Skip to main content

Gamete/Embryo-Fetal Origins of Tumours

  • Chapter
  • First Online:
  • 948 Accesses

Abstract

Epidemiological and animal studies indicate that carcinogenesis may start as early as the prenatal period. Modifying the prenatal environment may alter genes through the epigenetic route, and, these alterations may be inherited by the offspring. Epigenetic factors like nutritional factors, endocrine disruptors, infection and lifestyle may affect tumour development, or, target cell differentiation to increase susceptibility to cancer. In this chapter, we discuss the evidence related to embryo-fetal origins of tumours.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mandrup KR, Hass U, Christiansen S, et al. Perinatal ethinyl oestradiol alters mammary gland development in male and female Wistar rats. Int J Androl. 2012;35:385–96.

    CAS  PubMed  Google Scholar 

  2. Trichopoulos D. Hypothesis: does breast cancer originate in utero? Lancet. 1990;335:939–40.

    CAS  PubMed  Google Scholar 

  3. De Assis S, Hilakivi-Clarke L. Timing of dietary estrogenic exposures and breast cancer risk. Ann N Y Acad Sci. 2006;1089:14–35.

    PubMed  Google Scholar 

  4. Savarese TM, Low HP, Baik I, et al. Normal breast stem cells, malignant breast stem cells, and the perinatal origin of breast cancer. Stem Cell Rev. 2006;2:103–10.

    CAS  PubMed  Google Scholar 

  5. Sorensen HT, Olsen ML, Mellemkjaer L, et al. The intrauterine origin of male breast cancer: a birth order study in Denmark. Eur J Cancer Prev. 2005;14:185–6.

    CAS  PubMed  Google Scholar 

  6. Panagiotopoulou K, Katsouyanni K, Petridou E, et al. Maternal age, parity, and pregnancy estrogens. Cancer Causes Control. 1990;1:119–24.

    CAS  PubMed  Google Scholar 

  7. Thompson WD, Janerich DT. Maternal age at birth and risk of breast cancer in daughters. Epidemiology. 1990;1:101–6.

    CAS  PubMed  Google Scholar 

  8. Park SK, Kang D, McGlynn KA, et al. Intrauterine environments and breast cancer risk: meta-analysis and systematic review. Breast Cancer Res. 2008;10:R8.

    PubMed Central  PubMed  Google Scholar 

  9. Xue F, Michels KB. Intrauterine factors and risk of breast cancer: a systematic review and meta-analysis of current evidence. Lancet Oncol. 2007;8:1088–100.

    PubMed  Google Scholar 

  10. Barba M, McCann SE, Nie J, et al. Perinatal exposures and breast cancer risk in the Western New York Exposures and Breast Cancer (WEB) Study. Cancer Causes Control. 2006;17:395–401.

    PubMed  Google Scholar 

  11. Petridou E, Katsouyanni K, Hsieh CC, et al. Diet, pregnancy estrogens and their possible relevance to cancer risk in the offspring. Oncology. 1992;49:127–32.

    CAS  PubMed  Google Scholar 

  12. Jansson N, Nilsfelt A, Gellerstedt M, et al. Maternal hormones linking maternal body mass index and dietary intake to birth weight. Am J Clin Nutr. 2008;87:1743–9.

    CAS  PubMed  Google Scholar 

  13. Sanderson M, Williams MA, Daling JR, et al. Maternal factors and breast cancer risk among young women. Paediatr Perinat Epidemiol. 1998;12:397–407.

    CAS  PubMed  Google Scholar 

  14. Wilson KM, Willett WC, Michels KB, et al. Mothers’ pre-pregnancy BMI and weight gain during pregnancy and risk of breast cancer in daughters. Breast Cancer Res Treat. 2011;130:273–9.

    PubMed Central  PubMed  Google Scholar 

  15. Wu AH, Pike MC, Stram DO, et al. Meta-analysis: dietary fat intake, serum estrogen levels, and the risk of breast cancer. J Natl Cancer Inst. 1999;91:529–34.

    CAS  PubMed  Google Scholar 

  16. Hilakivi-Clarke L, Cho E, Cabanes A, et al. Dietary modulation of pregnancy estrogen levels and breast cancer risk among female rat offspring. Clin Cancer Res. 2002;8:3601–10.

    CAS  PubMed  Google Scholar 

  17. Su HM, Hsieh PH, Chen HF. A maternal high n-6 fat diet with fish oil supplementation during pregnancy and lactation in rats decreases breast cancer risk in the female offspring. J Nutr Biochem. 2010;21:1033–7.

    CAS  PubMed  Google Scholar 

  18. Cho K, Mabasa L, Bae S, et al. Maternal high-methyl diet suppresses mammary carcinogenesis in female rat offspring. Carcinogenesis. 2012;33:1106–12.

    CAS  PubMed  Google Scholar 

  19. Sie KK, Chen J, Sohn KJ, et al. Folic acid supplementation provided in utero and during lactation reduces the number of terminal end buds of the developing mammary glands in the offspring. Cancer Lett. 2009;280:72–7.

    CAS  PubMed  Google Scholar 

  20. Ly A, Lee H, Chen J, et al. Effect of maternal and postweaning folic acid supplementation on mammary tumor risk in the offspring. Cancer Res. 2011;71:988–97.

    CAS  PubMed  Google Scholar 

  21. Trock BJ, Hilakivi-Clarke L, Clarke R. Meta-analysis of soy intake and breast cancer risk. J Natl Cancer Inst. 2006;98:459–71.

    CAS  PubMed  Google Scholar 

  22. Hilakivi-Clarke L, Cho E, Onojafe I, et al. Maternal exposure to genistein during pregnancy increases carcinogen-induced mammary tumorigenesis in female rat offspring. Oncol Rep. 1999;6:1089–95.

    CAS  PubMed  Google Scholar 

  23. Nielsen TS, Purup S, Warri A, et al. Effects of maternal exposure to cow’s milk high or low in isoflavones on carcinogen-induced mammary tumorigenesis among rat offspring. Cancer Prev Res (Phila). 2011;4:694–701.

    CAS  Google Scholar 

  24. Yu B, Khan G, Foxworth A, et al. Maternal dietary exposure to fiber during pregnancy and mammary tumorigenesis among rat offspring. Int J Cancer. 2006;119:2279–86.

    CAS  PubMed  Google Scholar 

  25. Petridou E, Panagiotopoulou K, Katsouyanni K, et al. Tobacco smoking, pregnancy estrogens, and birth weight. Epidemiology. 1990;1:247–50.

    CAS  PubMed  Google Scholar 

  26. Bernstein L, Pike MC, Lobo RA, et al. Cigarette smoking in pregnancy results in marked decrease in maternal hCG and oestradiol levels. Br J Obstet Gynaecol. 1989;96:92–6.

    CAS  PubMed  Google Scholar 

  27. Waller DK, Lustig LS, Smith AH, et al. Alpha-fetoprotein: a biomarker for pregnancy outcome. Epidemiology. 1993;4:471–6.

    CAS  PubMed  Google Scholar 

  28. Strohsnitter WC, Noller KL, Titus-Ernstoff L, et al. Breast cancer incidence in women prenatally exposed to maternal cigarette smoke. Epidemiology. 2005;16:342–5.

    PubMed  Google Scholar 

  29. Park SK, Garcia-Closas M, Lissowska J, et al. Intrauterine environment and breast cancer risk in a population-based case–control study in Poland. Int J Cancer. 2006;119:2136–41.

    CAS  PubMed  Google Scholar 

  30. Purohit V. Can alcohol promote aromatization of androgens to estrogens? A review. Alcohol. 2000;22:123–7.

    CAS  PubMed  Google Scholar 

  31. Polanco TA, Crismale-Gann C, Reuhl KR, et al. Fetal alcohol exposure increases mammary tumor susceptibility and alters tumor phenotype in rats. Alcohol Clin Exp Res. 2010;34:1879–87.

    CAS  PubMed  Google Scholar 

  32. Hilakivi-Clarke L, Cabanes A, de Assis S, et al. In utero alcohol exposure increases mammary tumorigenesis in rats. Br J Cancer. 2004;90:2225–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Polanco TA, Crismale-Gann C, Cohick WS. Alcohol exposure in utero leads to enhanced prepubertal mammary development and alterations in mammary IGF and estradiol systems. Horm Cancer. 2011;2:239–48.

    CAS  PubMed  Google Scholar 

  34. Painter RC, De Rooij SR, Bossuyt PM, et al. A possible link between prenatal exposure to famine and breast cancer: a preliminary study. Am J Hum Biol. 2006;18:853–6.

    CAS  PubMed  Google Scholar 

  35. Stephansson O, Granath F, Ekbom A, et al. Risk of breast cancer among daughters of mothers with diabetes: a population-based cohort study. Breast Cancer Res. 2010;12:R14.

    PubMed Central  PubMed  Google Scholar 

  36. Ekbom A, Hsieh CC, Lipworth L, et al. Intrauterine environment and breast cancer risk in women: a population-based study. J Natl Cancer Inst. 1997;89:71–6.

    CAS  PubMed  Google Scholar 

  37. Vatten LJ, Forman MR, Nilsen TI, et al. The negative association between pre-eclampsia and breast cancer risk may depend on the offspring’s gender. Br J Cancer. 2007;96:1436–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Wuu J, Hellerstein S, Lipworth L, et al. Correlates of pregnancy oestrogen, progesterone and sex hormone-binding globulin in the USA and China. Eur J Cancer Prev. 2002;11:283–93.

    CAS  PubMed  Google Scholar 

  39. Mazor M, Hershkovitz R, Chaim W, et al. Human preterm birth is associated with systemic and local changes in progesterone/17 beta-estradiol ratios. Am J Obstet Gynecol. 1994;171:231–6.

    CAS  PubMed  Google Scholar 

  40. Innes K, Byers T, Schymura M. Birth characteristics and subsequent risk for breast cancer in very young women. Am J Epidemiol. 2000;152:1121–8.

    CAS  PubMed  Google Scholar 

  41. Ekbom A, Erlandsson G, Hsieh C, et al. Risk of breast cancer in prematurely born women. J Natl Cancer Inst. 2000;92:840–1.

    CAS  PubMed  Google Scholar 

  42. Ruder EH, Dorgan JF, Kranz S, et al. Examining breast cancer growth and lifestyle risk factors: early life, childhood, and adolescence. Clin Breast Cancer. 2008;8:334–42.

    PubMed Central  PubMed  Google Scholar 

  43. Carroll SG, Tyfield L, Reeve L, et al. Is zygosity or chorionicity the main determinant of fetal outcome in twin pregnancies? Am J Obstet Gynecol. 2005;193(3 Pt 1):757–61.

    PubMed  Google Scholar 

  44. Wald N, Cuckle H, Wu TS, et al. Maternal serum unconjugated oestriol and human chorionic gonadotrophin levels in twin pregnancies: implications for screening for Down's syndrome. Br J Obstet Gynaecol. 1991;98:905–8.

    CAS  PubMed  Google Scholar 

  45. Michels KB, Xue F. Role of birthweight in the etiology of breast cancer. Int J Cancer. 2006;119:2007–25.

    CAS  PubMed  Google Scholar 

  46. Mucci LA, Lagiou P, Tamimi RM, et al. Pregnancy estriol, estradiol, progesterone and prolactin in relation to birth weight and other birth size variables (United States). Cancer Causes Control. 2003;14:311–18.

    PubMed  Google Scholar 

  47. Xu X, Dailey AB, Peoples-Sheps M, et al. Birth weight as a risk factor for breast cancer: a meta-analysis of 18 epidemiological studies. J Womens Health (Larchmt). 2009;18:1169–78.

    Google Scholar 

  48. Wiseman M. The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc. 2008;67:253–6.

    PubMed  Google Scholar 

  49. Nagata C, Iwasa S, Shiraki M, et al. Estrogen and alpha-fetoprotein levels in maternal and umbilical cord blood samples in relation to birth weight. Cancer Epidemiol Biomarkers Prev. 2006;15:1469–72.

    CAS  PubMed  Google Scholar 

  50. Palmer JR, Wise LA, Hatch EE, et al. Prenatal diethylstilbestrol exposure and risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2006;15:1509–14.

    CAS  PubMed  Google Scholar 

  51. Troisi R, Hatch EE, Titus-Ernstoff L, et al. Cancer risk in women prenatally exposed to diethylstilbestrol. Int J Cancer. 2007;121:356–60.

    CAS  PubMed  Google Scholar 

  52. Hoover RN, Hyer M, Pfeiffer RM, et al. Adverse health outcomes in women exposed in utero to diethylstilbestrol. N Engl J Med. 2011;365:1304–14.

    CAS  PubMed  Google Scholar 

  53. Verloop J, van Leeuwen FE, Helmerhorst TJ, et al. Cancer risk in DES daughters. Cancer Causes Control. 2010;21:999–1007.

    PubMed Central  PubMed  Google Scholar 

  54. Murray TJ, Maffini MV, Ucci AA, et al. Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol A exposure. Reprod Toxicol. 2007;23:383–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Moral R, Wang R, Russo IH, et al. Effect of prenatal exposure to the endocrine disruptor bisphenol A on mammary gland morphology and gene expression signature. J Endocrinol. 2008;196(1):101–12.

    CAS  PubMed  Google Scholar 

  56. Durando M, Kass L, Piva J, et al. Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats. Environ Health Perspect. 2007;115:80–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Weber Lozada K, Keri RA. Bisphenol A increases mammary cancer risk in two distinct mouse models of breast cancer. Biol Reprod. 2011;85:490–7.

    PubMed Central  PubMed  Google Scholar 

  58. Brown NM, Manzolillo PA, Zhang JX, et al. Prenatal TCDD and predisposition to mammary cancer in the rat. Carcinogenesis. 1998;19:1623–9.

    CAS  PubMed  Google Scholar 

  59. Jenkins S, Rowell C, Wang J, et al. Prenatal TCDD exposure predisposes for mammary cancer in rats. Reprod Toxicol. 2007;23:391–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Anway MD, Leathers C, Skinner MK. Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology. 2006;147:5515–23.

    CAS  PubMed  Google Scholar 

  61. Lipworth L, Hsieh CC, Wide L, et al. Maternal pregnancy hormone levels in an area with a high incidence (Boston, USA) and in an area with a low incidence (Shanghai, China) of breast cancer. Br J Cancer. 1999;79:7–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Shibata A, Harris DT, Billings PR. Concentrations of estrogens and IGFs in umbilical cord blood plasma: a comparison among Caucasian, Hispanic, and Asian-American females. J Clin Endocrinol Metab. 2002;87:810–15.

    CAS  PubMed  Google Scholar 

  63. Friedrichs N, Steiner S, Buettner R, et al. Immunohistochemical expression patterns of AP2alpha and AP2gamma in the developing fetal human breast. Histopathology. 2007;51:814–23.

    CAS  PubMed  Google Scholar 

  64. Khan G, Penttinen P, Cabanes A, et al. Maternal flaxseed diet during pregnancy or lactation increases female rat offspring’s susceptibility to carcinogen-induced mammary tumorigenesis. Reprod Toxicol. 2007;23:397–406.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Lagiou P, Samoli E, Okulicz W, et al. Maternal and cord blood hormone levels in the United States and China and the intrauterine origin of breast cancer. Ann Oncol. 2011;22:1102–8.

    CAS  PubMed  Google Scholar 

  66. Fortunati N, Catalano MG, Boccuzzi G, et al. Sex Hormone-Binding Globulin (SHBG), estradiol and breast cancer. Mol Cell Endocrinol. 2010;316:86–92.

    CAS  PubMed  Google Scholar 

  67. Cohn BA, Cirillo PM, Christianson RE, et al. Placental characteristics and reduced risk of maternal breast cancer. J Natl Cancer Inst. 2001;93:1133–40.

    CAS  PubMed  Google Scholar 

  68. Troisi R, Potischman N, Roberts JM, et al. Maternal serum oestrogen and androgen concentrations in preeclamptic and uncomplicated pregnancies. Int J Epidemiol. 2003;32:455–60.

    PubMed  Google Scholar 

  69. Key TJ, Appleby PN, Reeves GK, et al. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol. 2010;11:530–42.

    PubMed  Google Scholar 

  70. Cullen KJ, Yee D, Sly WS, et al. Insulin-like growth factor receptor expression and function in human breast cancer. Cancer Res. 1990;50:48–53.

    CAS  PubMed  Google Scholar 

  71. Savarese TM, Strohsnitter WC, Low HP, et al. Correlation of umbilical cord blood hormones and growth factors with stem cell potential: implications for the prenatal origin of breast cancer hypothesis. Breast Cancer Res. 2007;9:R29.

    PubMed Central  PubMed  Google Scholar 

  72. Boyne MS, Thame M, Bennett FI, et al. The relationship among circulating insulin-like growth factor (IGF)-I, IGF-binding proteins-1 and -2, and birth anthropometry: a prospective study. J Clin Endocrinol Metab. 2003;88:1687–91.

    CAS  PubMed  Google Scholar 

  73. Toniolo P, Grankvist K, Wulff M, et al. Human chorionic gonadotropin in pregnancy and maternal risk of breast cancer. Cancer Res. 2010;70:6779–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Troisi R, Potischman N, Hoover RN. Exploring the underlying hormonal mechanisms of prenatal risk factors for breast cancer: a review and commentary. Cancer Epidemiol Biomarkers Prev. 2007;16:1700–12.

    CAS  PubMed  Google Scholar 

  75. Palomaki GE, Knight GJ, Haddow JE, et al. Cigarette smoking and levels of maternal serum alpha-fetoprotein, unconjugated estriol, and hCG: impact on Down syndrome screening. Obstet Gynecol. 1993;81(Pt 1):675–8.

    CAS  PubMed  Google Scholar 

  76. Russo J, Russo IH. Biological and molecular bases of mammary carcinogenesis. Lab Invest. 1987;57:112–37.

    CAS  PubMed  Google Scholar 

  77. Cerhan JR, Sellers TA, Janney CA, et al. Prenatal and perinatal correlates of adult mammographic breast density. Cancer Epidemiol Biomarkers Prev. 2005;14:1502–8.

    PubMed  Google Scholar 

  78. Boyd NF, Rommens JM, Vogt K, et al. Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol. 2005;6:798–808.

    PubMed  Google Scholar 

  79. Rudland PS. Stem cells and the development of mammary cancers in experimental rats and in humans. Cancer Metastasis Rev. 1987;6:55–83.

    CAS  PubMed  Google Scholar 

  80. Qiu L, Low HP, Chang CI, et al. Novel measurements of mammary stem cells in human umbilical cord blood as prospective predictors of breast cancer susceptibility in later life. Ann Oncol. 2012;23:245–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Khan SI, Aumsuwan P, Khan IA, et al. Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome. Chem Res Toxicol. 2012;25:61–73.

    CAS  PubMed  Google Scholar 

  82. Gillman MW. Developmental origins of health and disease. N Engl J Med. 2005;353:1848–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Barker DJ. Sir Richard Doll Lecture. Developmental origins of chronic disease. Public Health. 2012;126:185–9.

    CAS  PubMed  Google Scholar 

  84. Heinonen OP. Diethylstilbestrol in pregnancy. Frequency of exposure and usage patterns. Cancer. 1973;31:573–7.

    CAS  PubMed  Google Scholar 

  85. Noller KL, Fish CR. Diethylstilbestrol usage: its interesting past, important present, and questionable future. Med Clin North Am. 1974;58:793–810.

    CAS  PubMed  Google Scholar 

  86. Herbst AL, Scully RE. Adenocarcinoma of the vagina in adolescence. A report of 7 cases including 6 clear-cell carcinomas (so-called mesonephromas). Cancer. 1970;25:745–57.

    CAS  PubMed  Google Scholar 

  87. Herbst AL, Ulfelder H, Poskanzer DC. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med. 1971;284:878–81.

    CAS  PubMed  Google Scholar 

  88. Sato T, Fukazawa Y, Ohta Y, et al. Involvement of growth factors in induction of persistent proliferation of vaginal epithelium of mice exposed neonatally to diethylstilbestrol. Reprod Toxicol. 2004;19:43–51.

    CAS  PubMed  Google Scholar 

  89. Walker CL, Stewart EA. Uterine fibroids: the elephant in the room. Science. 2005;308:1589–92.

    CAS  PubMed  Google Scholar 

  90. Baird DD, Newbold R. Prenatal diethylstilbestrol (DES) exposure is associated with uterine leiomyoma development. Reprod Toxicol. 2005;20:81–4.

    CAS  PubMed  Google Scholar 

  91. Brody JR, Cunha GR. Histologic, morphometric, and immunocytochemical analysis of myometrial development in rats and mice: II. Effects of DES on development. Am J Anat. 1989;186:21–42.

    CAS  PubMed  Google Scholar 

  92. Cook JD, Davis BJ, Cai SL, et al. Interaction between genetic susceptibility and early-life environmental exposure determines tumor-suppressor-gene penetrance. Proc Natl Acad Sci U S A. 2005;102:8644–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Greathouse KL, Cook JD, Lin K, et al. Identification of uterine leiomyoma genes developmentally reprogrammed by neonatal exposure to diethylstilbestrol. Reprod Sci. 2008;15:765–78.

    CAS  PubMed  Google Scholar 

  94. McCampbell AS, Walker CL, Broaddus RR, et al. Developmental reprogramming of IGF signaling and susceptibility to endometrial hyperplasia in the rat. Lab Invest. 2008;88:615–26.

    CAS  PubMed  Google Scholar 

  95. Newbold RR, Bullock BC, McLachlan JA. Uterine adenocarcinoma in mice following developmental treatment with estrogens: a model for hormonal carcinogenesis. Cancer Res. 1990;50:7677–81.

    CAS  PubMed  Google Scholar 

  96. Li S, Washburn KA, Moore R, et al. Developmental exposure to diethylstilbestrol elicits demethylation of estrogen-responsive lactoferrin gene in mouse uterus. Cancer Res. 1997;57:4356–9.

    CAS  PubMed  Google Scholar 

  97. Li S, Hansman R, Newbold R, et al. Neonatal diethylstilbestrol exposure induces persistent elevation of c-fos expression and hypomethylation in its exon-4 in mouse uterus. Mol Carcinog. 2003;38:78–84.

    CAS  PubMed  Google Scholar 

  98. Bromer JG, Wu J, Zhou Y, et al. Hypermethylation of homeobox A10 by in utero diethylstilbestrol exposure: an epigenetic mechanism for altered developmental programming. Endocrinology. 2009;150:3376–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Tang WY, Newbold R, Mardilovich K, et al. Persistent hypomethylation in the promoter of nucleosomal binding protein 1 (Nsbp1) correlates with overexpression of Nsbp1 in mouse uteri neonatally exposed to diethylstilbestrol or genistein. Endocrinology. 2008;149:5922–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Center MM, Jemal A, Lortet-Tieulent J, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol. 2012;61:1079–92.

    PubMed  Google Scholar 

  101. Brawley OW. Prostate cancer epidemiology in the United States. World J Urol. 2012;30:195–200.

    PubMed  Google Scholar 

  102. Gronberg H. Prostate cancer epidemiology. Lancet. 2003;361:859–64.

    PubMed  Google Scholar 

  103. Moore KL, Persaud TVN, Torchia MG. Before we are born: essentials of embryology and birth defects. 7th ed. Philadelphia: Saunders/Elsevier; 2008. x, 353.

    Google Scholar 

  104. Ahluwalia B, Jackson MA, Jones GW, et al. Blood hormone profiles in prostate cancer patients in high-risk and low-risk populations. Cancer. 1981;48:2267–73.

    CAS  PubMed  Google Scholar 

  105. Henderson BE, Bernstein L, Ross RK, et al. The early in utero oestrogen and testosterone environment of blacks and whites: potential effects on male offspring. Br J Cancer. 1988;57:216–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Ross RK, Henderson BE. Do diet and androgens alter prostate cancer risk via a common etiologic pathway? J Natl Cancer Inst. 1994;86:252–4.

    CAS  PubMed  Google Scholar 

  107. Tibblin G, Eriksson M, Cnattingius S. High birthweight as a predictor of prostate cancer risk. Epidemiology. 1995;6:423–4.

    CAS  PubMed  Google Scholar 

  108. Ekbom A, Hsieh CC, Lipworth L, et al. Perinatal characteristics in relation to incidence of and mortality from prostate cancer. BMJ. 1996;313:337–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Sandler DP, Everson RB, Wilcox AJ, et al. Cancer risk in adulthood from early life exposure to parents’ smoking. Am J Public Health. 1985;75:487–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A. 2007;104:13056–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Rosen A, Jayram G, Drazer M, et al. Global trends in testicular cancer incidence and mortality. Eur Urol. 2011;60:374–9.

    PubMed  Google Scholar 

  112. Bosl GJ, Motzer RJ. Testicular germ-cell cancer. N Engl J Med. 1997;337:242–53.

    CAS  PubMed  Google Scholar 

  113. Horwich A, Shipley J, Huddart R. Testicular germ-cell cancer. Lancet. 2006;367:754–65.

    CAS  PubMed  Google Scholar 

  114. Henderson BE, Benton B, Jing J, et al. Risk factors for cancer of the testis in young men. Int J Cancer. 1979;23:598–602.

    CAS  PubMed  Google Scholar 

  115. Leary FJ, Resseguie LJ, Kurland LT, et al. Males exposed in utero to diethylstilbestrol. JAMA. 1984;252:2984–9.

    CAS  PubMed  Google Scholar 

  116. Storgaard L, Bonde JP, Olsen J. Male reproductive disorders in humans and prenatal indicators of estrogen exposure. A review of published epidemiological studies. Reprod Toxicol. 2006;21:4–15.

    CAS  PubMed  Google Scholar 

  117. Brown LM, Pottern LM, Hoover RN. Prenatal and perinatal risk factors for testicular cancer. Cancer Res. 1986;46:4812–16.

    CAS  PubMed  Google Scholar 

  118. Sonke GS, Chang S, Strom SS, et al. Prenatal and perinatal risk factors and testicular cancer: a hospital-based case–control study. Oncol Res. 2007;16:383–7.

    PubMed  Google Scholar 

  119. Moller H, Skakkebaek NE. Testicular cancer and cryptorchidism in relation to prenatal factors: case–control studies in Denmark. Cancer Causes Control. 1997;8:904–12.

    CAS  PubMed  Google Scholar 

  120. Michos A, Xue F, Michels KB. Birth weight and the risk of testicular cancer: a meta-analysis. Int J Cancer. 2007;121:1123–31.

    CAS  PubMed  Google Scholar 

  121. Chen Z, Robison L, Giller R, et al. Risk of childhood germ cell tumors in association with parental smoking and drinking. Cancer. 2005;103:1064–71.

    PubMed  Google Scholar 

  122. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2007. CA Cancer J Clin. 2007;57:43–66.

    PubMed  Google Scholar 

  123. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    PubMed  Google Scholar 

  124. Willett WC. Diet and cancer: one view at the start of the millennium. Cancer Epidemiol Biomarkers Prev. 2001;10:3–8.

    CAS  PubMed  Google Scholar 

  125. Kim YI. Folate and colorectal cancer: an evidence-based critical review. Mol Nutr Food Res. 2007;51:267–92.

    CAS  PubMed  Google Scholar 

  126. Kim YI. Folic acid supplementation and cancer risk: point. Cancer Epidemiol Biomarkers Prev. 2008;17:2220–5.

    PubMed  Google Scholar 

  127. Song J, Sohn KJ, Medline A, et al. Chemopreventive effects of dietary folate on intestinal polyps in Apc+/−Msh2−/− mice. Cancer Res. 2000;60:3191–9.

    CAS  PubMed  Google Scholar 

  128. Song J, Medline A, Mason JB, et al. Effects of dietary folate on intestinal tumorigenesis in the apcMin mouse. Cancer Res. 2000;60:5434–40.

    CAS  PubMed  Google Scholar 

  129. Lindzon GM, Medline A, Sohn KJ, et al. Effect of folic acid supplementation on the progression of colorectal aberrant crypt foci. Carcinogenesis. 2009;30:1536–43.

    CAS  PubMed  Google Scholar 

  130. Gluckman PD, Hanson MA, Cooper C, et al. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359:61–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Pfeiffer CM, Johnson CL, Jain RB, et al. Trends in blood folate and vitamin B-12 concentrations in the United States, 1988 2004. Am J Clin Nutr. 2007;86:718–27.

    CAS  PubMed  Google Scholar 

  132. Wilson RD. Pre-conceptional vitamin/folic acid supplementation 2007: the use of folic acid in combination with a multivitamin supplement for the prevention of neural tube defects and other congenital anomalies. J Obstet Gynaecol Can. 2007;29:1003–26.

    PubMed  Google Scholar 

  133. Sie KK, Medline A, van Weel J, et al. Effect of maternal and postweaning folic acid supplementation on colorectal cancer risk in the offspring. Gut. 2011;60:1687–94.

    CAS  PubMed  Google Scholar 

  134. Lawrance AK, Deng L, Rozen R. Methylenetetrahydrofolate reductase deficiency and low dietary folate reduce tumorigenesis in Apc min/+ mice. Gut. 2009;58:805–11.

    CAS  PubMed  Google Scholar 

  135. Barker DJ, Winter PD, Osmond C, et al. Weight in infancy and death from ischaemic heart disease. Lancet. 1989;2:577–80.

    CAS  PubMed  Google Scholar 

  136. Leon DA, Lithell HO, Vagero D, et al. Reduced fetal growth rate and increased risk of death from ischaemic heart disease: cohort study of 15 000 Swedish men and women born 1915–29. BMJ. 1998;317:241–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Will JC. Colorectal cancer: another complication of diabetes mellitus? Am J Epidemiol. 1998;147:816–25.

    CAS  PubMed  Google Scholar 

  138. Hu FB, Manson JE, Liu S, et al. Prospective study of adult onset diabetes mellitus (type 2) and risk of colorectal cancer in women. J Natl Cancer Inst. 1999;91:542–7.

    CAS  PubMed  Google Scholar 

  139. Schoen RE, Tangen CM, Kuller LH, et al. Increased blood glucose and insulin, body size, and incident colorectal cancer. J Natl Cancer Inst. 1999;91:1147–54.

    CAS  PubMed  Google Scholar 

  140. Yamada K, Araki S, Tamura M, et al. Relation of serum total cholesterol, serum triglycerides and fasting plasma glucose to colorectal carcinoma in situ. Int J Epidemiol. 1998;27:794–8.

    CAS  PubMed  Google Scholar 

  141. Ma J, Giovannucci E, Pollak M, et al. A prospective study of plasma C-peptide and colorectal cancer risk in men. J Natl Cancer Inst. 2004;96:546–53.

    CAS  PubMed  Google Scholar 

  142. Kaaks R. Serum C-peptide, insulin-like growth factor (IGF)-I, IGF-binding proteins, and colorectal cancer risk in women. J Natl Cancer Inst. 2000;92:1592–600.

    CAS  PubMed  Google Scholar 

  143. Sandhu MS, Luben R, Day NE, et al. Self-reported birth weight and subsequent risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2002;11:935–8.

    PubMed  Google Scholar 

  144. McCormack VA, dos Santos SI, Koupil I, et al. Birth characteristics and adult cancer incidence: Swedish cohort of over 11,000 men and women. Int J Cancer. 2005;115:611–17.

    CAS  PubMed  Google Scholar 

  145. Nilsen TI, Romundstad PR, Troisi R, et al. Birth size and colorectal cancer risk: a prospective population based study. Gut. 2005;54:1728–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Kim YI. Nutritional epigenetics: impact of folate deficiency on DNA methylation and colon cancer susceptibility. J Nutr. 2005;135:2703–9.

    CAS  PubMed  Google Scholar 

  147. Shabad LM, Sorokina JD, Golub NI, et al. Transplacental effect of some chemical compounds on organ cultures of embryonic kidney tissue. Cancer Res. 1972;32:617–27.

    CAS  PubMed  Google Scholar 

  148. Castro DJ, Lohr CV, Fischer KA, et al. Lymphoma and lung cancer in offspring born to pregnant mice dosed with dibenzo[a, l]pyrene: the importance of in utero vs. lactational exposure. Toxicol Appl Pharmacol. 2008;233:454–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Anderson LM. Two crops of primary lung tumors in BALB/c mice after a single transplacental exposure to urethane. Cancer Lett. 1978;5:55–9.

    CAS  PubMed  Google Scholar 

  150. Armuth V, Berenblum I. Tritiated thymidine as a broad spectrum initiator in transplacental two-stage carcinogenesis, with phorbol as promoter. Int J Cancer. 1979;24:355–8.

    CAS  PubMed  Google Scholar 

  151. York RG, Stemmer K, Manson JM. Lung tumorigenesis and hyperplasia in offspring associated with the Ahd allele following in utero exposure to 3-methylcholanthrene. Toxicol Appl Pharmacol. 1984;72:427–39.

    CAS  PubMed  Google Scholar 

  152. Wessner LL, Fan M, Schaeffer DO, et al. Mouse lung tumors exhibit specific Ki-ras mutations following transplacental exposure to 3-methylcholanthrene. Carcinogenesis. 1996;17:1519–26.

    CAS  PubMed  Google Scholar 

  153. Leone-Kabler S, Wessner LL, McEntee MF, et al. Ki-ras mutations are an early event and correlate with tumor stage in transplacentally-induced murine lung tumors. Carcinogenesis. 1997;18:1163–8.

    CAS  PubMed  Google Scholar 

  154. Miller MS, Leone-Kabler S, Rollins LA, et al. Molecular pathogenesis of transplacentally induced mouse lung tumors. Exp Lung Res. 1998;24:557–77.

    CAS  PubMed  Google Scholar 

  155. Miller MS, Gressani KM, Leone-Kabler S, et al. Differential sensitivity to lung tumorigenesis following transplacental exposure of mice to polycyclic hydrocarbons, heterocyclic amines, and lung tumor promoters. Exp Lung Res. 2000;26:709–30.

    CAS  PubMed  Google Scholar 

  156. Jennings-Gee JE, Moore JE, Xu M, et al. Strain-specific induction of murine lung tumors following in utero exposure to 3-methylcholanthrene. Mol Carcinog. 2006;45:676–84.

    CAS  PubMed  Google Scholar 

  157. Koujitani T, Ton TV, Lahousse SA, et al. K-ras cancer gene mutations in lung tumors from female Swiss (CD-1) mice exposed transplacentally to 3′-azido-3′-deoxythymidine. Environ Mol Mutagen. 2008;49:720–6.

    CAS  PubMed  Google Scholar 

  158. Mizesko MC. Alterations at the Ink4a locus in transplacentally induced murine lung tumors. Cancer Lett. 2001;172:59–66.

    CAS  PubMed  Google Scholar 

  159. Anderson LM, Hagiwara A, Kovatch RM, et al. Transplacental initiation of liver, lung, neurogenic, and connective tissue tumors by N-nitroso compounds in mice. Fundam Appl Toxicol. 1989;12:604–20.

    CAS  PubMed  Google Scholar 

  160. Anderson LM, Hecht SS, Dixon DE, et al. Evaluation of the transplacental tumorigenicity of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in mice. Cancer Res. 1989;49:3770–5.

    CAS  PubMed  Google Scholar 

  161. Waalkes MP, Ward JM, Liu J, et al. Transplacental carcinogenicity of inorganic arsenic in the drinking water: induction of hepatic, ovarian, pulmonary, and adrenal tumors in mice. Toxicol Appl Pharmacol. 2003;186:7–17.

    CAS  PubMed  Google Scholar 

  162. Waalkes MP, Ward JM, Diwan BA. Induction of tumors of the liver, lung, ovary and adrenal in adult mice after brief maternal gestational exposure to inorganic arsenic: promotional effects of postnatal phorbol ester exposure on hepatic and pulmonary, but not dermal cancers. Carcinogenesis. 2004;25:133–41.

    CAS  PubMed  Google Scholar 

  163. Shen J, Liu J, Xie Y, et al. Fetal onset of aberrant gene expression relevant to pulmonary carcinogenesis in lung adenocarcinoma development induced by in utero arsenic exposure. Toxicol Sci. 2007;95:313–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Tokar EJ, Diwan BA, Waalkes MP. Renal, hepatic, pulmonary and adrenal tumors induced by prenatal inorganic arsenic followed by dimethylarsinic acid in adulthood in CD1 mice. Toxicol Lett. 2012;209:179–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Yu Z, Mahadevan B, Lohr CV, et al. Indole-3-carbinol in the maternal diet provides chemoprotection for the fetus against transplacental carcinogenesis by the polycyclic aromatic hydrocarbon dibenzo[a, l]pyrene. Carcinogenesis. 2006;27:2116–23.

    CAS  PubMed  Google Scholar 

  166. Castro DJ, Lohr CV, Fischer KA, et al. Identifying efficacious approaches to chemoprevention with chlorophyllin, purified chlorophylls and freeze-dried spinach in a mouse model of transplacental carcinogenesis. Carcinogenesis. 2009;30:315–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Goel R, Olshan AF, Ross JA, et al. Maternal exposure to medical radiation and Wilms tumor in the offspring: a report from the Children’s Oncology Group. Cancer Causes Control. 2009;20:957–63.

    PubMed Central  PubMed  Google Scholar 

  168. Stjernfeldt M, Berglund K, Lindsten J, et al. Maternal smoking during pregnancy and risk of childhood cancer. Lancet. 1986;1:1350–2.

    CAS  PubMed  Google Scholar 

  169. Olshan AF, Breslow NE, Daling JR, et al. Wilms’ tumor and paternal occupation. Cancer Res. 1990;50:3212–17.

    CAS  PubMed  Google Scholar 

  170. Jemal A, Siegel R, Ward E, et al. Cancer statistics. CA Cancer J Clin. 2009;l59:225–49.

    Google Scholar 

  171. Parkin DM, Bray F, Ferlay J, et al. Estimating the world cancer burden: Globocan 2000. Int J Cancer. 2001;94:153–6.

    CAS  PubMed  Google Scholar 

  172. Mandel JS, McLaughlin JK, Schlehofer B, et al. International renal-cell cancer study. IV. Occupation. Int J Cancer. 1995;61:601–5.

    CAS  PubMed  Google Scholar 

  173. La Vecchia C, Negri E, D’Avanzo B, et al. Smoking and renal cell carcinoma. Cancer Res. 1990;50:5231–3.

    PubMed  Google Scholar 

  174. Hunt JD, van der Hel OL, McMillan GP, et al. Renal cell carcinoma in relation to cigarette smoking: meta-analysis of 24 studies. Int J Cancer. 2005;114:101–8.

    CAS  PubMed  Google Scholar 

  175. Yu MC. Cigarette smoking, obesity, diuretic use, and coffee consumption as risk factors for renal cell carcinoma. J Natl Cancer Inst. 1986;77:351–6.

    CAS  PubMed  Google Scholar 

  176. Byrne J. Reproductive problems and birth defects in survivors of Wilms’ tumor and their relatives. Med Pediatr Oncol. 1988;16:233–40.

    CAS  PubMed  Google Scholar 

  177. Bergstrom A, Lindblad P, Wolk A. Birth weight and risk of renal cell cancer. Kidney Int. 2001;59:1110–13.

    CAS  PubMed  Google Scholar 

  178. Leisenring WM, Breslow NE, Evans IE, et al. Increased birth weights of National Wilms’ Tumor Study patients suggest a growth factor excess. Cancer Res. 1994;54:4680–3.

    CAS  PubMed  Google Scholar 

  179. Greaves M. A natural history for pediatric acute leukemia. Blood. 1993;82:1043–51.

    CAS  PubMed  Google Scholar 

  180. Ross JA, Potter JD, Robison LL. Infant leukemia, topoisomerase II inhibitors, and the MLL gene. J Natl Cancer Inst. 1994;86:1678–80.

    CAS  PubMed  Google Scholar 

  181. Feychting M, Ahlbom A. Magnetic fields and cancer in children residing near Swedish high-voltage power lines. Am J Epidemiol. 1993;138:467–81.

    CAS  PubMed  Google Scholar 

  182. Mezei G, Kheifets L. Selection bias and its implications for case–control studies: a case study of magnetic field exposure and childhood leukaemia. Int J Epidemiol. 2006;35:397–406.

    PubMed  Google Scholar 

  183. Kheifets L, Swanson J, Greenland S. Childhood leukemia, electric and magnetic fields, and temporal trends. Bioelectromagnetics. 2006;27:545–52.

    PubMed  Google Scholar 

  184. Bailey HD, Miller M, Langridge A, et al. Maternal dietary intake of folate and vitamins b6 and B12 during pregnancy and the risk of childhood acute lymphoblastic leukemia. Nutr Cancer. 2012;64:1122–30.

    CAS  PubMed  Google Scholar 

  185. Bailey HD, Armstrong BK, de Klerk NH, et al. Exposure to diagnostic radiological procedures and the risk of childhood acute lymphoblastic leukemia. Cancer Epidemiol Biomarkers Prev. 2010;19:2897–909.

    PubMed  Google Scholar 

  186. Kwan ML, Jensen CD, Block G, et al. Maternal diet and risk of childhood acute lymphoblastic leukemia. Public Health Rep. 2009;124:503–14.

    PubMed Central  PubMed  Google Scholar 

  187. Petridou ET, Sergentanis TN, Panagopoulou P, et al. In vitro fertilization and risk of childhood leukemia in Greece and Sweden. Pediatr Blood Cancer. 2012;58:930–6.

    PubMed  Google Scholar 

  188. Hemminki K, Kyyronen P, Vaittinen P. Parental age as a risk factor of childhood leukemia and brain cancer in offspring. Epidemiology. 1999;10:271–5.

    CAS  PubMed  Google Scholar 

  189. Hori M, Ami Y, Kushida S, et al. Intrauterine transmission of human T-cell leukemia virus type I in rats. J Virol. 1995;69:1302–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Uemura Y, Kotani S, Yoshimoto S, et al. Mother-to-offspring transmission of human T cell leukemia virus type I in rabbits. Blood. 1987;69:1255–8.

    CAS  PubMed  Google Scholar 

  191. Reid A, Glass DC, Bailey HD, et al. Parental occupational exposure to exhausts, solvents, glues and paints, and risk of childhood leukemia. Cancer Causes Control. 2011;22:1575–85.

    PubMed  Google Scholar 

  192. Castro DJ, Baird WM, Pereira CB, et al. Fetal mouse Cyp1b1 and transplacental carcinogenesis from maternal exposure to dibenzo(a, l)pyrene. Cancer Prev Res (Phila). 2008;1:128–34.

    CAS  Google Scholar 

  193. Wigle DT, Turner MC, Krewski D. A systematic review and meta-analysis of childhood leukemia and parental occupational pesticide exposure. Environ Health Perspect. 2009;117:1505–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Monge P, Wesseling C, Guardado J, et al. Parental occupational exposure to pesticides and the risk of childhood leukemia in Costa Rica. Scand J Work Environ Health. 2007;33:293–303.

    CAS  PubMed  Google Scholar 

  195. Yu Z, Loehr CV, Fischer KA, et al. In utero exposure of mice to dibenzo[a, l]pyrene produces lymphoma in the offspring: role of the aryl hydrocarbon receptor. Cancer Res. 2006;66:755–62.

    CAS  PubMed  Google Scholar 

  196. Perez-Saldivar ML, Ortega-Alvarez MC, Fajardo-Gutierrez A, et al. Father's occupational exposure to carcinogenic agents and childhood acute leukemia: a new method to assess exposure (a case–control study). BMC Cancer. 2008;8:7.

    PubMed Central  PubMed  Google Scholar 

  197. Infante-Rivard C, Deadman JE. Maternal occupational exposure to extremely low frequency magnetic fields during pregnancy and childhood leukemia. Epidemiology. 2003;14:437–41.

    PubMed  Google Scholar 

  198. Stjernfeldt M. Maternal smoking and irradiation during pregnancy as risk factors for child leukemia. Cancer Detect Prev. 1992;16:129–35.

    CAS  PubMed  Google Scholar 

  199. Little J. Epidemiology of childhood cancer. IARC Sci Publ. 1999;149:1–386.

    Google Scholar 

  200. Lehtinen M, Koskela P, Ogmundsdottir HM, et al. Maternal herpesvirus infections and risk of acute lymphoblastic leukemia in the offspring. Am J Epidemiol. 2003;158:207–13.

    PubMed  Google Scholar 

  201. Caballero OL. Maternal illness and drug/medication use during the period surrounding pregnancy and risk of childhood leukemia among offspring. Am J Epidemiol. 2007;165:27–35.

    Google Scholar 

  202. Shaw AK, Infante-Rivard C, Morrison HI. Use of medication during pregnancy and risk of childhood leukemia (Canada). Cancer Causes Control. 2004;15:931–7.

    PubMed  Google Scholar 

  203. Wen W. Parental medication use and risk of childhood acute lymphoblastic leukemia. Cancer. 2002;95:1786–94.

    PubMed  Google Scholar 

  204. Hjalgrim LL. Birth weight as a risk factor for childhood leukemia: a meta-analysis of 18 epidemiologic studies. Am J Epidemiol. 2003;158:724–35.

    PubMed  Google Scholar 

  205. Paltiel O, Harlap S, Deutsch L, et al. Birth weight and other risk factors for acute leukemia in the Jerusalem Perinatal Study cohort. Cancer Epidemiol Biomarkers Prev. 2004;13:1057–64.

    PubMed  Google Scholar 

  206. Deorah S, Lynch CF, Sibenaller ZA, et al. Trends in brain cancer incidence and survival in the United States: Surveillance, Epidemiology, and End Results Program, 1973 to 2001. Neurosurg Focus. 2006;20:E1.

    PubMed  Google Scholar 

  207. Samuelsen SO. Head circumference at birth and risk of brain cancer in childhood: a population-based study. Lancet Oncol. 2006;7:39–42.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, D., Huang, HF., Zhang, F., Zhang, RJ., Song, Y., Li, JY. (2014). Gamete/Embryo-Fetal Origins of Tumours. In: Huang, HF., Sheng, JZ. (eds) Gamete and Embryo-fetal Origins of Adult Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7772-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7772-9_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7771-2

  • Online ISBN: 978-94-007-7772-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics