Plasmonics and Super-Hydrophobicity: A New Class of Nano-Bio-Devices

  • F. Gentile
  • M. L. Coluccio
  • A. Toma
  • A. Alabastri
  • R. Proietti Zaccaria
  • G. Das
  • F. De Angelis
  • P. Candeloro
  • C. Liberale
  • G. Perozziello
  • L. Tirinato
  • M. Leoncini
  • E. Di Fabrizio
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 15)


Early detection of diseases has great importance in terms of success of the disease treatment. In fact, it has a profound positive influence on the response provided by the patient, leading to shorter and less invasive treatment regimes. We consider here the Raman detection of low (atto-molar) concentrates of molecules by applying nanofabrication techniques in the fabrication of plasmonic devices fulfilling the requirement of superhydrophobicity. Plasmonic resonances will have the effect of substantially increasing the local electric field around the fabricated nano-device which, in turn, will positively affect the Raman signal. Similarly, the superhydrophobicity will play the crucial role in localizing the few molecules of the analyte around the plasmonic device, therefore allowing their detection in a manner otherwise impossible in diffusion-based devices. We will theoretically explain the concept of superhydrophobicity by providing also a roadmap for defining the optimal superhydrophobic device, then we will introduce the fabrication process to realize such a device and, finally, we will provide the Raman counting of a series of analytes together with electromagnetic simulations illustrating the role of the electric field in the formation of the Raman signal.


Plasmon Hydrophobicity 



This work was funded under European Project SMD FP7-NMP 2800-SMALL-2 (proposal no. CP-FP 229375-2), Italian project FIRB ‘Rete Nazionale di Ricerca sulle Nanoscienze ItalNanoNet’ (cod. RBPR05JH2P-010) and by the EU Commission, the European Social Fund and the Calabria Region (POR Calabria FSE 2007-2013).


  1. 1.
    nan’o tech nol’o gy n., Nature nanotechnology 1, 8 (2006).Google Scholar
  2. 2.
    G.M. Whitesides, The right size in nanobiotechnology. Nat. Biotechnol. 10, 1161 (2003)CrossRefGoogle Scholar
  3. 3.
    F. Gentile, L. Tirinato, E. Battista, F. Causa, C. Liberale, E.M. di Fabrizio, P. Decuzzi, Cells preferentially grow on moderately rough substrates. BioMaterials 31, 7205–7212 (2010)CrossRefGoogle Scholar
  4. 4.
    F. Perennes et al., Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol. J. Micromech. Microeng. 16, 473–479 (2006)CrossRefGoogle Scholar
  5. 5.
    T. Calimeri, E. Battista, F. Conforti, P. Neri, M.T. Di Martino, M. Rossi, U. Foresta, E. Piro, F. Ferrara, A. Amorosi, N. Bahlis, K.C. Anderson, N. Munshi, P. Tagliaferri, F. Causa, P. Tassone, A unique 3-D SCID-polymeric scaffold (SCID-synth-hu) model for in vivo expansion of human primary multiple myeloma cells. LEUKEMIA ISSN 0887–6924 (2011). doi: 10.1038/leu.2010.300
  6. 6.
    E. Tasciotti, X. Liu, R. Bhavane, K. Plant, A.D. Leonard, B.K. Price, M.M. Cheng, P. Decuzzi, J.M. Tour, F. Robertson, M. Ferrari, Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nature Nanotechnol. 3, 151–157 (2008)CrossRefGoogle Scholar
  7. 7.
    F. De Angelis, A. Pujia, C. Falcone, E. Iaccino, C. Palmieri, C. Liberale, F. Mecarini, P. Candeloro, L. Luberto, A. de Laurentiis, G. Das, G. Scala, E. Di Fabrizio, Water soluble nanoporous nanoparticles for in vivo targeted drug delivery and controlled release in b cells tumor context. Nanoscale 2, 2230–2236 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Ferrari, Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005)CrossRefGoogle Scholar
  9. 9.
    M. Gaspari et al., Nanoporous surfaces as harvesting agents for mass spectrometric analysis of peptides in human plasma. J. Proteome Res. 5, 1261–1266 (2006)CrossRefGoogle Scholar
  10. 10.
    L.A. Liotta, M. Ferrari, E. Petricoin, Clinical proteomics: written in blood. Nature 425, 905 (2003)CrossRefGoogle Scholar
  11. 11.
    E.M. Posasadas et al., Proteomic analysis for the early detection and rational treatment of cancer–realistic hope? Ann. Oncol. 16, 16–22 (2005)CrossRefGoogle Scholar
  12. 12.
    G. Das, F. Mecarini, F. Gentile, F. De Angelis, M. Kumar, P. Candeloro, C. Liberale, G. Cuda, E. Di Fabrizio, Nano-patterned SERS substrate: application for proteinanalysis vs. temperature. Biosens. Bioelectron. 24, 1693–1699 (2009)CrossRefGoogle Scholar
  13. 13.
    F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L.C. Andreani, E. Di Fabrizio, A hybrid plasmonic photonic nanodevice for label-free detection of a few molecules. Nano Lett. 8, 2321–2327 (2008)CrossRefGoogle Scholar
  14. 14.
    A.J. Babadjanyan, N.L. Margaryan, KhV Nerkararyan, J. Appl. Phys. 87, 3785 (2000)CrossRefGoogle Scholar
  15. 15.
    M.I. Stockman Phys, Rev. Lett. 93, 137404 (2004)CrossRefGoogle Scholar
  16. 16.
    F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L.C. Andreani, E. Di Fabrizio, Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nature Nanotech. 5, 67–72 (2010)CrossRefGoogle Scholar
  17. 17.
    F. De Angelis, C. Liberale, M.L. Coluccio, G. Cojoc, E. Di Fabrizio, Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies. Nanoscale 3, 2689–2696 (2011)CrossRefGoogle Scholar
  18. 18.
    F. De Angelis, R. Proietti Zaccaria, M. Francardi, C. Liberale, E. Di Fabrizio, Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers. Opt. Exp. 19, 22268 (2011)CrossRefGoogle Scholar
  19. 19.
    R. Proietti Zaccaria, F. De Angelis, A. Toma, L. Razzari, A. Alabastri, G. Das, C. Liberale, E. Di Fabrizio, Surface plasmon polariton compression through radially and linearly polarized source. Opt. Lett. 37, 545 (2012)CrossRefGoogle Scholar
  20. 20.
    R. Proietti Zaccaria, A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H.B. Sun, E. Di Fabrizio, Fully analytical description of adiabatic compression in dissipative polaritonic structures. Phys. Rev. B 86, 035410 (2012)CrossRefGoogle Scholar
  21. 21.
    K. Li, M.I. Stockman, D.J. Bergman, Phys. Rev. Lett. 91, 227402 (2003)CrossRefGoogle Scholar
  22. 22.
    D.A. Weitz, T.J. Gramila, A.Z. Genack, J.I. Gersten, Anomalous low-frequency Raman scattering from rough metal surfaces and the origin of surface-enhanced Raman scattering. Phys. Rev. Lett. 45(5), 355–358 (1980)CrossRefGoogle Scholar
  23. 23.
    M.L. Coluccio, G. Das, F. Mecarini, F. Gentile, A. Pujia, L. Bava, R. Tallerico, P. Candeloro, C. Liberale, F. De Angelis, E. Di Fabrizio, Silver-based surface enhanced Raman scattering (SERS) substrate fabrication using nanolithography and site selective electroless deposition. Microelectron. Eng. 86, 1085–1088 (2009)CrossRefGoogle Scholar
  24. 24.
    R. Blossey, Self-cleaning surfaces-virtual realities, Nat. Mater. 2, 301–306 (2003).Google Scholar
  25. 25.
    G. McHale, N.J. Shirtcliffe, M.I. Newton, Super-hydrophobic and super-wetting surfaces: analytical potential? Analyst 129, 284 (2004)CrossRefGoogle Scholar
  26. 26.
    F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M.L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. Proietti Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, E. Di Fabrizio, Breaking the diffusion limit with super hydrophobic delivery of few molecules to plasmonic nanofocusing structures. Nat. Photonics 5, 682 (2011)CrossRefGoogle Scholar
  27. 27.
    F. Gentile, M. L. Coluccio, N. Coppedè, F. Mecarini, G. Das., C. Liberale, L. Tirinato, M. Leoncini, G. Perozziello, P. Candeloro, F. De Angelis, E. Di Fabrizio, ACS Appl. Mat. Interf. 4, 3213 (2012).Google Scholar
  28. 28.
    E.G. Shafrin, W.A. Zisman, in Contact Angle, Wettability and Adhesion Advances in Chemistry Series, vol. 43, ed. F. M. Fowkes (American Chemical Society, Washington D.C., 1964) , pp. 145–167Google Scholar
  29. 29.
    A. Lafuma, D. Quéré, Superhydrophobic states. Nat. Mater. 2, 457–460 (2003)CrossRefGoogle Scholar
  30. 30.
    R.N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936)CrossRefGoogle Scholar
  31. 31.
    A.B.D. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944)CrossRefGoogle Scholar
  32. 32.
    J. Bico, U. Thiele, D. Quéré , Wetting of textured surfaces, Colloids Surf.A 206, 41–46 (2002)Google Scholar
  33. 33.
    A.N. Patankar, Transition between superhydrophobic states on rough surfaces, Langmuir 20, 7097–7102 (2004)Google Scholar
  34. 34.
    M. Nosonovsky, B. Bhushan, Energy transitions in superhydrophobicity: low adhesion, easy flow and bouncing. J. Phys.: Condens. Matter 20, 395005 (2008)Google Scholar
  35. 35.
    I.R. Conway, N.J.A. Sloane, Sphere Packings, Lattices and Groups (Springer-Verlag, New York Inc, 1999, 1998, 1993)Google Scholar
  36. 36.
    L. Mahadevan, Y. Pomeau, Rolling droplets. Phys. Fluids 11, 2449 (1999)CrossRefGoogle Scholar
  37. 37.
    E.B. Dussan, T.P.R. Chow, On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. J. Fluid Mech. 137, 1–29 (1983)CrossRefGoogle Scholar
  38. 38.
    D. Quéré, A. Lafuma, J. Bico, Slippy and sticky microtextured solids, Nanotechnology 14, 1109–1112 (2003)Google Scholar
  39. 39.
    P.G. De Gennes, Rev. Mod. Phys. 57, 827 (1985)Google Scholar
  40. 40.
    H. Kusumaatmaja, M.L. Blow, A. Dupuis, J.M. Yeomans, The collapse transition on superhydrophobic surfaces. Eur. Phys. Lett. 81, 36003 (2008)CrossRefGoogle Scholar
  41. 41.
    S. Moulinet, D. Bartolo, Life and death of a fakir droplet: impalement transitions on superhydrophobic surfaces. Eur. Phys. J. E 24, 251–260 (2007)CrossRefGoogle Scholar
  42. 42.
    M. Reyssat, J.M. Yeomans, D. Quéré, Impalement of fakir drops. Eur. Phys. Lett. 81, 26006 (2008)CrossRefGoogle Scholar
  43. 43.
    D. Deegan et al., Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997)CrossRefGoogle Scholar
  44. 44.
    D. Deegan et al., Contact line deposits in an evaporating drop. Phys. Rev. E 62, 756–765 (2000)CrossRefGoogle Scholar
  45. 45.
    F.J. Garcia-Vidal, J.B. Pendry, Collective theory of surface enhanced Raman scattering. Phys. Rev. Lett. 77, 1163–1166 (1996)CrossRefGoogle Scholar
  46. 46.
    A.D. Rakic, A.B. Djurisic, J.M. elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271 (1998)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • F. Gentile
    • 1
    • 2
  • M. L. Coluccio
    • 1
  • A. Toma
    • 2
  • A. Alabastri
    • 2
  • R. Proietti Zaccaria
    • 2
  • G. Das
    • 2
  • F. De Angelis
    • 2
  • P. Candeloro
    • 1
  • C. Liberale
    • 2
  • G. Perozziello
    • 1
  • L. Tirinato
    • 1
  • M. Leoncini
    • 2
  • E. Di Fabrizio
    • 1
    • 2
    • 3
  1. 1.BioNEM (Bio Nano Engineering and Technology for Medicine)University Magna Graecia of CatanzaroCatanzaroItaly
  2. 2.Istituto Italiano di TecnologiaGenovaItaly
  3. 3.King Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia

Personalised recommendations