An Environmental, Energetic and Economic Comparison of Organic and Conventional Farming Systems

  • David PimentelEmail author
  • Michael Burgess


Various organic technologies have been utilized for about 6,000 years to make agriculture sustainable while at the same time conserving soil, water, energy and biological resources. Benefits of organic technologies include higher soil organic matter and nitrogen, lower fossil energy inputs, yields similar to conventional systems, and conservation of soil moisture and water resources, especially advantageous under drought conditions. Traditional organic farming technologies may be adopted by conventional agriculture to make it more sustainable and ecologically sound.


Cover crops Soybeans Corn Soil organic matter 



This research was supported in part by the Podell Emeriti Award at Cornell University.


  1. Altieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. Agriculture Ecosystems & Environment, 74, 19–31.CrossRefGoogle Scholar
  2. Bertramsen, S. K., & Dobbs, T. L. (2002). An update on prices of organic crops in comparison to conventional crops. Economics Commentator. No. 426. February 22. South Dakota State University, Brookings, South Dakota, USA.Google Scholar
  3. Brumfield, R. G., Rimal, A., & Reiners, S. (2000). Comparative cost analyses of conventional, integrated crop management, and organic methods. HortTechnology, 10, 785–793.Google Scholar
  4. Clark, S., Klonsky, K., Livingston, P., & Temple, S. (1999). Crop-yield and economic comparisons of organic, low-input, and conventional farming systems in California’s Sacramento Valley. American Journal of Alternative Agriculture, 14, 109–121.CrossRefGoogle Scholar
  5. Colburn, T., Dumanoski, D., & Myers, J. P. (1997). Our Stolen Future. New York: Penguin.Google Scholar
  6. Cook, R. J. (1988). Biological control and holistic plant-health care in agriculture. American Journal of Alternative Agriculture, 3, 51–62.CrossRefGoogle Scholar
  7. Core 4. (2003). Core 4: Conservation for agriculture’s future. conservation technology information center, West Lafayette, Indiana. Accessed 18 July 2012.
  8. Dalgaard, T., Halberg, N., & Porter, J. R. (2001). A model for fossil energy use in Danish agriculture used to compare organic and conventional farming. Agriculture, Ecosystems & Environment, 87, 51–65.CrossRefGoogle Scholar
  9. Delate, K., Duffy, M., Chase, C., Holste, A., Friedrich, H., & Wantate, N. (2002). An economic comparison of organic and conventional grain crops in a long-term agroecological research (LTAR) site in Iowa. American Journal of Alternative Agriculture, 18, 59–69.CrossRefGoogle Scholar
  10. Dimitri, C., & Greene, C. (2002). Recent growth patterns in the U.S. organic foods market. Agriculture Information Bulletin No. 777. Accessed 18 July 2012.
  11. Dobbs, T., & Smolik, J. D. (1996). Productivity and profitability of conventional and alternative farming systems: A long-term on-farm paired comparison. Journal of Sustainable Agriculture, 9, 63–77.CrossRefGoogle Scholar
  12. Dobbs, T. L. (1998). Price premiums for organic crops. Choices, (Second Quarter), 39–41Google Scholar
  13. Douds, D. D., Janke, R. R., & Peters, S. E. (1993). VAM fungus spore populations and colonization of roots of maize and soybean under conventional and low-input sustainable agriculture. Agriculture Ecosystems & Environment, 43, 325–335.CrossRefGoogle Scholar
  14. Doughty, R. S. (2003). Use of wetlands to reduce nitrogen loads in the Mississippi Atchafalaya River Basin. M.S. Thesis, Cornell University, Ithaca, USA.Google Scholar
  15. Ekstrom, G., & Bergkvist, P. (2001). Persistence pays—lower risks from pesticides in Sweden. Pesticide Action Network International Website (Article first appeared in Pesticides News No. 54, December 2001, pages 10–11). Accessed 18 July 2012.
  16. ERS. (2012). Organic Production. Washington, D.C.: Economic Research Service, U.S. Department of Agriculture. Accessed 18 July 2012.
  17. FAO. (2002). Organic agriculture and climate change. In N. El-Hage Scialabba & C. Hattam (Eds.), Organic Agriculture, Environment and Food Security. Environment and Natural Resources Service, Sustainable Development Department. Series No. 4. Food and Agriculture Programme, United Nations, Rome. Accessed 10 Oct 2013.
  18. Fox, R. H., Zhu, Y., Toth, J. D., Jemison, J. M. Jr., & Jabro, J. D. (2001). Nitrogen fertilizer rate and crop management effects on nitrate leaching from an agricultural field in central Pennsylvania. Scientific World Journal, 1(Suppl 2), 181–186.CrossRefGoogle Scholar
  19. Frankenberger, J., & Turco, R. (2003). Hypoxia in the Gulf of Mexico: A reason to improve nitrogen management. Purdue Animal Issues. Briefing, AI-6. Purdue Extension, Purdue University, West Lafayette, Indiana. Accessed 26 Feb 2014.
  20. Franke-Snyder, M., Douds, D. D., Galvez, L., Phillips, J. G., Wagoner, P., Drinkwater, L., & Morton, J. B. (2001). Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Applied Soil Ecology, 16, 35–48.CrossRefGoogle Scholar
  21. Galvez, L., Douds, D. D., Wagoner, P., Longnecker, L. R., Drinkwater, L. E., & Janke, R. R. (1995). An overwintering cover crop increases inoculum of VAM fungi in agricultural soil. American Journal of Alternative Agriculture, 10, 152–156.CrossRefGoogle Scholar
  22. Granatstein, D. (2003). Tree Fruit Production with Organic Farming Methods. Wenatchee: Center for sustaining agriculture and natural resources, Washington State University. Accessed 18 July 2012.
  23. Gray, M. (2003). Influence of agricultural practices on earthworm populations. The Bulletin: Pest Management and Crop Development Information for Illinois, April 24, 2003. University of Illinois Extension. Accessed 18 July 2012.
  24. Hansen, B., Alroe, H. F., & Steen, K. E. (2001). Approaches to assess the environmental impact of organic farming with particular regard to Denmark. Agriculture, Ecosystems & Environment, 83, 11–26.CrossRefGoogle Scholar
  25. Hanson, J. C., Johnson, D. M., Peters, S. E., & Janke, R. R. (1990). The profitability of sustainable agriculture on a representative grain farm in the Mid-Atlantic region, 1981–1989. Northeastern Journal of Agricultural and Resource Economics, 19, 90–98.Google Scholar
  26. Hanson, J. C., Lichenberg, E., & Peters, S. E. (1997). Organic versus conventional grain production in the mid-Atlantic: An economic and farming system overview. American Journal of Alternative Agriculture, 12, 2–9.CrossRefGoogle Scholar
  27. Hanson, J. C., & Musser, W. N. (2003). An economic evaluation of an organic grain rotation with regards to profit and risk. College of agriculture & natural resources, department of agricultural and resource economics, University of Maryland, Working Papers 2003: No. 03–10. Google Scholar
  28. Harris, G. H., Hesterman, O. B., Paul, E. A., Peters, S. E., & Janke, R. R. (1994). Fate of legume and fertilizer nitrogen-15 in a long term cropping systems experiment. Agronomy Journal, 86, 910–915.CrossRefGoogle Scholar
  29. Hayes, T. B., Collins, A., Lee, M., Mendoza, M., Noriega, N., Stuart, A. A., & Vonk, A. (2002). Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proceedings of the National Academy of Sciences of the United States of America, 99, 5476–5480.CrossRefGoogle Scholar
  30. Hoitink, H. A. J., Inbar, Y., & Boehm, M. J. (1991). Status of compost-amended potting mixes naturally suppressive to soilborne diseases of floricultural crops. Plant Disease, 75, 869–873.CrossRefGoogle Scholar
  31. Hooker, J. E., Jaizme-Vega, M., & Atkinson, D. (1994). Biocontrol of plant pathogens using arbuscular mycorrhizal fungi. In S. Gianinazzi & H. Schüepp (Eds.)., Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems (pp.191–200). Basel: Birkhäuser Verlag. Accessed 18 July 2012.
  32. Karlen, D. L., Duffy, M. D., & Colvin, T. S. (1995). Nutrient, labor, energy, and economic evaluations of two farming systems in Iowa. Journal of Production Agriculture, 8, 540–546.CrossRefGoogle Scholar
  33. Kotcon, J. B., Collins, A., & Smith, L. J. (2001). Impact of plant biodiversity and management practices on disease in organic tomatoes. Phytopathology, 91(Suppl. 6), S50.Google Scholar
  34. Kumm, K. I. (2001). Toward sustainable agriculture. Journal of Sustainable Agriculture, 18, 27–37.CrossRefGoogle Scholar
  35. Lavelle, P., & Spain, A. V. (2001). Soil Ecology. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  36. Letourneau, D. K., & Goldstein, B. (2001). Pest damage and arthropod community structure in organic vs. conventional tomato production in California. Journal of Applied Ecology, 38, 557–570.CrossRefGoogle Scholar
  37. Liebhardt, W. C., Andrews, R. W., Culik, M. N., Harwood, R. R., Janke, R. R., Radke, J. R., & Rieger-Schwartz, S. L. (1989). Crop production during conversion from conventional to low-input methods. Agronomy Journal, 81, 150–159.CrossRefGoogle Scholar
  38. Lockeretz, W., Shearer, G., & Kohl, D. H. (1981). Organic farming in the corn belt. Science, 211, 540–547.PubMedCrossRefGoogle Scholar
  39. Lotter, D. W., Seidel, R., & Liebhardt, W. (2003). The performance of organic and conventional cropping systems in an extreme climate year. American Journal of Alternative Agriculture, 18, 146–154.CrossRefGoogle Scholar
  40. Mader, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science, 296, 1694–1697.PubMedCrossRefGoogle Scholar
  41. Miller, R. M., & Jastrow, J. D. (1990). Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biology and Biochemistry, 22, 579–584.CrossRefGoogle Scholar
  42. Moyer, J. W., Saporito, L. S., & Janke, R. R. (1996). Design, construction, and installation of an intact soil core lysimeter. Agronomy Journal, 88, 253–256.CrossRefGoogle Scholar
  43. NAS. (1989). Alternative Agriculture. Washington, D.C.: National Academy of Sciences. Accessed 19 July 2012.
  44. NAS. (2003). Frontiers in Agricultural Research: Food, Health, Environment, and Communities . Washington, D.C.: National Academy of Sciences. Accessed 19 July 2012.
  45. Nguyen, M. L., & Haynes, R. J. (1995). Energy and labour efficiency for three pairs of conventional and alternative mixed cropping (pasture-arable) farms in Canterbury, New Zealand. Agriculture, Ecosystems & Environment, 52, 163–172.CrossRefGoogle Scholar
  46. O’Riorda, T., & Cobb, D. (2001). Assessing the consequences of converting to organic agriculture. Journal of Agricultural Economics, 52, 22–35.Google Scholar
  47. Pacini, C., Wossink, A., Giesen, G., Vazzana, C., & Huirne, R. (2003). Evaluation of sustainability of organic, integrated and conventional farming systems: A farm and field-scale analysis. Agriculture, Ecosystems & Environment, 95, 273–288.CrossRefGoogle Scholar
  48. Pimentel, D. (1993). Economics and energetics of organic and conventional farming. Journal of Agricultural and Environmental Ethics, 6, 53–60.CrossRefGoogle Scholar
  49. Pimentel, D. (2005). Environmental and economic costs of the application of pesticides primarily in the United States. Environment, Development and Sustainability, 7, 229–252.CrossRefGoogle Scholar
  50. Pimentel, D. (Ed.). (1975). Insects, Science and Society. New York: Academic Press.Google Scholar
  51. Pimentel, D., & Kounang, N. (1998). Ecology of soil erosion in ecosystems. Ecosystems, 1, 416–426.CrossRefGoogle Scholar
  52. Pimentel, D., & Pimentel, M. (1996). Food, Energy and Society. Niwot, Colorado, USA: Colorado University Press.Google Scholar
  53. Pimentel, D., Berardi, G., & Fast, S. (1983). Energy efficiency of farming systems: Organic and conventional agriculture. Agriculture, Ecosystems & Environment, 9, 359–372.CrossRefGoogle Scholar
  54. Pimentel, D., Stachow, U., Takacs, D. A., Brubaker, H. W., Dumas, A. R., Meaney, J. J., O’Neil, J., Onsi, D. E., & Corzilius, D. B. (1992). Conserving biological diversity in agricultural/forestry systems. Bioscience, 42, 354–362.CrossRefGoogle Scholar
  55. Pimentel, D., McLaughlin, L., Zepp, A., Kakitan, B., Kraus, T., Kleinman, P., Vancini, F., Roach, W. J., Graap, E., Keeton, W. S., & Selig, G. (1993). Environmental and economic effects of reducing pesticide use in agriculture. Agriculture, Ecosystems & Environment, 46, 273–288.CrossRefGoogle Scholar
  56. Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Sphritz, L., Fitton, L., Saffouri, R., & Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267, 1117–1123.PubMedCrossRefGoogle Scholar
  57. Pimentel, D., Hepperly, P., Hanson, J., Douds, D., & Seidel, R. (2005). Environmental, energetic, and economic comparisons of organic and conventional farming systems. Bioscience, 55,  573–582.Google Scholar
  58. Power, J. F., Wiese, R., & Flowerday, D. (2001). Managing farming systems for nitrate control: A research review from management systems evaluation areas. Journal of Environment Quality, 30, 1866–1880.CrossRefGoogle Scholar
  59. Smith, S. E., & Read, D. J. (1997). Mycorrhizal Symbiosis (2nd ed.). London: Academic Press.Google Scholar
  60. Smolik, J. D., Dobbs, T. L., & Rickert, D. H. (1995). The relative sustainability of alternative, conventional, and reduced-till farming systems. American Journal of Alternative Agriculture, 16 , 25–35.CrossRefGoogle Scholar
  61. Sorby, K. (2002). Environmental benefits of sustainable coffee. Background paper to the World Bank Agricultural Technology Note 30, “Toward more sustainable coffee”, published June 2002. Accessed 19 July 2012.
  62. Sullivan, P. (2002). Drought resistant soil. Agronomy technical note. Appropriate Technology Transfer for Rural Areas (ATTRA), National Center for Appropriate Technology (NCAT). Accessed 19 July 2012.
  63. Surgeoner, G. A., & Roberts, W. (1993). Reducing pesticide use by 50% in the province of Ontario: Challenges and progress. In D. Pimentel & H. Lehman (Eds.)., The Pesticide Question: Environment, Economic and Ethics (pp. 206–222). New York: Chapman and Hall.Google Scholar
  64. Troeh, F. R., & Thompson, L. M. (1993). Soils and Soil Fertility. New York: Oxford University Press.Google Scholar
  65. USDA-AMS. (2002). National organic program. Final rule: 7 CFR Part 205. U.S. Department of Agriculture, Agricultural Marketing Service (USDA-AMS), Washington, D.C. Accessed 19 July 2012.
  66. USGS. (2001). Selected findings and current perspectives on urban and agricultural water quality by National Water-Quality Assessment Program. U.S. Department of Interior, U.S. Geological Survey (USGS), Washington, D.C.–01/pdf/fs047–01.pdf. Accessed 19 July 2012.
  67. van Elsen, T. (2000). Species diversity as a task for organic agriculture in Europe. Agriculture, Ecosystems & Environment, 77, 101–109.CrossRefGoogle Scholar
  68. Wander, M., Traina, S., Stinner, B. R., & Peters, S. E. (1994). Organic and conventional management effects on biologically active soil organic matter pools. Soil Science Society of America Journal, 58, 1130–1139.CrossRefGoogle Scholar
  69. Watson, C. A., Atkinson, D., Gosling, P., Jackson, L. R., & Rayns, F. W. (2002). Managing soil fertility in organic-farming systems. Soil Use and Management, 18 (Supplement s1), 239–247.CrossRefGoogle Scholar
  70. Willer, H., & Kilcher, L. (2012). The World of Organic Agriculture—Statistics and Emerging Trends 2012. Research Institute of Organic Agriculture (FiBL), Frick, and International Federation of Organic Agriculture Movements (IFOAM), Bonn, Germany. Accessed 14 March 2013.
  71. Wright, S. F., Star, J. L., & Paltineau, I. C. (1999). Changes in aggregate stability and concentration of glomalin during tillage management transition. Soil Science Society of America Journal, 63, 1825–1829.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Entomology, Department of Ecology and Evolutionary BiologyCornell UniversityIthacaUSA
  2. 2.Department of EntomologyCornell UniversityIthacaUSA

Personalised recommendations