Observers and Frames of Reference in Classical Continuum Theory

  • Wolfgang H. Müller
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 210)


This chapter is dedicated to a relatively abstract question: Do balance laws and constitutive equations keep their form if we switch from an observer at rest to an arbitrarily moving one? In mathematical terms this problem can be analyzed by using so-called Euclidean transformations and establish an almost philosophical principle according to which true laws of nature must keep their form, independently of the frame of reference.


Angular Velocity Inertial Frame Inertial System Objective Vector Centripetal Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Becker E, Bürger W (1975) Kontinuumsmechanik. Teubner Studienbücher Mechanik Band 20. B.G. Teubner, StuttgartGoogle Scholar
  2. 2.
    Bertram A (2008) Elasticity and plasticity of large deformations, 2nd edn. Springer, BerlinzbMATHGoogle Scholar
  3. 3.
    Bertram A, Svendsen B (2004) Reply to Rivlins’s material symmetry revisited or much ado about nothing. GAMM-Mitt 1:88–93MathSciNetGoogle Scholar
  4. 4.
    d’Alembert JL (1967) Traité de dynamique dans lequel les lois de l’équilibre & du mouvement des corps sont réduites au plus petit nombre possible, & démontrées d’une manière nouvelle, & ou l’on donne un principe général pour trouver le mouvement de plusieurs corps qui agissent les uns sur les autres, d’ une manière quelconque. David, ParisGoogle Scholar
  5. 5.
    Einstein A (1914) Die formale Grundlage der allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), pp 1030–1085Google Scholar
  6. 6.
    Einstein A (1920) Relativity. The special and the general theory. A popular exposition, 3rd edn. Methuen & Co. Ltd., London, p. 68Google Scholar
  7. 7.
    Einstein A (1921) A brief outline of the development of the theory of relativity. Nature 106(2677):782–784CrossRefGoogle Scholar
  8. 8.
    Greve R (2003) Kontinuumsmechanik—Ein Grundkurs für Ingenieure und Physiker. Springer, Berlin, New YorkzbMATHGoogle Scholar
  9. 9.
    Koyré A, Cohen IB, Whitman A (1972) Isaac Newton’s Philosophiae Naturalis Principia Mathematica, 3rd edn (1726), vol I/II with variant readings. Cambridge University Press, CambridgeGoogle Scholar
  10. 10.
    Liu I-S (2010) Continuum mechanics. Springer, Berlin, New YorkGoogle Scholar
  11. 11.
    Mach E (1976) Die Mechanik—historisch-kritisch dargestellt. Wissenschaftliche Buchgesellschaft DarmstadtGoogle Scholar
  12. 12.
    Thirring H (1918) Über die Wirkungen rotierender ferner Massen in der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift, pp 33–39Google Scholar
  13. 13.
    Thirring H (1921) Berichtigung zu meiner Arbeit: “Über die Wirkungen rotierender ferner Massen in der Einsteinschen Gravitationstheorie”. Physikalische Zeitschrift, pp 29–30Google Scholar
  14. 14.
    Truesdell C (1966) The elements of continuum mechanics. Springer, Berlin, New YorkzbMATHGoogle Scholar
  15. 15.
    Truesdell C, Noll W (1965) The non-linear theories of mechanics. In: Flügge S (ed) Encyclopedia of physics, volume III/3. Springer, Berlin, GöttingenGoogle Scholar
  16. 16.
    Truesdell C, Toupin R (1960) The classical field theories. In: Flügge S (ed.) Encyclopedia of physics, vol III/1, Principles of classical mechanics and field theory. Springer, Berlin, GöttingenGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institute of MechanicsTechnical University of BerlinBerlinGermany

Personalised recommendations