Plasmonics with a Twist: Taming Optical Tornadoes on the Nanoscale

  • Svetlana V. Boriskina
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 15)


This chapter discusses a hydrodynamics-inspired approach to trap and manipulate light in plasmonic nanostructures, which is based on steering optical powerflow around nano-obstacles. New insights into plasmonic nanofocusing mechanisms are obtained by invoking an analogy of the ‘photon fluid’ (PF). By proper nanostructure design, PF kinetic energy can be locally increased via convective acceleration and then converted into ‘pressure’ energy to generate localized areas of high field intensity. In particular, trapped light can be molded into optical vortices–tornado-like areas of circular motion of power flux–connected into transmission-like sequences. In the electromagnetic theory terms, this approach is based on radiationless electromagnetic interference of evanescent fields rather than on interference of propagating waves radiated by the dipoles induced in nanoparticles. The resulting ability to manipulate optical powerflow well beyond the diffraction limit helps to reduce dissipative losses, to increase the amount of energy accumulated within a nanoscale volume, and to activate magnetic response in non-magnetic nanostructures. It also forms a basis for long-range on-chip energy transfer/routing as well as for active nanoscale field modulation and switching.


Plasmon Optical tornado Light scattering 



I would like to thank Dr. Anton Desyatnikov from Australian National University and my colleagues at Boston University and MIT for useful discussions.


  1. 1.
    W.E. Moerner, New directions in single-molecule imaging and analysis. Proc. Natl. Acad. Sci. 104, 12596 (2007)Google Scholar
  2. 2.
    S. Lal, S. Link, N.J. Halas, Nano-optics from sensing to waveguiding. Nat. Photonics 1, 641–648 (2007)Google Scholar
  3. 3.
    J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010)Google Scholar
  4. 4.
    M.I. Stockman, Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029–22106 (2011)Google Scholar
  5. 5.
    H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)Google Scholar
  6. 6.
    A.D. McFarland, R.P. Van Duyne, Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3, 1057–1062 (2003)Google Scholar
  7. 7.
    M.A. Santiago-Cordoba, S.V. Boriskina, F. Vollmer, M.C. Demirel, Nanoparticle-based protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett. 99, 073701 (2011)Google Scholar
  8. 8.
    S.I. Shopova, R. Rajmangal, S. Holler, S. Arnold, Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection. Appl. Phys. Lett. 98, 243104–243103 (2011)Google Scholar
  9. 9.
    M. Moskovits, L.L. Tay, J. Yang, T. Haslett, SERS and the Single Molecule in Optical Properties of Nanostructured Random Media (Springer, Berlin, 2002), pp. 215–226Google Scholar
  10. 10.
    K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007)Google Scholar
  11. 11.
    F.J. Garcia-Vidal, J.B. Pendry, Collective theory for surface enhanced Raman scattering. Phys. Rev. Lett. 77, 1163 (1996)Google Scholar
  12. 12.
    K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667 (1997)Google Scholar
  13. 13.
    B. Yan, S.V. Boriskina, B.M. Reinhard, Theory, fabrication, and applications of nanoparticle cluster arrays in plasmon enhanced biosensing. J. Phys. Chem. C 115, 24437–24453 (2011)Google Scholar
  14. 14.
    R. Adato, A.A. Yanik, J.J. Amsden, D.L. Kaplan, F.G. Omenetto, M.K. Hong, S. Erramilli, H. Altug, Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc. Natl. Acad. Sci. 106, 19227 (2009)Google Scholar
  15. 15.
    P. Anger, P. Bharadwaj, L. Novotny, Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006)Google Scholar
  16. 16.
    A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, W.E. Moerner, Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 3, 654–657 (2009)Google Scholar
  17. 17.
    S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006)Google Scholar
  18. 18.
    J.R. Lakowicz, Radiative decay engineering. Part 5: Metal-enhanced fluorescence and plasmon emission. Anal. Biochem. 337, 171–194 (2005)Google Scholar
  19. 19.
    B. Yan, S.V. Boriskina, B.M. Reinhard, Optimizing gold nanoparticle cluster configurations (n<=7) for array applications. J. Phys. Chem. C 115, 4578–4583 (2011)Google Scholar
  20. 20.
    Y. Chu, E. Schonbrun, T. Yang, K.B. Crozier, Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl. Phys. Lett. 93, 181103–181108 (2008)Google Scholar
  21. 21.
    L. Novotny, N. van Hulst, Antennas for light. Nat. Photonics 5, 83–90 (2011)Google Scholar
  22. 22.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)Google Scholar
  23. 23.
    C.F. Bohren, How can a particle absorb more than the light incident on it? Am. J. Phys. 51, 323–327 (1983)Google Scholar
  24. 24.
    P. Bharadwaj, B. Deutsch, L. Novotny, Optical antennas. Adv. Opt. Photonics 1, 438–483 (2009)Google Scholar
  25. 25.
    P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, Optical impedance matching using coupled plasmonic nanoparticle arrays. Nano Lett. 11, 1760–1765 (2011)Google Scholar
  26. 26.
    P. Ginzburg, M. Orenstein, Plasmonic transmission lines: from micro to nano scale with lambda/4 impedance matching. Opt. Express 15, 6762–6767 (2007)Google Scholar
  27. 27.
    A. Alu, N. Engheta, Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nat. Photonics 2, 307–310 (2008)Google Scholar
  28. 28.
    E. Cubukcu, Y. Nanfang, E.J. Smythe, L. Diehl, K.B. Crozier, F. Capasso, Plasmonic laser antennas and related devices. IEEE J. Sel. Top. Quantum Electron. 14, 1448–1461 (2008)Google Scholar
  29. 29.
    P. Muhlschlegel, H.J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Resonant optical antennas. Science 308, 1607–1609 (2005)Google Scholar
  30. 30.
    Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N.J. Halas, H. Xu, Branched silver nanowires as controllable plasmon routers. Nano Lett. 10, 1950–1954 (2010)Google Scholar
  31. 31.
    A.W. Sanders, D.A. Routenberg, B.J. Wiley, Y. Xia, E.R. Dufresne, M.A. Reed, Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Lett. 6, 1822–1826 (2006)Google Scholar
  32. 32.
    V.S. Volkov, S.I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, T.W. Ebbesen, Wavelength selective nanophotonic components utilizing channel plasmon polaritons. Nano Lett. 7, 880–884 (2007)Google Scholar
  33. 33.
    N. Engheta, Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials. Science 317, 1698–1702 (2007)Google Scholar
  34. 34.
    A. Alu, N. Engheta, All optical metamaterial circuit board at the nanoscale. Phys. Rev. Lett. 103, 143902 (2009)Google Scholar
  35. 35.
    E. Cubukcu, F. Capasso, Optical nanorod antennas as dispersive one-dimensional Fabry-Perot resonators for surface plasmons. Appl. Phys. Lett. 95, 201101–201103 (2009)Google Scholar
  36. 36.
    K.B. Crozier, A. Sundaramurthy, G.S. Kino, C.F. Quate, Optical antennas: Resonators for local field enhancement. J. Appl. Phys. 94, 4632–4642 (2003)Google Scholar
  37. 37.
    S.A. Maier, Plasmonic field enhancement and SERS in the effective mode volume picture. Opt. Express 14, 1957–1964 (2006)Google Scholar
  38. 38.
    A. Alu, Andrea, and N. Engheta, Hertzian plasmonic nanodimer as an efficient optical nanoantenna. Phys. Rev. B 78, 195111 (2008)Google Scholar
  39. 39.
    A.G. Curto, G. Volpe, T.H. Taminiau, M.P. Kreuzer, R. Quidant, N.F. van Hulst, Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010)Google Scholar
  40. 40.
    J. Li, A. Salandrino, N. Engheta, Shaping light beams in the nanometer scale: a Yagi-Uda nanoantenna in the optical domain. Phys. Rev. B 76, 245403–245407 (2007)Google Scholar
  41. 41.
    S. Zou, N. Janel, G.C. Schatz, Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 120, 10871–10875 (2004)Google Scholar
  42. 42.
    G. Pellegrini, G. Mattei, P. Mazzoldi, Tunable, directional and wavelength selective plasmonic nanoantenna arrays. Nanotechnology 20, 065201 (2009)Google Scholar
  43. 43.
    P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stockman, Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899–903 (2004)Google Scholar
  44. 44.
    N. Liu, S. Mukherjee, K. Bao, L.V. Brown, J. Dorfmuller, P. Nordlander, N.J. Halas, Magnetic plasmon formation and propagation in artificial aromatic molecules. Nano Lett. 12, 364–369 (2012)Google Scholar
  45. 45.
    M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A.P. Alivisatos, N. Liu, Transition from isolated to collective modes in plasmonic oligomers. Nano Lett. 10, 2721–2726 (2010)Google Scholar
  46. 46.
    G. Vecchi, V. Giannini, J. Gómez Rivas, Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys. Rev. Lett. 102, 146807 (2009)Google Scholar
  47. 47.
    L. Dal Negro, S.V. Boriskina, Deterministic aperiodic nanostructures for photonics and plasmonics applications. Laser Photonics Rev. 6, 178–218 (2012)Google Scholar
  48. 48.
    S. Boriskina, Photonic molecules and spectral engineering, in Photonic MicroresonatorRresearch and Applications, ed. by I. Chremmos, O. Schwelb, N. Uzunoglu (Springer, Berlin, 2010), pp. 393–421Google Scholar
  49. 49.
    S.V. Boriskina, B.M. Reinhard, Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates. Opt. Express 19, 22305–22315 (2011)Google Scholar
  50. 50.
  51. 51.
    R. Ruppin, Electromagnetic energy density in a dispersive and absorptive material. Phys. Lett. A 299, 309–312 (2002)Google Scholar
  52. 52.
    R. Loudon, The propagation of electromagnetic energy through an absorbing dielectric. J. Phys. A 3, 233 (1970)Google Scholar
  53. 53.
    J.B. Khurgin, G. Sun, Scaling of losses with size and wavelength in nanoplasmonics and metamaterials. Appl. Phys. Lett. 99, 211103–211106 (2011)Google Scholar
  54. 54.
    M.A. Noginov, V.A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J.A. Adegoke, B.A. Ritzo, K. Reynolds, Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. Opt. Express 16, 1385–1392 (2008)Google Scholar
  55. 55.
    I. De Leon, P. Berini, Amplification of long-range surface plasmons by a dipolar gain medium. Nat. Photonics 4, 382–387 (2010)Google Scholar
  56. 56.
    G.V. Naik, J. Kim, A. Boltasseva, Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express 1, 1090–1099 (2011)Google Scholar
  57. 57.
    M. Jablan, H. Buljan, M. Soljacic, Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009)Google Scholar
  58. 58.
    A. Vakil, N. Engheta, Transformation optics using graphene. Science 332, 1291–1294 (2011)Google Scholar
  59. 59.
    J.C. Ginn, J.R.L. Jarecki, E.A. Shaner, P.S. Davids, Infrared plasmons on heavily-doped silicon. J. Appl. Phys. 110, 043110–043116 (2011)Google Scholar
  60. 60.
    B.S. Lukyanchuk et al., Peculiarities of light scattering by nanoparticles and nanowires near plasmon resonance frequencies. J. Phys.: Conf. Ser. 59, 234 (2007)Google Scholar
  61. 61.
    A. Alù, N. Engheta, Higher-order resonant power flow inside and around superdirective plasmonic nanoparticles. J. Opt. Soc. Am. B 24, A89–A97 (2007)Google Scholar
  62. 62.
    L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006)Google Scholar
  63. 63.
    M.R. Dennis, K. O’Holleran, M.J. Padgett, Singular optics: optical vortices and polarization singularities. Prog. Opt. 53, 293–363 (2009)Google Scholar
  64. 64.
    M.R. Dennis, Y.S. Kivshar, M.S. Soskin, A.S. Grover Jr, Singular optics: more ado about nothing. J. Opt. A 11, 090201 (2009)Google Scholar
  65. 65.
    M.S. Soskin, M.V. Vasnetsov, Singular optics. Prog. Opt. 42, 219–276 (2001)Google Scholar
  66. 66.
    H.F. Schouten, T.D. Visser, D. Lenstra, Optical vortices near sub-wavelength structures. J. Opt. B 6, S404 (2004)Google Scholar
  67. 67.
    S.V. Boriskina, B.M. Reinhard, Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery. Nanoscale 4, 76–90 (2012)Google Scholar
  68. 68.
    Z.B. Wang, B.S. Luk’yanchuk, M.H. Hong, Y. Lin, T.C. Chong, Energy flow around a small particle investigated by classical Mie theory. Phys. Rev. B 70, 035418 (2004)Google Scholar
  69. 69.
    S.V. Boriskina, L. Dal Negro, Multiple-wavelength plasmonic nanoantennas. Opt. Lett. 35, 538–540 (2010)Google Scholar
  70. 70.
    T.V. Teperik, A. Degiron, Superradiant optical emitters coupled to an array of nanosize metallic antennas. Phys. Rev. Lett. 108, 147401 (2012)Google Scholar
  71. 71.
    D.M. Natarov, V.O. Byelobrov, R. Sauleau, T.M. Benson, A.I. Nosich, Periodicity-induced effects in the scattering and absorption of light by infinite and finite gratings of circular silver nanowires. Opt. Express 19, 22176–22190 (2011)Google Scholar
  72. 72.
    R.H. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954)Google Scholar
  73. 73.
    M. Berry, Making waves in physics. Nature 403, 21–21 (2000)Google Scholar
  74. 74.
    J.F. Nye, M.V. Berry, Dislocations in wave trains. Proc. R. Soc. Lond. A Math. Phys. Sci. 336, 165–190 (1974)Google Scholar
  75. 75.
    S. Gustafson, F. Ting, Dynamic stability and instability of pinned fundamental vortices. J. Nonlinear Sci. 19, 341–374 (2009)Google Scholar
  76. 76.
    Y. Strauss, I.M. Sigal, Effective dynamics of a magnetic vortex in a local potential. J. Nonlinear Sci. 16, 123–157 (2006)Google Scholar
  77. 77.
    Y.S. Joe, A.M. Satanin, C.S. Kim, Classical analogy of Fano resonances. Phys. Scr. 74, 259 (2006)Google Scholar
  78. 78.
    B.R. Johnson, Theory of morphology-dependent resonances: shape resonances and width formulas. J. Opt. Soc. Am. A 10, 343–352 (1993)Google Scholar
  79. 79.
    Y. Tanaka, N. Nedyalkov, M. Obara, Enhanced near-field distribution inside substrates mediated with gold particle: optical vortex and bifurcation. Appl. Phys. A 97, 91–98 (2009)Google Scholar
  80. 80.
    P.A. Atanasov, H. Takada, N.N. Nedyalkov, M. Obara, Nanohole processing on silicon substrate by femtosecond laser pulse with localized surface plasmon polariton. Appl. Surf. Sci. 253, 8304–8308 (2007)Google Scholar
  81. 81.
    M. Bashevoy, V. Fedotov, N. Zheludev, Optical whirlpool on an absorbing metallic nanoparticle. Opt. Express 13, 8372–8379 (2005)Google Scholar
  82. 82.
    N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)Google Scholar
  83. 83.
    L. Byoungho, L. Seung-Yeol, Plasmonic beam shaping and hot spot generation, in Advances in Optoelectronics and Micro/Nano-Optics (AOM), 2010 OSA-IEEE-COS (2010), pp. 1–2Google Scholar
  84. 84.
    H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, B. Lee, Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Lett. 10, 529–536 (2010)Google Scholar
  85. 85.
    J. Leach, M.R. Dennis, J. Courtial, M.J. Padgett, Vortex knots in light. New J. Phys. 7, 55 (2005)Google Scholar
  86. 86.
    J. Leach, M.R. Dennis, J. Courtial, M.J. Padgett, Laser beams: knotted threads of darkness. Nature 432, 165–165 (2004)Google Scholar
  87. 87.
    W. Ahn, S.V. Boriskina, Y. Hong, B.M. Reinhard, Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices. Nano Lett. 12, 219–227 (2012)Google Scholar
  88. 88.
    M.I. Stockman, Nanoplasmonics: the physics behind the applications. Phys. Today 64, 39–44 (2011)Google Scholar
  89. 89.
    K. Li, M.I. Stockman, D.J. Bergman, Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91, 227402 (2003)Google Scholar
  90. 90.
    D.J. Bergman, M.I. Stockman, Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003)Google Scholar
  91. 91.
    M. Durach, A. Rusina, V.I. Klimov, M.I. Stockman, Nanoplasmonic renormalization and enhancement of Coulomb interactions. New J. Phys. 10, 105011 (2008)Google Scholar
  92. 92.
    A. Gopinath, S.V. Boriskina, N.-N. Feng, B.M. Reinhard, L.D. Negro, Photonic-plasmonic scattering resonances in deterministic aperiodic structures. Nano Lett. 8, 2423–2431 (2008)Google Scholar
  93. 93.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)Google Scholar
  94. 94.
  95. 95.
    J.C. Maxwell, On physical lines of force. Philos. Mag. 21, 11–23 (1861)Google Scholar
  96. 96.
    E. Madelung, Quantentheorie in hydrodynamischer form. Zeitschrift für Physik A Hadrons and Nuclei 40, 322–326 (1926)Google Scholar
  97. 97.
    T.C. Wallstrom, Inequivalence between the Schrodinger equation and the Madelung hydrodynamic equations. Phys. Rev. A 49, 1613 (1994)Google Scholar
  98. 98.
    M. Tsang, D. Psaltis, Metaphoric Optical Computing for Fluid Dynamics, in Advanced Optical, Quantum Memories and Computing II, ed. by H.J. Coufal, Z.U. Hasan, A.E. Craig (SPIE, San Jose, 2005)Google Scholar
  99. 99.
    K. Staliunas, V. Sánchez-Morcillo, Zero Detuning: Laser Hydrodynamics and Optical Vortices, ed. by K. Staliunas, V. Sánchez-Morcillo, in Transverse Patterns Nonlinear Optical Resonators (Springer, Berlin, 2003)Google Scholar
  100. 100.
    W. Wan, S. Jia, J.W. Fleischer, Dispersive superfluid-like shock waves in nonlinear optics. Nat. Phys. 3, 46–51 (2007)Google Scholar
  101. 101.
    C.O. Weiss, M. Vaupel, K. Staliunas, G. Slekys, V.B. Taranenko, Solitons and vortices in lasers. Appl. Phys. B 68, 151–168 (1999)Google Scholar
  102. 102.
    M. Fernández-Guasti, J.L. Jiménez, F. Granados-Agustín, A. Cornejo-Rodríguez, Amplitude and phase representation of monochromatic fields in physical optics. J. Opt. Soc. Am. A 20, 1629–1634 (2003)Google Scholar
  103. 103.
    E.B. Sonin, Vortex oscillations and hydrodynamics of rotating superfluids. Rev. Mod. Phys. 59, 87 (1987)Google Scholar
  104. 104.
    R. Blanchard, S.V. Boriskina, P. Genevet, M.A. Kats, J.-P. Tetienne, N. Yu, M.O. Scully, L. Dal Negro, F. Capasso, Multi-wavelength mid-infrared plasmonic antennas with nanoscale single focal point. Opt. Express 19, 22113–22124 (2011)Google Scholar
  105. 105.
    S.V. Boriskina, B.M. Reinhard, Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits. Proc. Natl. Acad. Sci. U.S.A. 108, 3147–3151 (2011)Google Scholar
  106. 106.
    N.A. Mirin, K. Bao, P. Nordlander, Fano resonances in plasmonic nanoparticle aggregates. J. Phys. Chem. A 113, 4028–4034 (2009)Google Scholar
  107. 107.
    L.J. Sherry, S.-H. Chang, G.C. Schatz, R.P. Van Duyne, B.J. Wiley, Y. Xia, Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 5, 2034–2038 (2005)Google Scholar
  108. 108.
    J.B. Lassiter, H. Sobhani, J.A. Fan, J. Kundu, F. Capasso, P. Nordlander, N.J. Halas, Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett. 10, 3184–3189 (2010)Google Scholar
  109. 109.
    J.A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N.J. Halas, V.N. Manoharan, P. Nordlander, G. Shvets, F. Capasso, Self-assembled plasmonic nanoparticle clusters. Science 328, 1135–1138 (2010)Google Scholar
  110. 110.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)Google Scholar
  111. 111.
    Y. Hong, M. Pourmand, S.V. Boriskina, B. M. Reinhard, Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions. Adv. Mater. 25, 115–119 (2013)Google Scholar
  112. 112.
    D. Leykam, A.S. Desyatnikov, Discrete multivortex solitons. Opt. Lett. 36, 4806–4808 (2011)Google Scholar
  113. 113.
    D. Leykam, A.S. Desyatnikov, Vortex switching with discrete multivortex solitons. Phys. Rev. A 86, 043812 (2012)Google Scholar
  114. 114.
    K. Ladavac, D. Grier, Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt. Express 12, 1144–1149 (2004)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations