.1126/science.1177840

    Google Scholar 

  • Cheng X, Zhao Q, Wang J, Jian Z, Xia P, Huang B, Fang D, Xu J, Zhou Z, Wang P (2004) Data report: Stable isotopes from Sites 1147 and 1148. In: Wang P, Prell WL, Blum P (eds) Proceedings of the Ocean Drilling Program, Scientific Results, vol 184. College Station, TX, pp 1–12. doi:10.2973/odp.proc.ir.184.2000

    Google Scholar 

  • Chetelat B, Liu CQ, Zhao ZQ, Wang QL, Li SL, Li J, Wang BL (2008) Geochemistry of the dissolved load of the Changjiang Basin rivers: anthropogenic impacts and chemical weathering. Geochim Cosmochim Acta 72(17):4254–4277. doi:10.1016/j.gca.2008.06.013

    Google Scholar 

  • Chiang JCH, Bitz CM (2005) Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Clim Dynam 25(5):477–496. doi:10.1007/s00382-005-0040-5

    Google Scholar 

  • China Geological Survey (2001) Chinese 1,500,000 Geological Map Database. 1.0 ed

    Google Scholar 

  • Chinese Stratum Thesaurus Editorial Board (1999) Tertiary Stratum Thesaurus. Geological Publishing House Beijing

    Google Scholar 

  • Chung S, Lo C, Lee T, Zhang Y, Xie Y, Li X, Wang K, Wang P (1998) Diachronous uplift of the Tibetan plateau starting 40 Ma ago. Nature 394: 769–773

    Google Scholar 

  • Clark M (2003) Late Cenozoic uplift of southeastern Tibet. Massachusetts Institute of Technology, Cambridge, Massachusetts

    Google Scholar 

  • Clark M, Bush J, Royden L (2005) Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau. Geophy J Int 162 (2):575–590

    Google Scholar 

  • Clark M, Schoenbohm L, Royden L, Whipple K, Burchfield B, Zhang X, Tang W, Chen L (2004) Surface uplift, tectonics, and erosion of eastern Tibet. Tectonics 23:1006. doi:10.1029/2002TC001402

    Google Scholar 

  • Clark MK, Farley KA, Zheng DW, Wang ZC, Duvall AR (2010) Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages. Earth Planet Sc Lett 296(1–2):78–88. doi:10.1016/j.epsl.2010.04.051

    Google Scholar 

  • Clemens S (2006) Extending the historical record by proxy. In: The Asian monsoon. Springer Praxis Books, Berlin, pp 615–630. doi:10.1007/3-540-37722-0_16

    Google Scholar 

  • Clemens S, Prell W, Murray D, Shimmield G, Weedon G (1991) Forcing mechanisms of the Indian-Ocean monsoon. Nature 353(6346):720–725. doi:10.1038/353720a0

    Google Scholar 

  • Clemens SC, Murray DW, Prell WL (1996) Nonstationary phase of the plio-pleistocene Asian monsoon. Science 274(5289):943–948

    Google Scholar 

  • Clemens SC, Prell WL (2003) A 350,000 year summer-monsoon multi-proxy stack from the Owen ridge, Northern Arabian sea. Mar Geol 201(1–3):35–51. doi:10.1016/S0025-3227(03)00207-X

    Google Scholar 

  • Clemens SC, Prell WL, Sun Y (2010) Orbital-scale timing and mechanisms driving Late Pleistocene Indo-Asian summer monsoons: reinterpreting cave speleothem δ18 O. Paleoceanography 25(4): PA4207. doi:10.1029/2010pa001926

    Google Scholar 

  • Clemens SC, Prell WL, Sun Y, Liu Z, Chen G (2008) Southern hemisphere forcing of Pliocene δ18O and the evolution of Indo-Asian monsoons. Paleoceanography 23. doi:10.1029/2008PA1638

    Google Scholar 

  • Curry WB, Marchitto TM, McManus JF, Oppo DW, Laarkamp KL (1999) Millennial-scale changes in ventilation of the thermocline, intermediate, and deep waters of the glacial North Atlantic. In: Clark U, Webb S, Keigwin D (eds) Mechanisms of global climate change at millennial time scales. Monogr Ser 112:59–76. AGU, Washington DC. doi:10.1029/GM112

    Google Scholar 

  • Curry WB, Oppo DW (1997) Synchronous, high-frequency oscillations in tropical sea surface temperatures and North Atlantic Deep Water production during the last glacial cycle. Paleoceanography 12(1):1–14. doi:10.1029/96pa02413

    Google Scholar 

  • Dai Y, Cai J, Wang H (2000) The position and role of vegetation construction in ecological environment construction in Loess Plateau. J Northwest Agric Univ 28(6):130– 134 (in Chinese)

    Google Scholar 

  • Dansgaard W, Clausen HB, Gundestrup N, Hammer CU, Johnsen SF, Kristinsdottir PM, Reeh N (1982) A new greenland deep ice core. Science 218(4579):1273–1277. doi:10.1126/science. 218.4579.1273

    Google Scholar 

  • Dansgaard W, Johnsen SJ, Clausen HB, Dahljensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjornsdottir AE, Jouzel J, Bond G (1993) Evidence for general instability of past climate from a 250-Kyr Ice-Core Record. Nature 364(6434):218–220. doi:10.1038/364218a0

    Google Scholar 

  • Dansgaard W, White JWC, Johnsen SJ (1989) The abrupt termination of the younger dryas climate event. Nature 339(6225):532–534. doi:10.1038/339532a0

    Google Scholar 

  • DeCelles PG, Kapp P, Ding L, Gehrels GE (2007) Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: changing environments in response to tectonic partitioning, aridification, and regional elevation gain. Geol Soc Am Bull 119(5-6):654–680. doi:10.1130/ B26074.1

    Google Scholar 

  • Dedeckker P, Correge T, Head J (1991) Late Pleistocene record of cyclic eolian activity from tropical Australia suggesting the younger dryas is not an unusual climatic event. Geology 19(6):602–605. doi:10.1130/0091-7613 (1991) 019 <0602:Lproce> 2.3.Co;2

    Google Scholar 

  • Denton GH, Anderson RF, Toggweiler JR, Edwards RL, Schaefer JM, Putnam AE (2010) The last glacial termination. Science 328(5986):1652–1656. doi:10.1126/science.1184119

    Google Scholar 

  • Denton GH, Broecker WS (2008) Wobbly ocean conveyor circulation during the Holocene? Quat Sci Rev 27(21-22):1939–1950. doi:10.1016/j.quascirev.2008.08.008

    Google Scholar 

  • Deplazes G, Luckge A, Peterson LC, Timmermann A, Hamann Y, Hughen KA, Rohl U, Laj C, Cane MA, Sigman DM, Haug GH (2013) Links between tropical rainfall and North Atlantic climate during the last glacial period. Nat Geosci 6(3):213–217. doi:10.1038/ngeo1712

    Google Scholar 

  • Dercourt J, Ricou L, Vrielinck B (1993) Atlas Tethys palaeoenvironmental maps. Gauthier-Villars, Paris

    Google Scholar 

  • Derry LA, FranceLanord C (1996) Neogene Himalayan weathering history and river 87Sr/86Sr: impact on the marine Sr record. Earth Planet Sci Lett 142(1–2):59–74. doi:10.1016/0012-821×(96) 00091–X

    Google Scholar 

  • Dewey J, Shackleton R, Chang C, Sun Y (1988) The tectonic evolution of the Tibetan Plateau. Philos Trans R Soc London 327:379–413

    Google Scholar 

  • Ding Z, Liu T, Rutter NW, Yu Z, Guo Z, Zhu R (1995) Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 Years. Quat Res 44(2):149–159. doi:10.1006/qres.1995.1059

    Google Scholar 

  • Ding ZL, Ren JZ, Yang SL, Liu TS (1999) Climate instability during the penultimate glaciation: evidence from two high-resolution loess records, China. J Geophys Res-Sol Ea 104(B9):20123–20132. doi:10.1029/1999jb900183

    Google Scholar 

  • Ding ZL, Rutter NW, Liu TS, Sun JM, Ren JZ, Rokosh D, Xiong SF (1998) Correlation of Dansgaard-Oeschger cycles between Greenland ice and Chinese loess. Paleoclimates 2:281–291

    Google Scholar 

  • Douville H, Royer JF, Polcher J, Cox P, Gedney N, Stephenson DB, Valdes PJ (2000) Impact of CO2 doubling on the Asian summer monsoon: robust versus model-dependent responses. J Meteorol Soc Jpn 78(4):421–439

    Google Scholar 

  • Dupont-Nivet G, Hoorn C, Konert M (2008) Tibetan uplift prior to the Eocene-Oligocene climate transition: evidence from pollen analysis of the Xining Basin. Geology 36(12):987–990. doi:10.1130/G25063a.1

    Google Scholar 

  • Dykoski CA, Edwards RL, Cheng H, Yuan DX, Cai YJ, Zhang ML, Lin YS, Qing JM, An ZS, Revenaugh J (2005) A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet Sci Lett 233(1-2):71–86. doi:10.1016/j. epsl.2005.01.036

    Google Scholar 

  • Edmond JM (1992) Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science 258(5088):1594–1597. doi:10.1126/science.258.5088.1594

    Google Scholar 

  • England P, Searle M (1986) The Cretaceous-Tertiary deformation of the Lhasa Block and its implications for crustal thickening in Tibet. Tectonics 5(1):1–14

    Google Scholar 

  • Fang XM, Garzione C, Van der Voo R, Li JJ, Fan MJ (2003) Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China. Earth Planet Sci Lett 210(3–4):545–560. doi:10.1016/S0012-821x(03)00142-0

    Google Scholar 

  • Fang XM, Ono Y, Fukuksawa H, Pan BT, Li JJ, Guan DH, Oi KC, Tsukamoto S, Torii M, Mishima T (1999) Asian summer monsoon instability during the past 60,000 years: magnetic susceptibility and pedogenic evidence from the western Chinese Loess Plateau. Earth Planet Sci Lett 168(3-4):219–232

    Google Scholar 

  • Fang X, Zhao Z, LI J, Yan M, Pan B, Song C, Dai S (2005) Magnetostratigraphy of the late Cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan Plateau uplift. Sci China Earth Sci 48(7):1040–1051. doi:10.1360/03yd0188

    Google Scholar 

  • Farrell JW, Clemens SC, Gromet LP (1995) Improved chronostratigraphic reference curve of late Neogene Seawater 87Sr/86Sr. Geology 23(5):403–406. doi:10.1130/0091-7613

    Google Scholar 

  • Fleitmann D, Burns SJ, Mangini A, Mudelsee M, Kramers J, Villa I, Neff U, Al-Subbary AA, Buettner A, Hippler D, Matter A (2007) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev 26(1-2):170–188. doi:10.1016/j.quascirev.2006.04.012

    Google Scholar 

  • France-Lanord C, Derry LA (1997) Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature 390(6655):65–67. doi:10.1038/36324

    Google Scholar 

  • Garzanti E, VanHaver T (1988) The Indus clastics—fore-arc basin Sedimentation in the Ladakh Himalaya (India). Sedi Geol 59 (3-4):237–249. doi:10.1016/0037-0738(88)90078-4

    Google Scholar 

  • Garzione CN (2008) Research focus surface uplift of Tibet and Cenozoic global cooling. Geology 36(12):1003–1004. doi:10.1130/focus122008.1

    Google Scholar 

  • George A, Marshallsea S, Wyrwoll K, Chen J, Lu Y (2001) Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan Plateau, revealed by apatite fission-track and vitrinite-reflectance analysis. Geology 29(10):939–942

    Google Scholar 

  • Ghil M, Mullhaupt A, Pestiaux P (1987) Deep water formation and Quaternary glaciations. Clim Dynam 2(1):1–10. doi:10.1007/Bf01088850

    Google Scholar 

  • Grootes PM, Stuiver M (1997) Oxygen 18/16 variability in Greenland snow and ice with 103 to 105 year time resolution. J Geophys Res 102(C12):26455–26470

    Google Scholar 

  • Gu CG, Renaut RW (1994) The effect of Tibetan uplift on the formation and preservation of Tertiary lacustrine source-rocks in eastern China. J Paleolimnol 11(1):31–40

    Google Scholar 

  • Guo QY (1983) The summer monsoon intensity index in East Asia. Acta Geographica Sinica 38(3):207–216

    Google Scholar 

  • Guo S, Chen J (1989) Cenozoic floras and coal-accumulating environment in Himalayas and hengduan mountains area. Acta Palaeonologica Sinica 28:512–521

    Google Scholar 

  • Guo ZT, Liu TS, Guiot J, Wu NQ, Lu H, Han J, Liu J, Gu Z (1996) High frequency pulses of East Asian monsoon climate in the last two glaciations: link with the North Atlantic. Clim Dynam 12(10):701–709. doi:10.1007/s003820050137

    Google Scholar 

  • Guo ZT, Ruddiman WF, Hao QZ, Wu HB, Qiao YS, Zhu RX, Peng SZ, Wei JJ, Yuan BY, Liu TS (2002) Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416(6877):159–163

    Google Scholar 

  • Guo ZT, Sun B, Zhang ZS, Peng SZ, Xiao GQ, Ge JY, Hao QZ, Qiao YS, Liang MY, Liu JF, Yin QZ, Wei JJ (2008) A major reorganization of Asian climate by the early Miocene. Clim Past 4:153–174

    Google Scholar 

  • Hahn DG, Manabe S (1975) The role of mountains in the south Asian monsoon circulation. J Atmos Sci 32(8):1515–1541

    Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci 103(39):14288

    Google Scholar 

  • Hao Y, Guan S, Ye L, Huang Y, Zhou Y, Guan S (2002) Neogene stratigraphy and palaeogeography in the western Tarim Basin. Acta Geol Sin-Engl 76:289–298

    Google Scholar 

  • Harris N (2006) The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Palaeogeogr Palaeoclimatol Palaeoecol 241(1):4–15

    Google Scholar 

  • Harrison T, Copeland P, Kidd W, Yin A (1992) Raising Tibet. Science 255:1663–1670

    Google Scholar 

  • Haug GH, Tiedemann R (1998) Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393(6686):673–676. doi:10.1038/31447

    Google Scholar 

  • Hay WW, Soeding E, DeConto RM, Wold CN (2002) The Late Cenozoic uplift—climate change paradox. Int J Earth Sci 91(5):746–774. doi:10.1007/s00531-002-0263-1

    Google Scholar 

  • He CQ (1991) Late Cretaceous-Early Tertiary microphytoplankton from the western Tarim Basin in southern Xinjiang. Science Press, Beijing

    Google Scholar 

  • Heermance RV, Chen J, Burbank DW, Wang C (2007) Chronology and tectonic controls of Late Tertiary deposition in the southwestern Tian Shan foreland, NW China. Basin Res 19(4):599–632. doi:10.1111/j.1365-2117.2007.00339.x

    Google Scholar 

  • Heinrich H (1988) Origin and consequences of cyclic ice rafting in the Northeast Atlantic-Ocean during the past 130,000 years. Quat Res 29(2):142–152. doi:10.1016/0033-5894(88)90057-9

    Google Scholar 

  • Held IM (1983) Stationary and quasi-stationary eddies in the extratropical troposphere: theory. In: Hoskins BJ, Pearce RP (eds) Large-scale dynamical processes in the atmosphere. Academic Press, New York, pp 127–168

    Google Scholar 

  • Hess J, Bender ML, Schilling JG (1986) Evolution of the ratio of strontium-87 to strontium-86 in seawater from Cretaceous to Present. Science 231(4741):979–984. doi:10.1126/science. 231.4741.979

    Google Scholar 

  • Hodell D, Elmstrom M, Kennett J (1986) Latest Miocene benthic δ18O changes, global ice volume, sea level and the ‘Messinian salinity crisis’. Nature 320:411–414

    Google Scholar 

  • Hodell DA, Mead GA, Mueller PA (1990) Variation in the strontium isotopic composition of seawater (8 Ma to Present)—implications for chemical-weathering rates and dissolved fluxes to the oceans. Chem Geol 80(4):291–307. doi:10.1016/0168-9622(90)90011-Z

    Google Scholar 

  • Hodell DA, Mueller PA, Garrido JR (1991) Variations in the strontium isotopic composition of seawater during the Neogene. Geology 19(1):24–27. doi:10.1130/0091-7613

    Google Scholar 

  • Hong SM, Candelone JP, Patterson CC, Boutron CF (1996a) History of ancient copper smelting pollution during Roman and medieval times recorded in Greenland ice. Science 272(5259): 246–249. doi:10.1126/science.272.5259.246

    Google Scholar 

  • Hong SM, Candelone JP, Soutif M, Boutron CF (1996b) A reconstruction of changes in copper production and copper emissions to the atmosphere during the past 7000 years. Sci Total Environ 188(2–3):183–193. doi:10.1016/0048-9697(96)05171-6

    Google Scholar 

  • Hong YT, Hong B, Lin QH, Zhu YX, Shibata Y, Hirota M, Uchida M, Leng XT, Jiang HB, Xu H, Wang H, Yi L (2003) Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth Planet Sc Lett 211(3–4):371–380. doi:10.1016/s0012-821x(03)00207–3

    Google Scholar 

  • Hori ME, Ueda H (2006) Impact of global warming on the East Asian winter monsoon as revealed by nine coupled atmosphere-ocean GCMs. Geophys Res Lett 33(3):L03713. doi:10.1029/2005gl024961

    Google Scholar 

  • Horton BK, Yin A, Spurlin MS, Zhou JY, Wang JH (2002) Paleocene-Eocene syncontractional sedimentation in narrow, lacustrine-dominated basins of east-central Tibet. Geol Soc Am Bull 114(7):771–786. doi:10.1130/0016-7606 (2002) 114 <0771:Pessin> 2.0.Co;2

    Google Scholar 

  • Hsü J (1981) On palaeobotanical evidence for continental drift and the Himalayan uplift. The Comprehensive Scientific Expedition to the Qinghai- Xizang Plateau, Academia Sinica. Studies on the Period, Amplitude and Type of the Uplift of theQinghai-Xizang Plateau. Science Press, Beijing

    Google Scholar 

  • Hsü J, Kong Z, Sun X, Tao J, Du N (1973) Research on Quaternary paleoplant in Himalaya and its implication for uplift of the Himalaya. Chin Sci Bull 18:274

    Google Scholar 

  • Hsu P, Li T, Wang B (2011) Trends in global monsoon area and precipitation over the past 30 years. Geophys Res Lett 38(8):L08701. doi:10.1029/2011gl046893

    Google Scholar 

  • Huang B (1958) A scheme on Physio-geographic regionalization of China. Acta Geographica Sinica 24(4):348–363 (in Chinese)

    Google Scholar 

  • Huang G, Yan ZW (1999) The East Asian summer monsoon circulation anomaly index and its interannual variations. Chin Sci Bull 44(14):1325–1329

    Google Scholar 

  • Huber M, Goldner A (2012) Eocene monsoons. J Asian Earth Sci 44:3–23

    Google Scholar 

  • IPCC FARA (2007) Climate Change 2007: The Physical Science Basis. In: Solomon S, Qin D, Manning M et al. (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 996

    Google Scholar 

  • Jacobson AD (2004) Has the atmospheric supply of dissolved calcite dust to seawater influenced the evolution of marine 87Sr/86Sr ratios over the past 2.5 million years? Geochem Geophy Geosy 5(12):Q12002. doi:10.1029/2004gc000750

    Google Scholar 

  • Jain AK, Lal N, Sulemani B, Awasthi AK, Singh S, Kumar R, Kumar D (2009) Detrital-zircon fission-track ages from the Lower Cenozoic sediments, NW Himalayan foreland basin: Clues for exhumation and denudation of the Himalaya during the India-Asia collision. Geol Soc Am Bull 121(3–4):519–535

    Google Scholar 

  • Jiang D, Wang H, Drange H, Lang X (2003) Last Glacial Maximum over China: Sensitivities of climate to paleovegetation and Tibetan ice sheet. J Geophys Res 108 (D3):4102

    Google Scholar 

  • Jiang DB, Lang XM (2010) Last Glacial Maximum East Asian Monsoon: Results of PMIP Simulations. J Climate 23(18):5030–5038. doi:10.1175/2010jcli3526.1

    Google Scholar 

  • Jiang HC, Ding ZL, Xiong SF (2007) Magnetostratigraphy of the Neogene Sikouzi section at Guyuan,Ningxia, China. Palaeogeogr Palaeoclimatol Palaeoecol 243:223–234

    Google Scholar 

  • Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, Cao JJ, Boyd PW, Duce RA, Hunter KA, Kawahata H, Kubilay N, laRoche J, Liss PS, Mahowald N, Prospero JM, Ridgwell AJ, Tegen I, Torres R (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308(5718):67–71

    Google Scholar 

  • Jin L, Chen F, Ganopolski A, Claussen M (2007) Response of East Asian climate to Dansgaard/Oeschger and Heinrich events in a coupled model of intermediate complexity. J Geophys Res Atmospheres 112(D6):D06117. doi:10.1029/2006jd007316

    Google Scholar 

  • Johnsen SJ, Clausen HB, Dansgaard W, Fuhrer K, Gundestrup N, Hammer CU, Iversen P, Jouzel J, Stauffer B, Steffensen JP (1992) Irregular glacial interstadials recorded in a New Greenland ice core. Nature 359(6393):311–313. doi:10.1038/359311a0

    Google Scholar 

  • Jolivet M, Roger F, Arnaud N, Frunel M, Tapponnier P, Seward D (1999) Exhumation history of the Altun Shan with evidence for timing of the subduction of the Tarim block beneath the Altyn Tagh system, north Tibet. Earth Planet Sci Lett 329:749–755

    Google Scholar 

  • Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317(5839):793–796. doi:10.1126/science.1141038

    Google Scholar 

  • Kapp P, DeCelles PG, Gehrels GE, Heizier M, Ding L (2007) Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geol Soc Am Bull 119(7–8):917–932. doi:10.1130/B26033.1

    Google Scholar 

  • Kapp P, Murphy M, Yin A, Harrison T, Ding L, Guo J (2003) Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics 22(4):1029. doi:10.1029/2001Tcoo1332

    Google Scholar 

  • Kapp P, Yin A, Harrison TM, Ding L (2005) Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geol Soc Am Bull 117(7-8):865–878. doi:10.1130/1325595.1

    Google Scholar 

  • Keigwin LD, Lehman SJ (1994) Deep circulation change linked to HEINRICH Event 1 and Younger Dryas in a middepth North Atlantic Core. Paleoceanography 9(2):185–194. doi:10.1029/94pa00032

    Google Scholar 

  • Kelly MJ, Edwards RL, Cheng H, Yuan DX, Cai YJ, Zhang ML, Lin YS, An ZS (2006) High resolution characterization of the Asian Monsoon between 146,000 and 99,000 years BP from Dongge Cave, China and global correlation of events surrounding Termination II. Palaeogeogr Palaeoclimatol Palaeoecol 236(1-2):20–38. doi:10.1016/j.palaeo.2005.11.042

    Google Scholar 

  • Kiefer T, McCave IN, Elderfield H (2006) Antarctic control on tropical Indian Ocean sea surface temperature and hydrography. Geophys Res Lett 33:L24612

    Google Scholar 

  • Kim SJ, Crowley TJ, Erickson DJ, Govindasamy B, Duffy PB, Lee BY (2008) High-resolution climate simulation of the last glacial maximum. Clim Dynam 31(1):1–16

    Google Scholar 

  • Kirby E, Reiners P, Frol M, Whipple K, Hodges K, Farley K, Tang W, Chen Z (2002) Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from 40Ar/39Ar and (U-Th)/He thermochronology. Tectonics 21(1):1001. doi:10.1029/2000TC001246

    Google Scholar 

  • Krishnaswami S, Trivedi JR, Sarin MM, Ramesh R, Sharma KK (1992) Strontium isotopes and Rubidium in the Ganga Brahmaputra river system - weathering in the Himalaya, fluxes to the Bay of Bengal and contributions to the evolution of oceanic 87Sr/86Sr. Earth Planet Sci Lett 109(1–2):243–253. doi:10.1016/0012-821x(92)90087–C

    Google Scholar 

  • Ku T, Li H (1998) Speleothems as high-resolution paleoenvironment archives: Records from northeastern China. J Earth Syst Sci 107(4):321–330

    Google Scholar 

  • Kukla G (1987) Loess stratigraphy in Central China. Quat Sci Rev 6(3–4): 191–219. doi:10.1016/0277-3791(87) 90004-7

    Google Scholar 

  • Kukla G, Koci A (1972) End of the last interglacial in the loess record. Quat Res 2(3):374–383

    Google Scholar 

  • Kutzbach JE (1981) Monsoon Climate of the Early Holocene - Climate Experiment with the Earths Orbital Parameters for 9000 Years Ago. Science 214(4516):59–61. doi:10.1126/science. 214.4516.59

    Google Scholar 

  • Kutzbach JE, Guetter PJ, Ruddiman WF, Prell WL (1989) Sensitivity of climate to late Cenozoic uplift in Southern Asia and the American West: Numerical experiments. J Geophys Res 94(D15):18393–18407

    Google Scholar 

  • Kutzbach JE, Liu XD, Liu ZY, Chen GS (2008) Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280,000 years. Clim Dynam 30(6):567–579. doi:10.1007/s00382-007-0308-z

    Google Scholar 

  • Kutzbach JE, Prell WL, Ruddiman WF (1993) Sensitivity of Eurasian Climate to Surface Uplift of the Tibetan Plateau. J Geol 101(2):177–190

    Google Scholar 

  • Lan X, Wei J (1995) Late Cretaceous-Early Tertiary Marine Bivalve Fauna from the Western Tarim Basin. Chinese Science Pubilishing House, Beijing

    Google Scholar 

  • Lease RO, Burbank DW, Clark MK, Farley KA, Zheng DW, Zhang HP (2011) Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau. Geology 39(4):359–362

    Google Scholar 

  • Lease RO, Burbank DW, Gehrels GE, Wang ZC, Yuan DY (2007) Signatures of mountain building: Detrital zircon U/Pb ages from northeastern Tibet. Geology 35(3):239–242. doi:10.1130/ G23057a.1

    Google Scholar 

  • Lee CSL, Qi SH, Zhang G, Luo CL, Zhao LYL, Li XD (2008) Seven thousand years of records on the mining and utilization of metals from lake sediments in central China. Environ Sci Technol 42(13):4732–4738. doi:10.1021/Es702990n

    Google Scholar 

  • Li J (1995) Uplift of Qinghai-Xizang (Tibet) Plateau and Global Change. Lanzhou University Press, Lanzhou

    Google Scholar 

  • Li J, Fang X (1999) Uplift of Tibetan Plateau and environmental Changes. Chin Sci Bull 44(23):2117–2124

    Google Scholar 

  • Li JJ, Fang XM, Ma HZ, Zhu JJ, Pan BT, Chen HL (1996) Geomorphological and environmental evolution in the upper reaches of the Yellow River during the late Cenozoic. Sci China Ser D 39(4):380–390

    Google Scholar 

  • Li JJ, Fang XM, Van der Voo R, Zhu JJ, Mac Niocaill C, Cao JX, Zhong W, Chen HL, Wang JL, Wang JM, Zhang YC (1997a) Late Cenozoic magnetostratigraphy (11-0 Ma) of the Dongshanding and Wangjiashan sections in the Longzhong Basin, western China. Geologie En Mijnbouw 76(1–2):121–134

    Google Scholar 

  • Li JJ, Fang XM, VanderVoo R, Zhu JJ, MacNiocaill C, Ono Y, Pan BT, Zhong W, Wang JL, Sasaki T, Zhang YT, Cao JX, Kang SC, Wang JM (1997b) Magnetostratigraphic dating of river terraces: Rapid and intermittent incision by the Yellow River of the northeastern margin of the Tibetan Plateau during the Quaternary. J Geophys Res-Sol Ea 102(B5):10121–10132

    Google Scholar 

  • Li J, Li B, Wang F, Zhang Q, Wen S, Zheng B (1981) The process of the uplift of the Qinghai-Xizang Plateau. In: Liu D (ed) Geological and Ecological Studies in Qinghai-Xizang Plateau. Science Press, Beijing, pp 111–118

    Google Scholar 

  • Li J, Wen S, Zhang Q, Wang F, Zheng B, Li B (1979) Discussion on the Period, Amplitude and Type of the Uplift of the Qinghai-Xizang Plateau. Sci Sinica 22(11):1314–1328

    Google Scholar 

  • Li XQ, Dodson J, Zhou J, Zhou X (2009) Increases of population and expansion of rice agriculture in Asia, and anthropogenic methane emissions since 5000BP. Quat Int 202(1):41–50

    Google Scholar 

  • Li XQ, Zhou XY, Zhou J, Dodson J, Zhang HB, Shang X (2007) The earliest archaeobiological evidence of the broadening agriculture in China recorded at Xishanping site in Gansu Province. Sci China Ser D 50(11):1707–1714. doi:10.1007/s11430-007-0066-0

    Google Scholar 

  • Li XZ, Liu XD, Qiu LJ, An ZS and Yin ZY (2013) Transient Simulation of Orbital-scale Precipitation Variation in Monsoonal East Asia and Arid Central Asia during the Last 150ka. J Geophys Res 118:7481-7488. doi:10.1002/jgrd.50611

    Google Scholar 

  • Li YY, Zhou LP, Cui HT (2008) Pollen indicators of human activity. Chin Sci Bull 53(9):1281–1293. doi:10.1007/s11434-008-0181-0

    Google Scholar 

  • Linthout K, Helmers H, Sopaheluwakan J (1997) Late Miocene obduction and microplate migration around the southern Banda Sea and the closure of the Indonesian Seaway. Tectonophysics 281(1–2):17–30. doi:10.1016/S0040-1951(97)00156-X

    Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic delta O-18 records. Paleoceanography 20 (1):Pa1003. doi:10.1029/2004pa001071

    Google Scholar 

  • Lister GS, Kelts K, Zao CK, Yu JQ, Niessen F (1991) Lake Qinghai, China: closed-basin lake levels and the oxygen isotope record for ostracoda since the latest Pleistocene. Palaeogeogr Palaeoclimatol Palaeoecol 84(1-4):141–162

    Google Scholar 

  • Liu J, Wang B, Cane MA, Yim SY, Lee JY (2013) Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature 493(7434):656–659. doi:10.1038/Nature11784

    Google Scholar 

  • Liu J, Wang B, Ding Q, Kuang X, Soon W, Zorita E (2009c) Centennial Variations of the Global Monsoon Precipitation in the Last Millennium: Results from ECHO-G Model. J Clim 22:2356-2371

    Google Scholar 

  • Liu TS et al. (1985) Loess and the environment. China Ocean Press, Beijing

    Google Scholar 

  • Liu TS, Ding ML (1984) Comparison of stratum including early human fossils with paleoclimatic cycle in deep-sea sediments. J Anthropol 3:93–101

    Google Scholar 

  • Liu TS, Ding ZL (1998) Chinese loess and the paleomonsoon. Annu Rev Earth Planet Sci 26:111–145

    Google Scholar 

  • Liu TS, Ding ZL, Rutter N (1999) Comparison of Milankovitch periods between continental loess and deep sea records over the last 2.5 Ma. Quat Sci Rev 18(10–11):1205–1212

    Google Scholar 

  • Liu TS, Zheng M, Guo Z (1998) Initiation and evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the Tectonic movements in Asia. Quat Sci 18(3):194–204 (in Chinese with English abstract)

    Google Scholar 

  • Liu XD, Chen BD (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20(14):1729–1742. doi:10.1002/1097-0088(20001130)20:14 <1729::Aid-Joc556>3.0.Co;2–Y

    Google Scholar 

  • Liu XD, Cheng ZG, Yan LB, Yin ZY (2009a) Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Global Planet Change 68(3):164–174. doi:10.1016/j.gloplacha.2009.03.017

    Google Scholar 

  • Liu XD, Dong BW (2013) Influence of the Tibetan Plateau uplift on the Asian monsoon-arid environment evolution. Chinese Science Bulletin 58(34):4277-4291. doi: 10.1007/s11434-013-5987-8

    Google Scholar 

  • Liu XD, Kutzbach JE, Liu ZY, An ZS, Li L (2003a) The Tibetan Plateau as amplifier of orbital-scale variability of the East Asian monsoon. Geophys Res Lett 30(16):1839. doi:10.1029/2003gl017510

    Google Scholar 

  • Liu X, Liu Z, Kutzbach JE, Clemens SC, Prell WL (2006) Hemispheric Insolation Forcing of the Indian Ocean and Asian Monsoon: Local versus Remote Impacts. J Clim 19(23):6195–6208

    Google Scholar 

  • Liu X, Yin ZY (2002) Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol 183(3):223–245

    Google Scholar 

  • Liu XD, Shi ZG (2009) Effect of precession on the Asian summer monsoon evolution: A systematic review. Chin Sci Bull 54(20):3720–3730

    Google Scholar 

  • Liu Y, An ZS, Linderholm HW, Chen DL, Song HM, Cai QF, Sun JY, Tian H (2009b) Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings. Sci China Ser D 52(3):348–359. doi:10.1007/s11430-009-0025-z

    Google Scholar 

  • Liu Y, Sun JY, Song HM, Cai QF, Bao G, Li XX (2010) Tree-ring hydrologic reconstructions for the Heihe River watershed, western China since AD 1430. Water Res 44(9):2781–2792. doi:10.1016/j.watres.2010.02.013

    Google Scholar 

  • Liu ZF, Wang CS (2001) Facies analysis and depositional systems of Cenozoic sediments in the Hoh Xil basin, northern Tibet. Sediment Geol 140(3–4):251–270. doi:10.1016/S0037-0738(00)00188-3

    Google Scholar 

  • Liu ZF, Zhao XX, Wang CS, Liu S, Yi HS (2003c) Magnetostratigraphy of Tertiary sediments from the Hoh Xil Basin: implications for the Cenozoic tectonic history of the Tibetan Plateau. Geophys J Int 154(2):233–252. doi:10.1046/j.1365-246X.2003.01986.x

    Google Scholar 

  • Liu Z (2008) Applications of geochemical proxies in speleothem to the study on evolution and impact factor of Karst-desertification in Central Western Guizhou during morden and contemporary period. Southwestern University

    Google Scholar 

  • Liu Z, Otto-Bliesner B, He F, Brady E, Clark P, Lynch-Steiglitz J, Carlson A, Curry W, Brook E, Jacob R, Erickson D, Kutzbach J, Cheng J (2009d) Transient Simulation of Last Deglaciation with a New Mechanism for Bølling-Allerød Warming. Science 325: 310-314

    Google Scholar 

  • Liu Z, Otto-Bliesner B, Kutzbach J, Li L, Shields C (2003b) Coupled climate simulation of the evolution of global monsoons in the Holocene. J Climate 16(15):2472–2490. doi:10.1175/1520-0442 (2003) 016 <2472:Ccsote> 2.0.Co;2

    Google Scholar 

  • Lorenz SJ, Lohmann G (2004) Acceleration technique for Milankovitch type forcing in a coupled atmosphere-ocean circulation model: method and application for the Holocene. Clim Dynam 23(7):727–743

    Google Scholar 

  • Lowell TV, Heusser CJ, Andersen BG, Moreno PI, Hauser A, Heusser LE, Schluchter C, Marchant DR, Denton GH (1995) Interhemispheric Correlation of Late Pleistocene Glacial Events. Science 269(5230):1541–1549

    Google Scholar 

  • Ma Y, Li J, Fan X (1998) Pollen-based vegetational and climatic records during 30.6 to 5.0 My from Linxia area, Gansu. Chin Sci Bull 43(3):301–304

    Google Scholar 

  • Ma YZ, Fang XM, Li JJ, Wu FL, Zhang J (2004) Vegetational and environmental changes during late Tertiary-early Quaternary in Jiuxi Basin. Sci China Ser D Earth Sci 34:107–116

    Google Scholar 

  • Ma ZG, Fu CB (2006) Some evidence of drying trend over northern China from 1951 to 2004. Chin Sci Bull 51(23):2913–2925. doi:10.1007/s11434-006-2159-0

    Google Scholar 

  • Maasch KA, Saltzman B (1990) A low-order dynamic-model of global climatic variability over the full Pleistocene. J Geophys Res-Atmos 95(D2):1955–1963. doi:10.1029/Jd095id02p01955

    Google Scholar 

  • Mahowald NM, Yoshioka M, Collins WD, Conley AJ, Fillmore DW, Coleman DB (2006) Climate response and radiative forcing from mineral aerosols during the last glacial maximum, pre-industrial, current and doubled-carbon dioxide climates. Geophys Res Lett 33(20). doi:10.1029/2006gl026126

    Google Scholar 

  • Manabe S, Broccoli A (1990) Mountains and arid climates of middle latitudes. Science 247(4939):192

    Google Scholar 

  • Manabe S, Stouffer RJ (1995) Simulation of abrupt climate-change induced by fresh-water input to the North-Atlantic ocean. Nature 378(6553):165–167. doi:10.1038/378165a0

    Google Scholar 

  • Manabe S, Terpstra TB (1974) The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J Atmos Sci 31(1):3–42

    Google Scholar 

  • Mangerud JA, Andersen ST, Berglund BE, Donner JJ (1974) Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3(3):109–128. doi:10.1111/j.1502-3885.1974.tb00669.x

    Google Scholar 

  • Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci 105(36):13252

    Google Scholar 

  • Marincovich L, Gladenkov AY (1999) Evidence for an early opening of the Bering Strait. Nature 397(6715):149–151

    Google Scholar 

  • Mashiotta TA, Lea DW, Spero HJ (1999) Glacial-interglacial changes in Subantarctic sea surface temperature and δ18O-water using foraminiferal Mg. Earth Planet Sc Lett 170(4):417–432. doi:10.1016/s0012-821x(99)00116–8

    Google Scholar 

  • Maslin MA, Li XS, Loutre MF, Berger A (1998) The contribution of orbital forcing to the progressive intensification of Northern Hemisphere glaciation. Quat Sci Rev 17(4–5):411–426. doi:10.1016/S0277-3791(97)00047-4

    Google Scholar 

  • May W (2004) Potential future changes in the Indian summer monsoon due to greenhouse warming: analysis of mechanisms in a global time-slice experiment. Clim Dynam 22(4):389–414. doi:10.1007/s00382-003-0389-2

    Google Scholar 

  • Mayewski PA, Meeker LD, Twickler MS, Whitlow S, Yang QZ, Lyons WB, Prentice M (1997) Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series. J Geophys Res-Oceans 102(C12):26345–26366. doi:10.1029/96jc03365

    Google Scholar 

  • McArthur JM, Howarth RJ, Bailey TR (2001) Strontium isotope stratigraphy: LOWESS version 3: Best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age. J Geol 109(2):155–170. doi:10.1086/319243

    Google Scholar 

  • Meehl GA, Arblaster JM (2003) Mechanisms for projected future changes in south Asian monsoon precipitation. Clim Dynam 21(7-8):659–675. doi:10.1007/s00382-003-0343-3

    Google Scholar 

  • Mercier JL, Armijo R, Tapponnier P, Careygailhardis E, Lin HT (1987) Change from Late Tertiary compression to Quaternary extension in Southern Tibet during the India-Asia collision. Tectonics 6(3):275–304. doi:10.1029/Tc006i003p00275

    Google Scholar 

  • Métivier F, Gaudemer Y, Tapponnier P, Meyer B (1998) Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional area: The Qaidam basin and Hexi Corridor basins, China. Tectonics 17:823–842

    Google Scholar 

  • Misra S, Froelich PN (2012) Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335(6070):818–823

    Google Scholar 

  • Mo X, Niu Y, Dong G, Zhao Z, Hou Z, Zhou S, Ke S (2008) Contribution of syncollisional felsic magnatism to continental crust growth: a case study of the Paleogene Linzizong volcanic. Chem Geol 250:49–67

    Google Scholar 

  • Mock C, Arnaud N, Cantagrel J (1999) An early unroofing in northeastern Tibet? Constraints from 40Ar/39Ar thermochronology on granitoids from the eastern Kunlun range (Qinghai, NW China). Earth Planet Sc Lett 171:107–122

    Google Scholar 

  • Molnar P (2004) Late cenozoic increase in accumulation rates of terrestrial sediment: how might climate change have affected erosion rates? Annu Rev Earth Planet Sci 32:67–89. doi:10.1146/ annurev.earth.32.091003.143456

    Google Scholar 

  • Molnar P (2005) Mio-Pliocene growth of the Tibetan Plateau and evolution of East Asian climate. Palaeontologia Electronica 8(1):1–23

    Google Scholar 

  • Molnar P, Boos WR, Battisti DS (2010) Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annu Rev Earth Planet Sc 38:77–102

    Google Scholar 

  • Molnar P, England P (1990) Late Cenozoic uplift of mountain-ranges and global climate change—chicken or egg. Nature 346(6279):29–34. doi:10.1038/346029a0

    Google Scholar 

  • Molnar P, England P, Martinod J (1993) Mantle dynamics, uplift of the Tibetan Plateau, and the India monsoon. Rev Geophys 31:357–396

    Google Scholar 

  • Molnar P, Lyon-caen H (1989) Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins. Geophys J Int 99(1):123–153

    Google Scholar 

  • Molnar P, Stock JM (2009) Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics 28(3). doi:10.1029/2008tc002271

    Google Scholar 

  • Molnar P, Tapponnier P (1975) Cenozoic tectonics of Asia: effects of a continental collision. Science 189:419–426

    Google Scholar 

  • Mudelsee M, Raymo ME (2005) Slow dynamics of the Northern Hemisphere glaciation. Paleoceanography 20(4):Pa4022. doi:10.1029/2005pa001153

    Google Scholar 

  • Murphy MA, Yin A, Harrison TM, Durr SB, Chen Z, Ryerson FJ, Kidd WSF, Wang X, Zhou X (1997) Did the Indo-Asian collision alone create the Tibetan plateau? Geology 25(8):719–722

    Google Scholar 

  • Muscheler R, Joos F, Beer J, Muller SA, Vonmoos M, Snowball I (2007) Solar activity during the last 1000 year inferred from radionuclide records. Quat Sci Rev 26(1–2):82–97

    Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299(5885):715–717. doi:10.1038/299715a0

    Google Scholar 

  • Noh H, Huh Y, Qin JH, Ellis A (2009) Chemical weathering in the Three Rivers region of Eastern Tibet. Geochim Cosmochim Acta 73(7):1857–1877. doi:10.1016/j.gca.2009.01.005

    Google Scholar 

  • Oppo DW, Rosenthal Y, Linsley BK (2009) 2,000-year-long temperature and hydrology reconstructions from the Indo-Pacific warm pool. Nature 460(7259):1113–1116. doi:10.1038/Nature08233

    Google Scholar 

  • Pagani M, Huber M, Liu ZH, Bohaty SM, Henderiks J, Sijp W, Krishnan S, DeConto RM (2011) The role of carbon dioxide during the onset of Antarctic glaciation. Science 334(6060):1261–1264. doi:10.1126/science.1203909

    Google Scholar 

  • Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S (2005) Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309(5734):600–603. doi:10.1126/ science.1110063

    Google Scholar 

  • Palmer MR, Edmond JM (1992) Controls over the strontium isotope composition of river water. Geochim Cosmochim Ac 56(5):2099–2111. doi:10.1016/0016-7037(92)90332-D

    Google Scholar 

  • Pares JM, Van der Voo R, Downs WR, Yan MD, Fang XM (2003) Northeastward growth and uplift of the Tibetan Plateau: magnetostratigraphic insights from the Guide Basin (Vol. 108, Art no. 2017, 2003). J Geophys Res-Sol Ea 108(B8):2400. doi:10.1029/2003jb002624

    Google Scholar 

  • Patriat P, Achache J (1984) India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature 311:615–621

    Google Scholar 

  • Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406(6797):695–699

    Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, C. Lorius C, PÉpin L, Ritz C, Saltzman E and Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Google Scholar 

  • Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y (2010) The impacts of climate change on water resources and agriculture in China. Nature 467(7311):43–51

    Google Scholar 

  • Pollard D, DeConto RM (2009) Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458(7236):329–332

    Google Scholar 

  • Porter SC, An ZS (1995) Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375(6529):305–308. doi:10.1038/375305a0

    Google Scholar 

  • Pozzi J, Westphal M, Girardeau J, Besse J, Zhou Y, Chen X, Li S (1984) Paleomagnetism of the Xigaze ophiolite and flysch (Yarlung Zangbo suture zone, southern Tibet): latitude and direction of spreading. Earth Planet Sc Lett 70:383–394

    Google Scholar 

  • Prell WL, Kutzbach JE (1992) Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature 360(6405):647–652

    Google Scholar 

  • Proctor CJ, Baker A, Barnes WL, Gilmour WA (2000) A thousand year speleothem proxy record of North Atlantic climate from Scotland. Clim Dynam 16(10-11):815–820. doi:10.1007/ s003820000077

    Google Scholar 

  • Qiang XK, An ZS, Song YG, Chang H, Sun YB, Liu WG, Ao H, Dong JB, Fu CF, Wu F, Lu FY, Cai YJ, Zhou WJ, Cao JJ, Xu XW, Ai L (2011) New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago. Sci China Earth Sci 54(1):136–144. doi:10.1007/s11430-010-4126-5

    Google Scholar 

  • Qiu Z, Li C (2005) Evolution of Chinese mammalian faunal regions and elevation of the Qinghai-Xizang (Tibet) Plateau. Sci China Ser D Earth Sci 48(8):1246–1258. doi:10.1360/03yd0523

    Google Scholar 

  • Ramstein G, Fluteau F, Besse J, Joussaume S (1997) Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature 386(6627):788–795

    Google Scholar 

  • Raymo ME, Ruddiman WF (1992) Tectonic forcing of late Cenozoic climate. Nature 359(6391):117–122

    Google Scholar 

  • Raymo ME, Ruddiman WF, Froelich PN (1988) Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology 16(7):649–653. doi:10.1130/0091-7613

    Google Scholar 

  • Rea DK (1992) Delivery of Himalayan sediment to northern Indian Ocean and its relation to global climate, sea level, uplift and seawater strontium. In: Duncan RA (ed) Synthesis of results from scientific drilling in the Indian Ocean, Geophys Monogr Ser 70:387–402. AGU, Washington. doi:10.1029/GM070p0387.

    Google Scholar 

  • Rea DK, Leinen M, Janecek TR (1985) Geologic approach to the long-term history of atmospheric circulation. Science 227(4688):721–725

    Google Scholar 

  • Rea DK, Snoeckx H, Joseph LH (1998) Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography 13(3):215–224

    Google Scholar 

  • Reynolds BC, Frank M, Halliday AN (2008) Evidence for a major change in silicon cycling in the subarctic North Pacific at 2.73 Ma. Paleoceanography 23(4):Pa4219. doi:10.1029/2007pa001563

    Google Scholar 

  • Ridgwell AJ (2002) Dust in the Earth system: the biogeochemical linking of land, air and sea. Philos Trans R Soc London Ser A 360(1801):2905–2924. doi:10.1098/rsta.2002.1096

    Google Scholar 

  • Rigozo NR, Echer E, Vieira L, Nordemann DJR (2001) Reconstruction of Wolf sunspot numbers on the basis of spectral characteristics and estimates of associated radio flux and solar wind parameters for the last millennium. Solar Physics 203(1):179–191

    Google Scholar 

  • Ritts BD, Yue Y, Graham SA (2004) Oligocene-Miocene tectonics and sedimentation along the Altyn Tagh Fault, Northern Tibetan Plateau: analysis of the Xorkol, Subei, and Aksay Basins. J Geol 112(2):207–229. doi:10.1086/381658

    Google Scholar 

  • Roger F, Tapponnier P, Arnaud N, Schärer U, Brunel M, Xu Z, Yang J (2000) An Eocene magmatic belt across central Tibet: mantle subduction triggered by the India collision. Terra Nova 12:102–108

    Google Scholar 

  • Rohling EJ, Liu QS, Roberts AP, Stanford JD, Rasmussen SO, Langen PL, Siddall M (2009) Controls on the East Asian monsoon during the last glacial cycle, based on comparison between Hulu Cave and polar ice-core records. Quat Sci Rev 28(27-28):3291–3302. doi:10.1016/j.quascirev. 2009.09.007

    Google Scholar 

  • Rowley D (1996) Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth Planet Sc Lett 145:1–13

    Google Scholar 

  • Rowley D, Currie B (2006) Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439(7077):677–681

    Google Scholar 

  • Ruddiman WF (2001) Earth’s climate: past and future. WH Freeman, New York

    Google Scholar 

  • Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Change 61(3):261–293

    Google Scholar 

  • Ruddiman WF, Guo ZT, Zhou X, Wu HB, Yu YY (2008) Early rice farming and anomalous methane trends. Quat Sci Rev 27(13–14):1291–1295. doi:10.1016/j.quascirev.2008.03.007

    Google Scholar 

  • Ruddiman WF, Kutzbach JE (1989) Forcing of Late Cenozoic northern hemisphere climate by plateau uplift in Southern Asia and the American West. J Geophys Res-Atmos 94(D15):18409–18427

    Google Scholar 

  • Sato M, Hansen JE, McCormick MP, Pollack JB (1993) Stratospheric aerosol optical depths, 1850–1990. J Geophys Res 98(D12):22987–22994

    Google Scholar 

  • Schulz H, von Rad U, Erlenkeuser H (1998) Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393(6680):54–57

    Google Scholar 

  • Shackleton NJ, Backman J, Zimmerman H, Kent DV, Hall MA, Roberts DG, Schnitker D, Baldauf JG, Desprairies A, Homrighausen R, Huddlestun P, Keene JB, Kaltenback AJ, Krumsiek KAO, Morton AC, Murray JW, Westbergsmith J (1984) Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North-Atlantic region. Nature 307(5952):620–623. doi:Doi 10.1038/307620a0

    Google Scholar 

  • Shen C, Wang W, Peng Y, Xu Y, Zheng J (2009) Variability of summer precipitation over Eastern China during the last millennium. Clim Past 5:129–141

    Google Scholar 

  • Shi Z, Liu X (2009) What is driving the Asian monsoon evolution: inspirations from a transient simulation. Quat Sci 29(6):1025–1032. doi:1001-7410 (2009) 29:6<1025:sqdtyz>2.0.tx;2–3

    Google Scholar 

  • Shi ZG, Liu XD, An ZS, Yi BQ, Yang P, Mahowald N (2011) Simulated variations of eolian dust from inner Asian deserts at the mid-Pliocene, last glacial maximum, and present day: contributions from the regional tectonic uplift and global climate change. Clim Dynam 37(11–12):2289–2301. doi:10.1007/s00382-011-1078-1

    Google Scholar 

  • Sima A, Paul A, Schulz M (2004) The Younger Dryas—an intrinsic feature of late Pleistocene climate change at millennial timescales. Earth Planet Sc Lett 222(3-4):741–750. doi:10.1016/j.epsl.2004.03.026

    Google Scholar 

  • Sobel E, Oskin M, Burbank G, Mikolaichuk A (2008) Exhumation of basement-cored uplifts: example of the Kyrgyz Range quantified with apatite fission track thermochronology. Textonics 25:2008. doi:10.1029/2005TC001809

    Google Scholar 

  • Solanki SK, Usoskin IG, Kromer B, Schussler M, Beer J (2004) Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431(7012):1084–1087. doi:10.1038/Nature02995

    Google Scholar 

  • Spotl C, Mangini A (2002) Stalagmite from the Austrian Alps reveals Dansgaard–Oeschger events during isotope stage 3: implications for the absolute chronology of Greenland ice cores. Earth Planet Sc Lett 203(1):507–518. doi:10.1016/S0012-821x(02)00837-3

    Google Scholar 

  • Spurlin MS, Yin A, Horton BK, Zhou J, Wang J (2005) Structural evolution of the Yushu-Nangqian region and its relationship to syncollisional igneous activity, east-central Tibet. Geol Soc Am Bull 117(9):1293–1317. doi:10.1130/b25572.1

    Google Scholar 

  • Stuiver M, Braziunas TF (1993) Modeling atmospheric 14C influences and 14C ages of marine samples to 10 000 BC. Radiocarbon 35(1):137–189

    Google Scholar 

  • Sun X, Wang P (2005) How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol 222(3):181–222

    Google Scholar 

  • Sun YB, An ZS (2005) Late Pliocene-Pleistocene changes in mass accumulation rates of eolian deposits on the central Chinese Loess Plateau. J Geophys Res-Atmos 110:D23101. doi:10.1029/2005jd006064

    Google Scholar 

  • Sun YB, Chen J, Clemens SC, Liu QS, Ji JF, Tada R (2006b) East Asian monsoon variability over the last seven glacial cycles recorded by a loess sequence from the northwestern Chinese Loess Plateau. Geochem. Geophy. Geosy. 7: Q12Q02, doi:10.1029/2006GC001287

    Google Scholar 

  • Sun YB, Clemens SC, An ZS, Yu ZW (2006a) Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau. Quaternary Sci Rev 25(1–2):33–48. doi:10.1016/j.quascirev.2005.07.005

    Google Scholar 

  • Sun YB, Clemens SC, Morrill C, Lin XP, Wang XL, An ZS (2012) Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nat Geosci 5(1):46–49. doi:10.1038/ngeo1326

    Google Scholar 

  • Sun YB, Wang XL, Liu QS, Clemens SC (2010) Impacts of post-depositional processes on rapid monsoon signals recorded by the last glacial loess deposits of northern China. Earth Planet Sc Lett 289(1–2):171–179. doi:10.1016/j.epsl.2009.10.038

    Google Scholar 

  • Sun Z, Yang Z, Pei J, Ge X, Wang X, Yang T, Li W, Yuan S (2005) Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin, China: implications for tectonic uplift and block rotation in northern Tibetan plateau. Earth Planet Sci Lett 237:635–646

    Google Scholar 

  • Tan LC (2008) High-resolution monsoon precipitation variations in China during the last 2000 years. PhD. Dissertation, Chinese Academy of Sciences, Xi’an

    Google Scholar 

  • Tan LC, Cai YJ, An ZS, Edwards RL, Cheng H, Shen CC, Zhang HW (2011b) Centennial-to decadal-scale monsoon precipitation variability in the semi-humid region, northern China during the last 1860 years: records from stalagmites in Huangye Cave. Holocene 21(2):287–296. doi:10.1177/0959683610378880

    Google Scholar 

  • Tan LC, Cai YJ, An ZS, Yi L, Zhang HW, Qin SJ (2011a) Climate patterns in north central China during the last 1800 year and their possible driving force. Clim Past 7(3):685–692. doi:10.5194/ cp-7-685-2011

    Google Scholar 

  • Tan LC, Cai YJ, Cheng H, An ZS, Edwards RL (2009) Summer monsoon precipitation variations in central China over the past 750 years derived from a high-resolution absolute-dated stalagmite. Palaeogeogr Palaeoclimatol Palaeoecol 280(3–4):432–439. doi:10.1016/j.palaeo.2009.06.030

    Google Scholar 

  • Tang T, Xue Y, Yu C (1992) Characteristics and sedimentary environments of the Late Cretaceous to early Tertiary marine strata in the western Tarim. Science Press, Beijing

    Google Scholar 

  • Tao JR, Du NQ (1982) Neogene flora of Tengchong Basin in western Yunnan, China. Acta Botanica Sinica 24:273–281

    Google Scholar 

  • Tapponnier P, Xu Z, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang J (2001) Oblique stepwise rise and growth of the Tibet Plateau. Science 294(5547):1671–1677

    Google Scholar 

  • Trenberth KE, Chen S-C (1988) Rotational and divergent geopotential components. J Atmos Sci 45(20):2949–2960. doi:10.1175/1520-0469 (1988) 045<2949:radgc>2.0.co;2

    Google Scholar 

  • Tripati AK, Roberts CD, Eagle RA (2009) Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years. Science 326:1394-7

    Google Scholar 

  • Tuenter E, Weber S, Hilgen F, Lourens L, Ganopolski A (2005) Simulation of climate phase lags in response to precession and obliquity forcing and the role of vegetation. Clim Dynam 24(2):279–295

    Google Scholar 

  • Turner S, Hawkesworth C, Liu J, Rogers N, Kelley S, van Calsteren P (1993) Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature 364:50–54

    Google Scholar 

  • Ueda H, Iwai A, Kuwako K, Hori ME (2006) Impact of anthropogenic forcing on the Asian summer monsoon as simulated by eight GCMs. Geophys Res Lett 33(6):L06703. doi:10.1029/2005gl025336

    Google Scholar 

  • Vidal L, Labeyrie L, Cortijo E, Arnold M, Duplessy JC, Michel E, Becqué S, van Weering TCE (1997) Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events. Earth Planet Sc Lett 146(1–2):13–27. doi:10.1016/s0012-821x(96)00192–6

    Google Scholar 

  • Volkmer JE, Kapp P, Guynn JH, Lai Q (2007) Cretaceous-Tertiary structural evolution of the north central Lhasa terrane, Tibet. Tectonics 26(6):1–18. doi:10.1029/2005tc001832

    Google Scholar 

  • von Storch H, Zorita E, Jones JM, Dimitriev Y, Gonzalez-Rouco F, Tett SFB (2004) Reconstructing past climate from noisy data. Science 306(5696):679–682. doi:10.1126/science.1096109

    Google Scholar 

  • Walker JCG, Hays PB, Kasting JF (1981) A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J Geophys Res 86(C10):9776. doi:10.1029/JC086iC10p09776

    Google Scholar 

  • Wan J, Wang Y, Li Q, Wang F, Wang E (2001) FT evidence of Northern Altyn uplift in Late-Cenozoic. Bull Mineral Petrol Geochem 20:222–224

    Google Scholar 

  • Wang B (2006) The Asian monsoon. Springer Verlag, Berlin

    Google Scholar 

  • Wang CS, Liu ZF, Yi HS, Liu S, Zhao XX (2002a) Tertiary crustal shortenings and peneplanation in the Hoh Xil region: implications for the tectonic history of the northern Tibetan Plateau. J Asian Earth Sci 20(3):211–223

    Google Scholar 

  • Wang C, Zhao X, Liu Z, Lippert PC, Graham SA, Coe RS, Yi H, Zhu L, Liu S, Li Y (2008a) Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci 105(13):4987–4992. doi:10.1073/pnas.0703595105

    Google Scholar 

  • Wang E, Wan J, Liu J (2003a) Late Cenozoic geological evolution of the foreland basin bordering the West Kunlun range in Pulu area: constraints on timing of uplift of northern margin of the Tibetan Plateau. J Geophys Res Solid Earth 108(B8):2401. doi:10.1029/2002JB001877

    Google Scholar 

  • Wang E, Xu F, Zhou J, Wan J, Burchfiel B (2006a) Eastward migration of the Qaidam basin and its implications for Cenozoic evolution of the Altyn Tagh fault and associated river system. Geol Soc Am Bull 118:349–365

    Google Scholar 

  • Wang G, Innes JL, Lei J, Dai S, Wu SW (2007) Ecology. China’s forestry reforms. Science 318(5856):1556–1557. doi:10.1126/science.1147247

    Google Scholar 

  • Wang HJ (1999a) Role of vegetation and soil in the Holocene megathermal climate over China. J Geophys Res 104(D8):9

    Google Scholar 

  • Wang J, Wang YJ, Liu ZC, Li JQ, Xi P (1999) Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia. Palaeogeogr Palaeoclimatol Palaeoecol 152(1):37–47

    Google Scholar 

  • Wang P, Zhao Q, Jian Z, Cheng X, Huang W, Tian J, Wang J, Li B, Sun X (2003b) Thirty million year deep-sea records in the South China Sea. Chin Sci Bull 48(23):2524–2535

    Google Scholar 

  • Wang SW, Wen XY, Luo Y, Dong WJ, Zhao ZC, Yang B (2007) Reconstruction of temperature series of China for the last 1000 years, Chinese Science Bulletin, 52(23):3272-3280

    Google Scholar 

  • Wang X (1999b) Some points on management of soil and water loss in the Loess Plateau. Soil and Water Conservation in China 12:17-19 (In Chinese with English abstract)

    Google Scholar 

  • Wang X, Auler AS, Edwards RL, Cheng H, Ito E, Solheid M (2006b) Interhemispheric anti-phasing of rainfall during the last glacial period. Quat Sci Rev 25(23–24):3391–3403. doi:10.1016/j. quascirev.2006.02.009

    Google Scholar 

  • Wang XM, Chen F, Hasi E, Li JC (2008b) Desertification in China: an assessment. Earth-Sci Rev 88(3–4):188–206

    Google Scholar 

  • Wang XM, Zhang CX, Hasi E, Dong ZB (2010) Has the Three Norths Forest Shelterbelt Program solved the desertification and dust storm problems in arid and semiarid China? J Arid Environ 74(1):13–22. doi:10.1016/j.jaridenv.2009.08.001

    Google Scholar 

  • Wang Y, Wan J, Li Q, Wang F, Wang E (2002b) Fission-track evidence for the Cenozoic uplift and Erosion of the northern segment of the Altyn Tagh fault zone at the Aksay-Dangjin pass. Acta Geological Sinica 76:191–198

    Google Scholar 

  • Wang YJ, Cheng H, Edwards RL, An ZS, Wu JY, Shen CC, Dorale JA (2001) A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294(5550):2345–2348

    Google Scholar 

  • Wang YJ, Cheng H, Edwards RL, He YQ, Kong XG, An ZS, Wu JY, Kelly MJ, Dykoski CA, Li XD (2005) The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308(5723):854–857. doi:10.1126/science.1106296

    Google Scholar 

  • Wang YJ, Cheng H, Edwards RL, Kong XG, Shao XH, Chen ST, Wu JY, Jiang XY, Wang XF, An ZS (2008c) Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451(7182):1090–1093. doi:10.1038/nature06692

    Google Scholar 

  • Webb TI, Bryson RA (1972) Late- and postglacial climatic change in the northern midwest, USA: quantitative estimates derived from fossil pollen spectra by multivariate statistical analysis. Quat Res 2:70–115

    Google Scholar 

  • Weber SL, Tuenter E (2011) The impact of varying ice sheets and greenhouse gases on the intensity and timing of boreal summer monsoons. Quat Sci Rev 30(3-4):469–479. doi:10.1016/j.quascirev.2010.12.009

    Google Scholar 

  • Wei G, Li X-H, Liu Y, Shao L, Liang X (2006) Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China Sea. Paleoceanography 21(4):1–11. doi:10.1029/2006PA001300

    Google Scholar 

  • Wu GJ, Pan BT, Gao HS, Guan QY, Xia DS (2006) Climatic signals in the Chinese loess record for the Last Glacial: the influence of northern high latitudes and the tropical Pacific. Quatern Int 154–155:128–135. doi:10.1016/j.quaint.2006.02.007

    Google Scholar 

  • Xu H, Hong YT, Lin QH, Zhu YY, Hong B, Jiang HB (2006) Temperature responses to quasi-100-yr solar variability during the past 6000 years based on δ18O of peat cellulose in Hongyuan, eastern Qinghai-Tibet plateau, China. Palaeogeogr Palaeoclimatol Palaeoecol 230(1–2):155–164. doi:10.1016/j.palaeo.2005.07.012

    Google Scholar 

  • Xu J, Tao R, Xu Z (2004) Sloping Land Conversion Program: cost-effectiveness, structural effect and economic sustainability. China Econ Q 4(1):139–162 (in Chinese)

    Google Scholar 

  • Xue F, Wang H, He J (2004) Interannual variability of Mascarene high and Australian high and their influences on East Asian summer monsoon. J Meteorol Soc Jpn 82(4):1173–1186. doi:10.2151/jmsj.2004.1173

    Google Scholar 

  • Yan H, Sun L, Wang Y, Liu X, Qiu S, Cheng W (2010) A 2000-year record of copper pollution in South China Sea derived from seabird excrements: a potential indicator for copper production and civilization of China. J Paleolimnol 44(2):431–442. doi:10.1007/s10933-010-9413-9

    Google Scholar 

  • Yin A, Dang Y, Zhang M, McRivette MW, Burgess WP, Chen X (2007) Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (part 2): Wedge tectonics in southern Qaidam basin and the Eastern Kunlun Range. Geol Soc Am Special Pap 433:369–390. doi:10.1130/2007.2433(18)

    Google Scholar 

  • Yin A, Dang YQ, Zhang M, Chen XH, McRivette MW (2008) Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): structural geology, sedimentation, and regional tectonic reconstruction. Geol Soc Am Bull 120(7–8):847–876

    Google Scholar 

  • Yin A, Rumelhart P, Butler R, Cowgill E, Harrison T, Foster D, Ingersoll R, Zhang Q, Zhou X, Wang X, Hanson A, Raza A (2002) Tectonic history of the Altyn Tagh fault system in northern Tibet inferred fron Cenozoic sedimentation. Geol Soc Am Bull 114:1257–1295

    Google Scholar 

  • Yu X, Zhou W, Liu X, Xian F, Liu Z, Zheng Y, An Z (2010) Peat records of human impacts on the atmosphere in Northwest China during the late Neolithic and Bronze Ages. Palaeogeogr Palaeoclimatol Palaeoecol 286(1–2):17–22. doi:10.1016/j.palaeo.2009.11.034

    Google Scholar 

  • Yu Y, Zhou Z, Zhang X (2003) Impact of the closure of Indonesian seaway on climate: a numerical modeling study. Chin Sci Bull 48:83–93

    Google Scholar 

  • Yuan DX, Cheng H, Edwards RL, Dykoski CA, Kelly MJ, Zhang ML, Qing JM, Lin YS, Wang YJ, Wu JY, Dorale JA, An ZS, Cai YJ (2004) Timing, duration, and transitions of the last interglacial Asian monsoon. Science 304(5670):575–578

    Google Scholar 

  • Yuan F, Du H (1984) Chinese Cenozoic biostratigraphy. Geological Publishing House, Beijing

    Google Scholar 

  • Yuan W, Dong J, Wang S, Carter A (2006) Apatite fission track evidence for Neogene uplift in the eastern Kunlun Mountains, northern Qinghai-Tibet Plateau, China. J Asian Earth Sci 27:847–856

    Google Scholar 

  • Yue Y, Graham SA, Ritts BD, Wooden JL (2005) Detrital zircon provenance evidence for largescale extrusion along the Altyn Tagh fault. Tectonophysics 406(3–4):165–178. doi:10.1016/j.tecto.2005.05.023

    Google Scholar 

  • Zachos J, Kump L (2005) Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene. Global Planet Change 47(1):51–66. doi:10.1016/j.gloplacha.2005.01.001

    Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292(5517):686–693

    Google Scholar 

  • Zhang PZ, Burchfiel BC, Molnar P, Zhang WQ, Jiao DC, Deng QD, Wang YP, Royden L, Song FM (1991) Amount and style of Late Cenozoic deformation in the Liupan Shan Area, Ningxia Autonomous Region, China. Tectonics 10(6):1111–1129

    Google Scholar 

  • Zhang PZ, Cheng H, Edwards RL, Chen FH, Wang YJ, Yang XL, Liu J, Tan M, Wang X, An C, Dai Z, Zhou J, Zhang D, Jia J, Jin L, Johnson KR (2008) A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 322(5903):940–942. doi:10.1126/ science.1163965

    Google Scholar 

  • Zhang PZ, Molnar P, Downs WR (2001) Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature 410(6831):891–897

    Google Scholar 

  • Zhang P, Shen Z, Wang M, Gan W, Bürgmann R, Molnar P, Wang Q, Niu Z, Sun J, Wu J, Sun H, You X (2004) Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 32:809–812

    Google Scholar 

  • Zhang Q, Tao S, Chen L (2003) The interannual variability of East Asian summer monsoon indices and its association with the pattern of general circulation over East Asia. Acta Meteorologica Sinica 61(4):559–568 (in Chinese)

    Google Scholar 

  • Zhang R, Delworth TL (2005) Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J Clim 18(12):1853–1860. doi:10.1175/jcli3460.1

    Google Scholar 

  • Zhang R, Kang SM, Held IM (2010) Sensitivity of climate change induced by the weakening of the Atlantic meridional overturning circulation to cloud feedback. J Clim 23(2):378–389. doi:10.1175/2009jcli3118.1

    Google Scholar 

  • Zhang R, Liu XD (2009) An analogy analysis of summer precipitation change patterns between mid-holocene and future climatic warming scenarios over East Asia. Scientia Geographica Sinica 29:679–683

    Google Scholar 

  • Zhang R, Liu XD (2010) The effects of tectonic uplift on the evolution of Asian summer monsoon climate since Pliocene. Chin J Geophys 53(6):948–960

    Google Scholar 

  • Zhang RH, Sumi A, Kimoto M (1999) A diagnostic study of the impact of El Niño on the precipitation in China. Adv Atmos Sci 16(2):229–241. doi:10.1007/bf02973084

    Google Scholar 

  • Zhang X (2003) Scientific approaches and suggestions on vegetation construction on the Loess Plateau. Soil Water Conserv China 1:17 (in Chinese)

    Google Scholar 

  • Zhang X, Qi Y (2004) Scientific review and suggestions on vegetation recovery of hard regions for afforestation in non-arid zone. Soil Water Conserv China 10:5–7 (in Chinese)

    Google Scholar 

  • Zhang XY, Arimoto R, An ZS (1997) Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J Geophys Res 102:28041–28047

    Google Scholar 

  • Zhang YG, Ji JF, Balsam W, Liu LW, Chen J (2009) Mid-Pliocene Asian monsoon intensification and the onset of Northern Hemisphere glaciation. Geology 37(7):599–602. doi:10.1130/ G25670a.1

    Google Scholar 

  • Zhang Z, Wang H, Guo Z, Jiang D (2007) Impacts of tectonic changes on the reorganization of the Cenozoic paleoclimate patterns in China. Earth Planet Sci Lett 257:622–634

    Google Scholar 

  • Zhao P, Zhu YN, Zhang RH (2007) An Asian-Pacific teleconnection in summer tropospheric temperature and associated Asian climate variability. Clim Dynam 29(2–3):293–303

    Google Scholar 

  • Zhao S (1983) A new scheme for comprehensive physical regionalization in China. J Geogr Sci 1:1–10

    Google Scholar 

  • Zheng D, Clark MK, Zhang P, Zheng W, Farley KA (2010) Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau). Geosphere 6(6):937–941. doi:10.1130/ges00523.1

    Google Scholar 

  • Zheng D, Zhang P, Wan J, Yuan D, Li C, Yin G, Zhang G, Wang Z, Wei M, Chen J (2008a) Rapid exhumation at ~ 8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: implications for growth of the northeastern Tibetan Plateau margin. Earth Planet Sci Lett 248:198–208

    Google Scholar 

  • Zheng DW, Zhang PZ, Wan JL, Li CY, Cao JX (2003) Late Cenozoic deformation subsequence in northeastern margin of Tibet—detrital AFT records from Linxia Basin. Sci China Ser D 46:266–275. doi:10.1360/03dz0021

    Google Scholar 

  • Zheng HB, Powell CM, An ZS, Zhou J, Dong GR (2000) Pliocene uplift of the northern Tibetan Plateau. Geology 28(8):715–718

    Google Scholar 

  • Zheng W, Braconnot P, Guilyardi E, Merkel U, Yu Y (2008b) ENSO at 6 ka and 21 ka from oceanatmosphere coupled model simulations. Clim Dynam 30(7):745–762

    Google Scholar 

  • Zheng Y, Yu G, Wang S, Xue B, Zhuo D, Zeng X, Liu H (2004) Simulation of paleoclimate over East Asia at 6 ka BP and 21 ka BP by a regional climate model. Clim Dynam 23(5):513–529

    Google Scholar 

  • Zhou WJ, Dodson J, Head MJ, Li BS, Hou YJ, Lu XF, Donahue DJ, Jull AJT (2002) Environmental variability within the Chinese desert-loess transition zone over the last 20,000 years. Holocene 12(1):107–112

    Google Scholar 

  • Zhou WJ, Donahue DJ, Porter SC, Jull TA, Li XQ, Stuiver M, An ZS, Matsumoto E, Dong GG (1996) Variability of monsoon climate in East Asia at the end of the last glaciation. Quat Res 46(3):219–229

    Google Scholar 

  • Zhou WJ, Head MJ, An ZS, De Deckker P, Liu ZY, Liu XD, Lu XF, Donahue D, Jull AJT, Beck JW (2001) Terrestrial evidence for a spatial structure of tropical-polar interconnections during the Younger Dryas episode. Earth Planet Sc Lett 191(3–4):231–239

    Google Scholar 

  • Zhou WJ, Head MJ, Lu XF, An ZS, Jull AJT, Donahue D (1999) Teleconnection of climatic events between East Asia and polar, high latitude areas during the last deglaciation. Palaeogeogr Palaeocl 152(1-2):163–172

    Google Scholar 

  • Zhou XJ, Zhao P, Liu G (2009) Asian-Pacific Oscillation index and variation of East Asian summer monsoon over the past millennium. Chin Sci Bull 54(20):3768–3771. doi:10.1007/s11434-009-0619-z

    Google Scholar 

  • Zhu B, Kidd WSF, Rowley DB, Currie BS, Shafique N (2005) Age of initiation of the India-Asia collision in the East-Central Himalaya. J Geol 113(3):265–285. doi:10.1086/428805

    Google Scholar 

  • Zhu L, Wang C, Zheng H, Xiang F, Yi H, Liu D (2006) Tectonic and sedimentary evolution of basins in the northeast of Qinghai-Tibet Plateau and their implication for the northward growth of the Plateau. Palaeogeogr Palaeoclimatol Palaeoecol 241(1):49–60. doi:10.1016/j. palaeo.2006.06.019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhisheng An .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

An, Z. et al. (2014). Late Cenozoic Climate Change in Monsoon-Arid Asia and Global Changes. In: An, Z. (eds) Late Cenozoic Climate Change in Asia. Developments in Paleoenvironmental Research, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7817-7_6

Download citation