Skip to main content

Plasmonics with a Twist: Taming Optical Tornadoes on the Nanoscale

  • Chapter
  • First Online:
Plasmonics: Theory and Applications

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 15))

Abstract

This chapter discusses a hydrodynamics-inspired approach to trap and manipulate light in plasmonic nanostructures, which is based on steering optical powerflow around nano-obstacles. New insights into plasmonic nanofocusing mechanisms are obtained by invoking an analogy of the ‘photon fluid’ (PF). By proper nanostructure design, PF kinetic energy can be locally increased via convective acceleration and then converted into ‘pressure’ energy to generate localized areas of high field intensity. In particular, trapped light can be molded into optical vortices–tornado-like areas of circular motion of power flux–connected into transmission-like sequences. In the electromagnetic theory terms, this approach is based on radiationless electromagnetic interference of evanescent fields rather than on interference of propagating waves radiated by the dipoles induced in nanoparticles. The resulting ability to manipulate optical powerflow well beyond the diffraction limit helps to reduce dissipative losses, to increase the amount of energy accumulated within a nanoscale volume, and to activate magnetic response in non-magnetic nanostructures. It also forms a basis for long-range on-chip energy transfer/routing as well as for active nanoscale field modulation and switching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.E. Moerner, New directions in single-molecule imaging and analysis. Proc. Natl. Acad. Sci. 104, 12596 (2007)

    CAS  Google Scholar 

  2. S. Lal, S. Link, N.J. Halas, Nano-optics from sensing to waveguiding. Nat. Photonics 1, 641–648 (2007)

    CAS  Google Scholar 

  3. J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010)

    CAS  Google Scholar 

  4. M.I. Stockman, Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029–22106 (2011)

    Google Scholar 

  5. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

    CAS  Google Scholar 

  6. A.D. McFarland, R.P. Van Duyne, Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3, 1057–1062 (2003)

    CAS  Google Scholar 

  7. M.A. Santiago-Cordoba, S.V. Boriskina, F. Vollmer, M.C. Demirel, Nanoparticle-based protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett. 99, 073701 (2011)

    Google Scholar 

  8. S.I. Shopova, R. Rajmangal, S. Holler, S. Arnold, Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection. Appl. Phys. Lett. 98, 243104–243103 (2011)

    Google Scholar 

  9. M. Moskovits, L.L. Tay, J. Yang, T. Haslett, SERS and the Single Molecule in Optical Properties of Nanostructured Random Media (Springer, Berlin, 2002), pp. 215–226

    Google Scholar 

  10. K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007)

    CAS  Google Scholar 

  11. F.J. Garcia-Vidal, J.B. Pendry, Collective theory for surface enhanced Raman scattering. Phys. Rev. Lett. 77, 1163 (1996)

    CAS  Google Scholar 

  12. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667 (1997)

    CAS  Google Scholar 

  13. B. Yan, S.V. Boriskina, B.M. Reinhard, Theory, fabrication, and applications of nanoparticle cluster arrays in plasmon enhanced biosensing. J. Phys. Chem. C 115, 24437–24453 (2011)

    CAS  Google Scholar 

  14. R. Adato, A.A. Yanik, J.J. Amsden, D.L. Kaplan, F.G. Omenetto, M.K. Hong, S. Erramilli, H. Altug, Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc. Natl. Acad. Sci. 106, 19227 (2009)

    CAS  Google Scholar 

  15. P. Anger, P. Bharadwaj, L. Novotny, Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006)

    Google Scholar 

  16. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, W.E. Moerner, Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 3, 654–657 (2009)

    CAS  Google Scholar 

  17. S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006)

    Google Scholar 

  18. J.R. Lakowicz, Radiative decay engineering. Part 5: Metal-enhanced fluorescence and plasmon emission. Anal. Biochem. 337, 171–194 (2005)

    CAS  Google Scholar 

  19. B. Yan, S.V. Boriskina, B.M. Reinhard, Optimizing gold nanoparticle cluster configurations (n<=7) for array applications. J. Phys. Chem. C 115, 4578–4583 (2011)

    CAS  Google Scholar 

  20. Y. Chu, E. Schonbrun, T. Yang, K.B. Crozier, Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl. Phys. Lett. 93, 181103–181108 (2008)

    Google Scholar 

  21. L. Novotny, N. van Hulst, Antennas for light. Nat. Photonics 5, 83–90 (2011)

    CAS  Google Scholar 

  22. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    CAS  Google Scholar 

  23. C.F. Bohren, How can a particle absorb more than the light incident on it? Am. J. Phys. 51, 323–327 (1983)

    CAS  Google Scholar 

  24. P. Bharadwaj, B. Deutsch, L. Novotny, Optical antennas. Adv. Opt. Photonics 1, 438–483 (2009)

    Google Scholar 

  25. P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, Optical impedance matching using coupled plasmonic nanoparticle arrays. Nano Lett. 11, 1760–1765 (2011)

    CAS  Google Scholar 

  26. P. Ginzburg, M. Orenstein, Plasmonic transmission lines: from micro to nano scale with lambda/4 impedance matching. Opt. Express 15, 6762–6767 (2007)

    Google Scholar 

  27. A. Alu, N. Engheta, Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nat. Photonics 2, 307–310 (2008)

    CAS  Google Scholar 

  28. E. Cubukcu, Y. Nanfang, E.J. Smythe, L. Diehl, K.B. Crozier, F. Capasso, Plasmonic laser antennas and related devices. IEEE J. Sel. Top. Quantum Electron. 14, 1448–1461 (2008)

    CAS  Google Scholar 

  29. P. Muhlschlegel, H.J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Resonant optical antennas. Science 308, 1607–1609 (2005)

    CAS  Google Scholar 

  30. Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N.J. Halas, H. Xu, Branched silver nanowires as controllable plasmon routers. Nano Lett. 10, 1950–1954 (2010)

    CAS  Google Scholar 

  31. A.W. Sanders, D.A. Routenberg, B.J. Wiley, Y. Xia, E.R. Dufresne, M.A. Reed, Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Lett. 6, 1822–1826 (2006)

    CAS  Google Scholar 

  32. V.S. Volkov, S.I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, T.W. Ebbesen, Wavelength selective nanophotonic components utilizing channel plasmon polaritons. Nano Lett. 7, 880–884 (2007)

    CAS  Google Scholar 

  33. N. Engheta, Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials. Science 317, 1698–1702 (2007)

    CAS  Google Scholar 

  34. A. Alu, N. Engheta, All optical metamaterial circuit board at the nanoscale. Phys. Rev. Lett. 103, 143902 (2009)

    Google Scholar 

  35. E. Cubukcu, F. Capasso, Optical nanorod antennas as dispersive one-dimensional Fabry-Perot resonators for surface plasmons. Appl. Phys. Lett. 95, 201101–201103 (2009)

    Google Scholar 

  36. K.B. Crozier, A. Sundaramurthy, G.S. Kino, C.F. Quate, Optical antennas: Resonators for local field enhancement. J. Appl. Phys. 94, 4632–4642 (2003)

    CAS  Google Scholar 

  37. S.A. Maier, Plasmonic field enhancement and SERS in the effective mode volume picture. Opt. Express 14, 1957–1964 (2006)

    Google Scholar 

  38. A. Alu, Andrea, and N. Engheta, Hertzian plasmonic nanodimer as an efficient optical nanoantenna. Phys. Rev. B 78, 195111 (2008)

    Google Scholar 

  39. A.G. Curto, G. Volpe, T.H. Taminiau, M.P. Kreuzer, R. Quidant, N.F. van Hulst, Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010)

    CAS  Google Scholar 

  40. J. Li, A. Salandrino, N. Engheta, Shaping light beams in the nanometer scale: a Yagi-Uda nanoantenna in the optical domain. Phys. Rev. B 76, 245403–245407 (2007)

    Google Scholar 

  41. S. Zou, N. Janel, G.C. Schatz, Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 120, 10871–10875 (2004)

    CAS  Google Scholar 

  42. G. Pellegrini, G. Mattei, P. Mazzoldi, Tunable, directional and wavelength selective plasmonic nanoantenna arrays. Nanotechnology 20, 065201 (2009)

    CAS  Google Scholar 

  43. P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stockman, Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899–903 (2004)

    CAS  Google Scholar 

  44. N. Liu, S. Mukherjee, K. Bao, L.V. Brown, J. Dorfmuller, P. Nordlander, N.J. Halas, Magnetic plasmon formation and propagation in artificial aromatic molecules. Nano Lett. 12, 364–369 (2012)

    CAS  Google Scholar 

  45. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A.P. Alivisatos, N. Liu, Transition from isolated to collective modes in plasmonic oligomers. Nano Lett. 10, 2721–2726 (2010)

    CAS  Google Scholar 

  46. G. Vecchi, V. Giannini, J. Gómez Rivas, Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys. Rev. Lett. 102, 146807 (2009)

    CAS  Google Scholar 

  47. L. Dal Negro, S.V. Boriskina, Deterministic aperiodic nanostructures for photonics and plasmonics applications. Laser Photonics Rev. 6, 178–218 (2012)

    Google Scholar 

  48. S. Boriskina, Photonic molecules and spectral engineering, in Photonic MicroresonatorRresearch and Applications, ed. by I. Chremmos, O. Schwelb, N. Uzunoglu (Springer, Berlin, 2010), pp. 393–421

    Google Scholar 

  49. S.V. Boriskina, B.M. Reinhard, Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates. Opt. Express 19, 22305–22315 (2011)

    Google Scholar 

  50. http://www.forestwander.com/2011/11/alluring-cascades-pirouette

  51. R. Ruppin, Electromagnetic energy density in a dispersive and absorptive material. Phys. Lett. A 299, 309–312 (2002)

    CAS  Google Scholar 

  52. R. Loudon, The propagation of electromagnetic energy through an absorbing dielectric. J. Phys. A 3, 233 (1970)

    Google Scholar 

  53. J.B. Khurgin, G. Sun, Scaling of losses with size and wavelength in nanoplasmonics and metamaterials. Appl. Phys. Lett. 99, 211103–211106 (2011)

    Google Scholar 

  54. M.A. Noginov, V.A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J.A. Adegoke, B.A. Ritzo, K. Reynolds, Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. Opt. Express 16, 1385–1392 (2008)

    CAS  Google Scholar 

  55. I. De Leon, P. Berini, Amplification of long-range surface plasmons by a dipolar gain medium. Nat. Photonics 4, 382–387 (2010)

    Google Scholar 

  56. G.V. Naik, J. Kim, A. Boltasseva, Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express 1, 1090–1099 (2011)

    CAS  Google Scholar 

  57. M. Jablan, H. Buljan, M. Soljacic, Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009)

    Google Scholar 

  58. A. Vakil, N. Engheta, Transformation optics using graphene. Science 332, 1291–1294 (2011)

    CAS  Google Scholar 

  59. J.C. Ginn, J.R.L. Jarecki, E.A. Shaner, P.S. Davids, Infrared plasmons on heavily-doped silicon. J. Appl. Phys. 110, 043110–043116 (2011)

    Google Scholar 

  60. B.S. Lukyanchuk et al., Peculiarities of light scattering by nanoparticles and nanowires near plasmon resonance frequencies. J. Phys.: Conf. Ser. 59, 234 (2007)

    Google Scholar 

  61. A. Alù, N. Engheta, Higher-order resonant power flow inside and around superdirective plasmonic nanoparticles. J. Opt. Soc. Am. B 24, A89–A97 (2007)

    Google Scholar 

  62. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  63. M.R. Dennis, K. O’Holleran, M.J. Padgett, Singular optics: optical vortices and polarization singularities. Prog. Opt. 53, 293–363 (2009)

    Google Scholar 

  64. M.R. Dennis, Y.S. Kivshar, M.S. Soskin, A.S. Grover Jr, Singular optics: more ado about nothing. J. Opt. A 11, 090201 (2009)

    Google Scholar 

  65. M.S. Soskin, M.V. Vasnetsov, Singular optics. Prog. Opt. 42, 219–276 (2001)

    Google Scholar 

  66. H.F. Schouten, T.D. Visser, D. Lenstra, Optical vortices near sub-wavelength structures. J. Opt. B 6, S404 (2004)

    Google Scholar 

  67. S.V. Boriskina, B.M. Reinhard, Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery. Nanoscale 4, 76–90 (2012)

    CAS  Google Scholar 

  68. Z.B. Wang, B.S. Luk’yanchuk, M.H. Hong, Y. Lin, T.C. Chong, Energy flow around a small particle investigated by classical Mie theory. Phys. Rev. B 70, 035418 (2004)

    Google Scholar 

  69. S.V. Boriskina, L. Dal Negro, Multiple-wavelength plasmonic nanoantennas. Opt. Lett. 35, 538–540 (2010)

    Google Scholar 

  70. T.V. Teperik, A. Degiron, Superradiant optical emitters coupled to an array of nanosize metallic antennas. Phys. Rev. Lett. 108, 147401 (2012)

    CAS  Google Scholar 

  71. D.M. Natarov, V.O. Byelobrov, R. Sauleau, T.M. Benson, A.I. Nosich, Periodicity-induced effects in the scattering and absorption of light by infinite and finite gratings of circular silver nanowires. Opt. Express 19, 22176–22190 (2011)

    CAS  Google Scholar 

  72. R.H. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954)

    CAS  Google Scholar 

  73. M. Berry, Making waves in physics. Nature 403, 21–21 (2000)

    CAS  Google Scholar 

  74. J.F. Nye, M.V. Berry, Dislocations in wave trains. Proc. R. Soc. Lond. A Math. Phys. Sci. 336, 165–190 (1974)

    Google Scholar 

  75. S. Gustafson, F. Ting, Dynamic stability and instability of pinned fundamental vortices. J. Nonlinear Sci. 19, 341–374 (2009)

    CAS  Google Scholar 

  76. Y. Strauss, I.M. Sigal, Effective dynamics of a magnetic vortex in a local potential. J. Nonlinear Sci. 16, 123–157 (2006)

    Google Scholar 

  77. Y.S. Joe, A.M. Satanin, C.S. Kim, Classical analogy of Fano resonances. Phys. Scr. 74, 259 (2006)

    CAS  Google Scholar 

  78. B.R. Johnson, Theory of morphology-dependent resonances: shape resonances and width formulas. J. Opt. Soc. Am. A 10, 343–352 (1993)

    Google Scholar 

  79. Y. Tanaka, N. Nedyalkov, M. Obara, Enhanced near-field distribution inside substrates mediated with gold particle: optical vortex and bifurcation. Appl. Phys. A 97, 91–98 (2009)

    CAS  Google Scholar 

  80. P.A. Atanasov, H. Takada, N.N. Nedyalkov, M. Obara, Nanohole processing on silicon substrate by femtosecond laser pulse with localized surface plasmon polariton. Appl. Surf. Sci. 253, 8304–8308 (2007)

    CAS  Google Scholar 

  81. M. Bashevoy, V. Fedotov, N. Zheludev, Optical whirlpool on an absorbing metallic nanoparticle. Opt. Express 13, 8372–8379 (2005)

    CAS  Google Scholar 

  82. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)

    CAS  Google Scholar 

  83. L. Byoungho, L. Seung-Yeol, Plasmonic beam shaping and hot spot generation, in Advances in Optoelectronics and Micro/Nano-Optics (AOM), 2010 OSA-IEEE-COS (2010), pp. 1–2

    Google Scholar 

  84. H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, B. Lee, Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Lett. 10, 529–536 (2010)

    CAS  Google Scholar 

  85. J. Leach, M.R. Dennis, J. Courtial, M.J. Padgett, Vortex knots in light. New J. Phys. 7, 55 (2005)

    Google Scholar 

  86. J. Leach, M.R. Dennis, J. Courtial, M.J. Padgett, Laser beams: knotted threads of darkness. Nature 432, 165–165 (2004)

    CAS  Google Scholar 

  87. W. Ahn, S.V. Boriskina, Y. Hong, B.M. Reinhard, Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices. Nano Lett. 12, 219–227 (2012)

    CAS  Google Scholar 

  88. M.I. Stockman, Nanoplasmonics: the physics behind the applications. Phys. Today 64, 39–44 (2011)

    Google Scholar 

  89. K. Li, M.I. Stockman, D.J. Bergman, Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91, 227402 (2003)

    Google Scholar 

  90. D.J. Bergman, M.I. Stockman, Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003)

    Google Scholar 

  91. M. Durach, A. Rusina, V.I. Klimov, M.I. Stockman, Nanoplasmonic renormalization and enhancement of Coulomb interactions. New J. Phys. 10, 105011 (2008)

    Google Scholar 

  92. A. Gopinath, S.V. Boriskina, N.-N. Feng, B.M. Reinhard, L.D. Negro, Photonic-plasmonic scattering resonances in deterministic aperiodic structures. Nano Lett. 8, 2423–2431 (2008)

    CAS  Google Scholar 

  93. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)

    CAS  Google Scholar 

  94. www.airliners.net.

  95. J.C. Maxwell, On physical lines of force. Philos. Mag. 21, 11–23 (1861)

    Google Scholar 

  96. E. Madelung, Quantentheorie in hydrodynamischer form. Zeitschrift für Physik A Hadrons and Nuclei 40, 322–326 (1926)

    Google Scholar 

  97. T.C. Wallstrom, Inequivalence between the Schrodinger equation and the Madelung hydrodynamic equations. Phys. Rev. A 49, 1613 (1994)

    Google Scholar 

  98. M. Tsang, D. Psaltis, Metaphoric Optical Computing for Fluid Dynamics, in Advanced Optical, Quantum Memories and Computing II, ed. by H.J. Coufal, Z.U. Hasan, A.E. Craig (SPIE, San Jose, 2005)

    Google Scholar 

  99. K. Staliunas, V. Sánchez-Morcillo, Zero Detuning: Laser Hydrodynamics and Optical Vortices, ed. by K. Staliunas, V. Sánchez-Morcillo, in Transverse Patterns Nonlinear Optical Resonators (Springer, Berlin, 2003)

    Google Scholar 

  100. W. Wan, S. Jia, J.W. Fleischer, Dispersive superfluid-like shock waves in nonlinear optics. Nat. Phys. 3, 46–51 (2007)

    CAS  Google Scholar 

  101. C.O. Weiss, M. Vaupel, K. Staliunas, G. Slekys, V.B. Taranenko, Solitons and vortices in lasers. Appl. Phys. B 68, 151–168 (1999)

    CAS  Google Scholar 

  102. M. Fernández-Guasti, J.L. Jiménez, F. Granados-Agustín, A. Cornejo-Rodríguez, Amplitude and phase representation of monochromatic fields in physical optics. J. Opt. Soc. Am. A 20, 1629–1634 (2003)

    Google Scholar 

  103. E.B. Sonin, Vortex oscillations and hydrodynamics of rotating superfluids. Rev. Mod. Phys. 59, 87 (1987)

    CAS  Google Scholar 

  104. R. Blanchard, S.V. Boriskina, P. Genevet, M.A. Kats, J.-P. Tetienne, N. Yu, M.O. Scully, L. Dal Negro, F. Capasso, Multi-wavelength mid-infrared plasmonic antennas with nanoscale single focal point. Opt. Express 19, 22113–22124 (2011)

    Google Scholar 

  105. S.V. Boriskina, B.M. Reinhard, Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits. Proc. Natl. Acad. Sci. U.S.A. 108, 3147–3151 (2011)

    Google Scholar 

  106. N.A. Mirin, K. Bao, P. Nordlander, Fano resonances in plasmonic nanoparticle aggregates. J. Phys. Chem. A 113, 4028–4034 (2009)

    CAS  Google Scholar 

  107. L.J. Sherry, S.-H. Chang, G.C. Schatz, R.P. Van Duyne, B.J. Wiley, Y. Xia, Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 5, 2034–2038 (2005)

    CAS  Google Scholar 

  108. J.B. Lassiter, H. Sobhani, J.A. Fan, J. Kundu, F. Capasso, P. Nordlander, N.J. Halas, Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett. 10, 3184–3189 (2010)

    CAS  Google Scholar 

  109. J.A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N.J. Halas, V.N. Manoharan, P. Nordlander, G. Shvets, F. Capasso, Self-assembled plasmonic nanoparticle clusters. Science 328, 1135–1138 (2010)

    CAS  Google Scholar 

  110. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)

    Google Scholar 

  111. Y. Hong, M. Pourmand, S.V. Boriskina, B. M. Reinhard, Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions. Adv. Mater. 25, 115–119 (2013)

    Google Scholar 

  112. D. Leykam, A.S. Desyatnikov, Discrete multivortex solitons. Opt. Lett. 36, 4806–4808 (2011)

    Google Scholar 

  113. D. Leykam, A.S. Desyatnikov, Vortex switching with discrete multivortex solitons. Phys. Rev. A 86, 043812 (2012)

    Google Scholar 

  114. K. Ladavac, D. Grier, Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt. Express 12, 1144–1149 (2004)

    Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. Anton Desyatnikov from Australian National University and my colleagues at Boston University and MIT for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana V. Boriskina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boriskina, S.V. (2013). Plasmonics with a Twist: Taming Optical Tornadoes on the Nanoscale. In: Shahbazyan, T., Stockman, M. (eds) Plasmonics: Theory and Applications. Challenges and Advances in Computational Chemistry and Physics, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7805-4_12

Download citation

Publish with us

Policies and ethics