Review of Potato Biotic Constraints and Experiences with Integrated Pest Management Interventions



Potato (Solanum spp.) ranks third in importance as a single food crop worldwide. Late blight, caused by Phytophthora infestans, is considered to be the most important single biotic constraint of potato, but degeneration of vegetative planting material, caused primarily by a complex of viruses, potentially causes even greater yield losses. Arthropod pests are also important, with the primary problems on a global scale being the potato tuber moth complex (Phthorimaea operculella, Symmetrischema tangolias and Tecia solanivora), leaf miner fly (Liriomyza huidobrenis), Colorado potato beetle (Leptinotarsa decemlineata), and Andean potato weevil (Premnotrypes spp.). Potato is one of the most pesticide-demanding agricultural crops and health risks related to pesticide use in potato production are high, especially in developing countries where protective clothing is generally not used. Experiences with potato integrated pest management (IPM) interventions have been multiple, but some of the most promising for disease management involve efforts to integrate the use of resistant cultivars, fungicides (for late blight) and capacity building of farmers. Interventions for arthropod pests rely less on host resistance and focus more on sustaining biodiversity and habitat management, as well as technological innovations to improve on-farm management, for example, cultural management practices and biological control. It is concluded that farmer capacity building is one of the most important elements needed to improve potato IPM in developing countries and that farmer acceptance of new technologies is best achieved through their understanding of the economic, ecological and practical benefits of the new technologies.


Late blight Tuber moth Leaf miner fly Andean potato weevil Socio-economic impact Pesticides Farmer capacity building On-farm management Biological control 


  1. Andrade-Piedra, J. L., Forbes, G. A., Shtienberg, D., Grünwald, N. J., Taipe, M. V., & Fry, W. E. (2005a). Simulation of potato late blight in the Andes: II: Validation of the LATEBLIGHT Model. Phytopathology, 95(10), 1200–1208.CrossRefGoogle Scholar
  2. Andrade-Piedra, J. L., Forbes, G. A., Shtienberg, D., Grünwald, N. J., Taipe, M. V., Hijmans, R. J., & Fry, W. E. (2005b). Qualification of a plant disease simulation model: Performance of the LATEBLIGHT model across a broad range of environments. Phytopathology, 95(12), 1412–1422.CrossRefGoogle Scholar
  3. Andrade-Piedra, J. L., Hijmans, R. J., Forbes, G. A., Fry, W. E., & Nelson, R. J. (2005). Simulation of potato late blight in the Andes: I: Modification and parameterization of the LATEBLIGHT model. Phytopathology, 95(10), 1191–1199.PubMedCrossRefGoogle Scholar
  4. Antle, J. M., Cole, D. C., & Crissman, C. C. (1998). Further evidence on pesticides, productivity and farmer health: Potato production in Ecuador. Agricultural Economics, 18(2), 199–207.CrossRefGoogle Scholar
  5. Autrique, A., & Potts, M. J. (2008). The influence of mixed cropping on the control of potato bacterial wilt (Pseudomonas solanacearum). Annals of Applied Biology, 111(1), 125–133.CrossRefGoogle Scholar
  6. Bertschinger, L., Scheidegger, U. C., Luther, K., Pinillos, O., & Hidalgo, A. (1990). La incidencia de virus de papa en cultivaresnativos y mejorados en la sierra peruana. Revista Latinoamericana De La Papa, 3(1), 62–79.Google Scholar
  7. Birch, P. R. J., Bryan, G., Fenton, B., Gilroy, E., Hein, I., Jones, J., Prashar, A., Taylor, M., Torrance, L., & Toth, I. (2012). Crops that feed the World 8: Potato: Are the trends of increased global production sustainable. Food Security, 4(4), 477–508.CrossRefGoogle Scholar
  8. Blandón-Díaz, J. U., Forbes, G. A., Andrade-Piedra, J. L., & Yuen, J. E. (2011). Assessing the adequacy of the simulation model LATEBLIGHT under Nicaraguan conditions. Plant Disease, 95(7), 839–846.CrossRefGoogle Scholar
  9. Bourke, A. (1993). “The Visitation of God”? The Potato and the Great Irish Famine. Dublin: Lilliput Press Ltd.Google Scholar
  10. Bouws, H., & Finckh, M. R. (2008). Effects of strip intercropping of potatoes with non-hosts on late blight severity and tuber yield in organic production. Plant Pathology, 57(5), 916–927.CrossRefGoogle Scholar
  11. Cáceres, P. A., Pumisacho, M., Forbes, G. A., & Andrade-Piedra, J. L. (2008). Learning to Control Potato Late Blight: A Facilitator’s Guide. International Potato Center (CIP), Instituto Nacional Autónomo de Investigaciones Agropecuariasdel Ecuador (INIAP), Secretaría Nacional de Ciencia y Tecnologíadel Ecuador (SENACYT). Quito, Ecuador. Accessed 10 Oct 2012.
  12. Cole, D. C., Carpio, F., Math, J. J. M., & Leon, N. (1997). Dermatitis in Ecuadorian farm workers. Contact Dermatitis, 37(1), 1–8.PubMedCrossRefGoogle Scholar
  13. Fankhauser, C. (2000). Seed-transmitted diseases as constraints for potato production in the tropical highlands of Ecuador. PhD Dissertation. Zurich: Swiss Federal Institute of Technology.Google Scholar
  14. Forbes, G. A. (2012). Using host resistance to manage potato late blight with particular reference to developing countries. Potato Research, 55(3–4), 205–216.CrossRefGoogle Scholar
  15. Forbes, G. A., Shtienberg, D., & Mizubuti, E. (2009). Plant disease epidemiology and disease management—has theory had an impact on practice? In R. Peshin. & A. K. Dhawan (Eds.)., Integrated Pest Management: Innovation—Development Process, Vol.1. (pp. 351–368). Dordrecht: Netherlands: Springer.Google Scholar
  16. Fry, W. E. (1978). Quantification of general resistance of potato cultivars and fungicide effects for integrated control of potato late blight. Phytopathology, 68(11), 1650–1655.CrossRefGoogle Scholar
  17. Fry, W. E., & Goodwin, S. B. (1997). Re-emergence of potato and tomato late blight in the United States. Plant Disease, 81(12), 1349–1357.CrossRefGoogle Scholar
  18. Fuglie, K. (2007). Research Priority Assessment for the CIP 2005–2015 Strategic Plan: Projecting Impacts on Poverty, Employment, Health and Environment. Lima, Peru: International Potato Center.Google Scholar
  19. Gildemacher, P. R., Demo, P., Barker, I., Kaguongo, W., Woldegiorgis, G., Wagoire, W. W., Wakahiu, M., Leeuwis, C., & Struik, P. C. (2009). A description of seed potato systems in Kenya, Uganda and Ethiopia. American Journal of Potato Research, 86(5), 373–382.CrossRefGoogle Scholar
  20. Gildemacher, P. R., Schulte-Geldermann, E., Borus, D., Demo, P., Kinyae, P., Mundia, P., & Struik, P. C. (2011). Seed potato quality improvement through positive selection by smallholder farmers in Kenya. Potato Research, 54(3), 253–266.CrossRefGoogle Scholar
  21. Godtland, E., Sadoulet, E., de Janvry, A., Murgai, R., & Ortiz, O. (2004). The impact of farmer-field-schools on knowledge and productivity: A study of potato farmers in the Peruvian Andes. Economic Development and Cultural Change, 53(1), 63–92.CrossRefGoogle Scholar
  22. Grünwald, N. J., Romero Montes, G., LozoyaSaldaña, H., Rubio Covarrubias, O. A., & Fry, W. E. (2002). Potato late blight management in the Toluca Valley: Field validation of SimCast modified for cultivars with high field resistance. Plant Disease, 86(10), 1163–1168.CrossRefGoogle Scholar
  23. Haldar, K., Kamoun, S., Hiller, N. L., Bhattacharje, S., & van Ooij, C. (2006). Common infection strategies of pathogenic eukaryotes. Nature Reviews Microbiology, 4(12), 922–931.PubMedCrossRefGoogle Scholar
  24. Haverkort, A. J., Struik, P. C., Visser, R. G. F., & Jacobsen, E. (2009). Applied biotechnology to combat late blight in potato caused by Phytophthora Infestans. Potato Research, 52(3), 249–264.CrossRefGoogle Scholar
  25. James, W. C., Callate Blighteck, L. C., Hodgson, W. A., & Shih, C. S. (1971). Evaluation of a method used to estimate loss in yield of potatoes caused by late blight. Phytopathology, 61(12), 1471–1476.CrossRefGoogle Scholar
  26. Judelson, H. S., & Blanco, F. A. (2005). The spores of Phytophthora weapons of the plant destroyer. Nature Reviews Microbiology, 3, 47–58.PubMedCrossRefGoogle Scholar
  27. Kromann, P., Leon, D., Andrade-Piedra, J. L., & Forbes, G. A. (2008). Comparison of alternation with a contact fungicide and sequential use of the translaminar fungicide cymoxanil in the control of potato late blight in the highland tropics of Ecuador. Crop Protection, 27, 1098–1104.CrossRefGoogle Scholar
  28. Kromann, P., Pérez, W. G., Taipe, A., Schulte-Geldermann, E., Prakash Sharma, B., Andrade-Piedra, J. L., & Forbes, G. A. (2012). Use of phosphonate to manage foliar potato late blight in developing countries. Plant Disease, 96(7), 1008–1015.CrossRefGoogle Scholar
  29. Kromann, P., Pradel, W., Cole, D., Taipe, A., & Forbes, G. A. (2011). Use of the environmental impact quotient to estimate health and environmental impacts of pesticide usage in Peruvian and Ecuadorian potato production. Journal of Environmental Protection, 2(5), 581–591.CrossRefGoogle Scholar
  30. Kromann, P., Taipe, A., Pérez, W. G., & Forbes, G. A. (2009). Rainfall thresholds as support for timing fungicide applications in the control of potato late blight in Ecuador and Peru. Plant Disease, 93(2), 142–148.CrossRefGoogle Scholar
  31. Kroschel, J. (1995). Integrated pest management in potato production in the Republic of Yemen with special reference to the integrated biological control of the potato tuber moth (Phthorimaea operculella Zeller) (Doctoral Dissertation). Weikersheim, Germany: Margraf Verlag.Google Scholar
  32. Kroschel, J., & Schaub, B. (2013). Biology and ecology of potato tuber moths as major pests of potato. In A. Alyokhin, P. Giordanengo, & C. Vincent. (Eds.)., Insect Pests of Potato Global Perspective on Biology and Management. (pp.165–192). Waltham, Massachusetts, USA: Elsevier.Google Scholar
  33. Kroschel, J., Alcazar, J., & Pomar, P. (2009). Potential of plastic barriers to control Andean potato weevil Premnotrypes Suturicallus Kuschel. Crop Protection, 28, 466–476.CrossRefGoogle Scholar
  34. Kroschel, J., & Zegarra, O. (2013). Attract-and-kill as a new strategy for the management of the potato tuber moths Phthorimaea operculella (Zeller) and Symmetrischema tangolias (Gyen) in potato: Evaluation of its efficacy under potato field and storage conditions. Pest Management Science, 69(11), 1205–1215.Google Scholar
  35. Lemaga, B., Kanzikwera, R., Kakuhenzire, R., Hakiza, J. J., & Manzi, G. (2001). The effect of crop rotation on bacterial wilt incidence and potato tuber yield. African Crop Science Journal, 9(1), 257–266.Google Scholar
  36. Miethbauer, T. (2012). Collective action and on-farm benefits of pesticide substitution: A case study. Preliminary analysis of household survey results (survey 03/2012; CIP-GIZ Project GnC1070). Poster presentation at Tropentag Conference 2012. Book of Abstracts, p. 158. Göttingen, Germany.Google Scholar
  37. Mizubuti, E. S. G., Aylor, D. E., & Fry, W. E. (2000). Survival of Phytophthora infestans sporangia exposed to solar radiation. Phytopathology, 90(1), 78–84.PubMedCrossRefGoogle Scholar
  38. Mizubuti, E. S. G., LourençoJúnior, V., & Forbes, G. A. (2007). Management of late blight with alternative products. Pest Technology, 1(2), 106–116.Google Scholar
  39. Moseley, M. (1992). The Incas and their Ancestors: The Archeology of Peru. London: Thames and Hudson.Google Scholar
  40. Mujica, N., & Kroschel, J. (2011). Leafminer fly (Diptera: Agromyzidae) occurrence, distribution and parasitoid associations in field and vegetable crops along the Peruvian coast. Environmental Entomology, 40(2), 217–230.CrossRefGoogle Scholar
  41. Norton, G. W., Heinrichs, E. A., Luther, G. C., & Irwin, M. E. (2005). Globalizing Integrated Pest Management. A Participatory Research Process. Oxford, United Kingdom: Blackwell Publishing.CrossRefGoogle Scholar
  42. Oerke, E. C., Dehne, H. W., Schönbeck, F., & Weber, A. (1994.) Crop Production and Crop Protection. Estimated Losses in Major Food and Cash Crops. Amsterdam: Elsevier.Google Scholar
  43. Olofsson, B. (1968). Determination of the critical injury threshold for potato late blight (Phytophthora infestans). Statens Växtskyddsanstalt (Stockholm), 14, 85–93.Google Scholar
  44. Orozco, F. A., Donald, C. C., Forbes, G. A., Kroschel, J., Wanigaratne, S., & Arica, D. (2009). Monitoring adherence to the international FAO code of conduct on the distribution and use of pesticides: Highly hazardous pesticides in central Andean agriculture and farmers’ rights to health. International Journal of Occupational and Environmental Health, 15(3), 255–268.PubMedCrossRefGoogle Scholar
  45. Ortiz, O. (2006). Evolution of agricultural extension and information dissemination in Peru: An historical perspective focusing on potato-related pest control. Agriculture and Human Values, 23(4), 477–489.CrossRefGoogle Scholar
  46. Ortiz, O., Alcazar, J., Catalan, W., Villano, W., Cerna, V., Fano, H., & Walker, T. (1996). Economic impact of IPM practices on the Andean potato weevil in Peru. In T. S. Walker., C. C. Crissman (Eds.)., Case Studies of the Economic Impact of CIP-related Technologies (pp. 157). Lima, Peru: International Potato Center.Google Scholar
  47. Ortiz, O., & Forbes, G. A. (2003). Fighting a global problem: Managing potato late blight through partnership. Poster presented at: Conference of the Global Forum for Agricultural Research (GFAR), Senegal 22–24 May.Google Scholar
  48. Ortiz, O., Garret, K. A., Heath, J. J., Orrego, R., & Nelson, R. J. (2004). Management of potato late blight in the Peruvian highlands: Evaluating the benefits of farmer field schools and farmer participatory research. Plant Disease, 88(5), 565–571.CrossRefGoogle Scholar
  49. Ortiz, O., Kroschel, J., Alcazar, J., Orrego, R., & Pradel, W. (2009). Evaluating dissemination and impact of IPM: Lessons from case studies of potato and sweetpotato IPM in Peru and other Latin American countries. In R. Peshin & A. K. Dhawan (Eds.)., Integrated Pest Management: Dissemination and Impact (Vol. 2, pp. 419–434). Dordrecht, Netherlands: Springer.Google Scholar
  50. Oyarzún, P. J., Garzón, C. D., Leon, D., Andrade, I., & Forbes, G. A. (2005). Incidence of potato tuber blight in Ecuador. American Journal of Potato Research, 82(2), 117–122.CrossRefGoogle Scholar
  51. Panchi, N., Navarrete, I., Taipe, A., Orellana, H., Pallo, E., Yumisaca, F., Montesdeoca, F., Kromann, P., & Andrade-Piedra, J. L. (2012). Incidencia, severidad y pérdidas causadas por plagas de la semilla se papa en Ecuador.Poster presented at: Congreso de la Asociación Latinoamericana de la Papa—ALAP. Brasil: Uberlandia.17–20 Sep. 2012.Google Scholar
  52. Panganiban, L., Cortes-Maramba, N., Dioquino, C., Suplido, M. L., Ho, H., Francisco-Rivera, A., & Manglicmot-Yabes, A. (2004). Correlation between blood ethylenethiourea and thyroid gland disorders among banana plantation workers in the Philippines. Environmental Health Perspectives, 112(1), 42–45.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Peshin, R., & Dhawan, A. (2009). Integrated Pest Management: Dissemination and Impact (Vol. 2). Dordrecht, Netherlands: Springer.Google Scholar
  54. Pradhanang, P. M., Pandey, R. R., Ghimere, S. R., Dhital, B. K., & Subedi, A. (1992). An Approach to Management of Bacterial Wilt of Potato Through Crop Rotation and Farmers’ Participation. ACIAR Proceedings, No. 45. Taiwan: Australian Centre for International Agricultural Research (ACIAR).Google Scholar
  55. Priou, S., Salas, C., De Mendiburu, F., Aley, P., & Gutarra, L. (2001). Assessment of latent infection frequency in progeny tubers of advanced potato clones resistant to bacterial wilt: A new selection criterion. Potato Research, 44(4), 359–373.CrossRefGoogle Scholar
  56. Radcliffe, E. B., Hutchison, W. D., & Cancelado, R. E. (2009). Integrated Pest Management: Concepts, Tactics, Strategies and Case Studies. Cambridge, United Kingdom: Cambridge University Press.Google Scholar
  57. Raman, K., & Radcliffe, E. B. (1992). Pest aspects of potato production, Part 2. Insect pests. In: P. M. Harris (Ed), The Potato Crop: The Scientific Basis for Improvement (2nd edn). London: Chapman and Hall.Google Scholar
  58. Salazar, L. F. (1996). Potato Viruses and Their Control. Lima, Peru: International Potato Center.Google Scholar
  59. Shtienberg, D., Bergeron, S. N., Nicholson, A. G., Fry, W. E., & Ewing, E. E. (1990). Development and evaluation of a general model for yield loss assessment in potatoes. Phytopathology, 80(5), 466–472.CrossRefGoogle Scholar
  60. Sparks, A. H., Forbes, G. A., Hijmans, R. J., & Garrett, K. A. (2011). A metamodeling framework for extending the application domain of process-based ecological models. Ecosphere, 2(8) (August): art90. doi:10.1890/ES11-00128.1.Google Scholar
  61. Stevenson, W., Loria, R., Franc, G. D., & Weingartner, D. P. (2001). Compendium of Potato Diseases, 2nd edn. St. Paul, Minnesota, USA: American Phytopathological Society.Google Scholar
  62. Thiele, G. (1999). Informal potato seed systems in the Andes: Why are they important and what should we do with them? World Development, 27(1), 83–99.CrossRefGoogle Scholar
  63. Thurston, H. D. (1990). Plant disease management practices of traditional farmers. Plant Disease, 74(2), 96–102.CrossRefGoogle Scholar
  64. Torrez, R., Tenorio, J., Valencia, C., Orrego, R., Ortiz, O., Nelson, R., & Thiele, G. (1999). Implementing IPM for Late Blight in the Andes. In Impact on a Changing World: Program Report 1997–98 (pp. 91–99). Lima, Peru: International Potato Center.Google Scholar
  65. Wesseling, C., Corriols, M., & Bravo, V. (2005). Acute pesticide poisoning and pesticide registration in Central America. Toxicology and Applied Pharmacology, 207(2), 697–705. doi:10.1016/j.taap.2005.03.033.PubMedCrossRefGoogle Scholar
  66. Yuen, J. E., & Forbes, G. A. (2009). Estimating the level of susceptibility to Phytophthora infestans in potato genotypes. Phytopathology, 99, 783–786.CrossRefGoogle Scholar
  67. Zapata Sánchez, V. (2006). Manual Para La Formación De Gestores De Conocimiento (Manual for the Formation of Knowledge Managers). Cali, Colombia: CIAT.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.The International Potato CenterLimaPeru

Personalised recommendations