Physiology of Embryonic Development

  • Ai-Xia Liu
  • Xin-Mei Liu
  • Yan-Ling Zhang
  • He-Feng Huang
  • Chen-Ming Xu
Chapter

Abstract

Human embryo development is a complex process. The life of an embryo begins when a male’s spermatozoa makes contact with a woman’s egg. A zygote cell, the very first representation of the fetus, is the result of this fertilization process. Contained within this one cell is the DNA of both the male and female, as well as the blueprint from which the fetus will develop. This chapter reviews some of the basic physiology of embryonic development.

Keywords

Amniotic Fluid Zona Pellucida Imprint Gene Trophoblast Cell Maternal Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arushi, Khurana I. Human embryology. 1st ed. New Delhi: CBS Publisher & Distributors Pvt Ltd.; 2010.Google Scholar
  2. 2.
    Gulyas BJ. A reexamination of cleavage patterns in eutherian mammalian eggs: rotation of blastomere pairs during second cleavage in the rabbit. J Exp Zool. 1975;193:235–48.PubMedCrossRefGoogle Scholar
  3. 3.
    Gardner RL. The early blastocyst is bilaterally symmetrical and its axis of symmetry is aligned with the animal-vegetal axis of the zygote in the mouse. Development. 1997;124:289–301.PubMedGoogle Scholar
  4. 4.
    Garner W, McLaren A. Cell distribution in chimaeric mouse embryos before implantation. J Embryol Exp Morphol. 1974;32:495–503.PubMedGoogle Scholar
  5. 5.
    Beddington RS, Robertson EJ. Axis development and early asymmetry in mammals. Cell. 1999;96:195–209.PubMedCrossRefGoogle Scholar
  6. 6.
    Gross PR, Cousineau GH. Synthesis of spindle-associated proteins in early cleavage. J Cell Biol. 1963;19:260–5.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Crosby IM, Gandolfi F, Moor RM. Control of protein synthesis during early cleavage of sheep embryos. J Reprod Fertil. 1988;82:769–75.PubMedCrossRefGoogle Scholar
  8. 8.
    Lee S, Gilula NB, Warner AE. Gap junctional communication and compaction during preimplantation stages of mouse development. Cell. 1987;51:851–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Levy JB, Johnson MH, Goodall H, et al. The timing of compaction: control of a major developmental transition in mouse early embryogenesis. J Embryol Exp Morphol. 1986;95:213–37.PubMedGoogle Scholar
  10. 10.
    Handyside AH. Distribution of antibody- and lectin-binding sites on dissociated blastomeres from mouse morulae: evidence for polarization at compaction. J Embryol Exp Morphol. 1980;60:99–116.PubMedGoogle Scholar
  11. 11.
    Pratt HP, Ziomek CA, Reeve WJ, et al. Compaction of the mouse embryo: an analysis of its components. J Embryol Exp Morphol. 1982;70:113–32.PubMedGoogle Scholar
  12. 12.
    Reeve WJ, Ziomek CA. Distribution of microvilli on dissociated blastomeres from mouse embryos: evidence for surface polarization at compaction. J Embryol Exp Morphol. 1981;62:339–50.PubMedGoogle Scholar
  13. 13.
    Sutherland AE, Speed TP, Calarco PG. Inner cell allocation in the mouse morula: the role of oriented division during fourth cleavage. Dev Biol. 1990;137:13–25.PubMedCrossRefGoogle Scholar
  14. 14.
    Carlson BM. Foundations of embryology. 6th ed. New York: McGraw-Hill; 1996.Google Scholar
  15. 15.
    Barlow PW, Sherman MI. The biochemistry of differentiation of mouse trophoblast: studies on polyploidy. J Embryol Exp Morphol. 1972;27:447–65.PubMedGoogle Scholar
  16. 16.
    Johnson MH, McConnell JM. Lineage allocation and cell polarity during mouse embryogenesis. Semin Cell Dev Biol. 2004;15:583–97.PubMedCrossRefGoogle Scholar
  17. 17.
    Marikawa Y, Alarcón VB. Establishment of trophectoderm and inner cell mass lineages in the mouse embryo. Mol Reprod Dev. 2009;76:1019–32.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Müntener M, Hsu YC. Development of trophoblast and placenta of the mouse. A reinvestigation with regard to the in vitro culture of mouse trophoblast and placenta. Acta Anat (Basel). 1977;98:241–52.CrossRefGoogle Scholar
  19. 19.
    Fleming TP. A quantitative analysis of cell allocation to trophectoderm and inner cell mass in the mouse blastocyst. Dev Biol. 1987;119:520–31.PubMedCrossRefGoogle Scholar
  20. 20.
    Pijnenborg R, Robertson WB, Brosens I, et al. Review article: trophoblast invasion and the establishment of haemochorial placentation in man and laboratory animals. Placenta. 1981;2:71–91.PubMedCrossRefGoogle Scholar
  21. 21.
    Ziomek CA, Johnson MH. The roles of phenotype and position in guiding the fate of 16-cell mouse blastomeres. Dev Biol. 1982;91:440–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Yamanaka Y, Ralston A, Stephenson RO, et al. Cell and molecular regulation of the mouse blastocyst. Dev Dyn. 2006;235:2301–14.PubMedCrossRefGoogle Scholar
  23. 23.
    Goto T, Monk M. Regulation of X-chromosome inactivation in development in mice and humans. Microbiol Mol Biol Rev. 1998;62:362–78.PubMedCentralPubMedGoogle Scholar
  24. 24.
    McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984;37:179–83.PubMedCrossRefGoogle Scholar
  25. 25.
    Garbutt CL, Johnson MH, George MA. When and how does cell division order influence cell allocation to the inner cell mass of the mouse blastocyst? Development. 1987;100:325–32.PubMedGoogle Scholar
  26. 26.
    Gurdon JB, Byrne JA. The first half-century of nuclear transplantation. Proc Natl Acad Sci U S A. 2003;100:8048–52.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Smith JM. The theory of evolution. Cambridge: Cambridge University Press; 1993.Google Scholar
  28. 28.
    Gibert SF. Developmental biology. Sunderland: Sinauer Associates, Inc.; 2000.Google Scholar
  29. 29.
    Williams GC. Adaptation and natural selection. Princeton: Princeton University Press; 1996.Google Scholar
  30. 30.
    Gurdon JB, Hopwood N. The introduction of Xenopus laevis into developmental biology: of empire, pregnancy testing and ribosomal genes. Int J Dev Biol. 2000;44:43–50.PubMedGoogle Scholar
  31. 31.
    Sander K, Faessler PE. Introducing the Spemann-Mangold organizer: experiments and insights that generated a key concept in developmental biology insights that generated a key concept in developmental biology. Int J Dev Biol. 2001;45:1–11.PubMedGoogle Scholar
  32. 32.
    Wolpert L, Jessell T, Lawrence P, et al. Principles of development. 3rd ed. Oxford: Oxford University Press; 2007.Google Scholar
  33. 33.
    Davidson EH. Gene activity in early development. 2nd ed. New York: Academic; 1976. p. 452.Google Scholar
  34. 34.
    Gandolfi TA, Gandolfi F. The maternal legacy to the embryo: cytoplasmic components and their effects on early development. Theriogenology. 2001;55:1255–76.PubMedCrossRefGoogle Scholar
  35. 35.
    Memili E, First NL. Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote. 2000;8:87–96.PubMedCrossRefGoogle Scholar
  36. 36.
    Biggers JD, Borland RM. Physiological aspects of growth and development of the preimplantation mammalian embryo. Annu Rev Physiol. 1976;38:95–119.PubMedCrossRefGoogle Scholar
  37. 37.
    Dworkin MB, Dworkin-Rastl E. Functions of maternal mRNA in early development. Mol Reprod Dev. 1990;26:261–97.PubMedCrossRefGoogle Scholar
  38. 38.
    Wang Q, Chung YG, deVries WN, Struwe M, Latham KE. Role of protein synthesis in the development of a transcriptionally permissive state in one-cell stage mouse embryos. Biol Reprod. 2001;65:748–54.PubMedCrossRefGoogle Scholar
  39. 39.
    Bao S, Obata Y, Carroll J, et al. Epigenetic modifications necessary for normal development are established during oocyte growth in mice. Biol Reprod. 2000;62:616–21.PubMedCrossRefGoogle Scholar
  40. 40.
    Allegrucci C, Thurston A, Lucas E, et al. Epigenetics and the germline. Reproduction. 2005;129:137–49.PubMedCrossRefGoogle Scholar
  41. 41.
    Tada M, Tada T, Lefebvre L, et al. Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 1997;16:6510–20.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Simon I, Tenzen T, Reubinoff BE, et al. Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature. 1999;401:929–32.PubMedCrossRefGoogle Scholar
  43. 43.
    Hajkova P, Erhardt S, Lane N, et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev. 2002;117:15–23.PubMedCrossRefGoogle Scholar
  44. 44.
    Obata Y, Kono T. Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth. J Biol Chem. 2002;277:5285–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.PubMedCrossRefGoogle Scholar
  46. 46.
    DiZio SM, Tasca RJ. Sodium-dependent amino acid transport in preimplantation mouse embryos: III. Na+-K+-ATPase-linked mechanism in blastocysts. Dev Biol. 1977;59:198–205.PubMedCrossRefGoogle Scholar
  47. 47.
    Johansson M, Jansson T, Powell TL. Na(+)-K(+)-ATPase is distributed to microvillous and basal membrane of the syncytiotrophoblast in human placenta. Am J Physiol Regul Integr Comp Physiol. 2000;279:R287–94.PubMedGoogle Scholar
  48. 48.
    Vu TK, Liu RW, Haaksma CJ, Tomasek JJ, et al. Identification and cloning of the membrane-associated serine protease, hepsin, from mouse preimplantation embryos. J Biol Chem. 1997;272:31315–20.PubMedCrossRefGoogle Scholar
  49. 49.
    Perona RM, Wassarman PM. Mouse blastocysts hatch in vitro by using a trypsin-like proteinase associated with cells of mural trophectoderm. Dev Biol. 1986;114:42–52.PubMedCrossRefGoogle Scholar
  50. 50.
    Das SK, Wang XN, Paria BC, et al. Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of its apposition: a possible ligand for interaction with blastocyst EGF-receptor in implantation. Development. 1994;120:1071–83.PubMedGoogle Scholar
  51. 51.
    Aplin JD, Seif MW, Graham RA, et al. The endometrial cell surface and implantation. Expression of the polymorphic mucin MUC-1 and adhesion molecules during the endometrial cycle. Ann N Y Acad Sci. 1994;734:103–21.PubMedCrossRefGoogle Scholar
  52. 52.
    Sidhu SS, Kimber SJ. Hormonal control of H-type alpha(1–2)fucosyltransferase messenger ribonucleic acid in the mouse uterus. Biol Reprod. 1999;60(1):147–57.PubMedCrossRefGoogle Scholar
  53. 53.
    Gilbert SF. The epidermis and the origin of cutaneous structures. In: Developmental biology. 6th ed. Sunderland: Sinauer Associates; 2000.Google Scholar
  54. 54.
    Gilbert SF. Comparative embryology. In: Developmental biology. 6th ed. Sunderland: Sinauer Associates; 2000.Google Scholar
  55. 55.
    Gilbert SF. Early mammalian development. In: Developmental biology. 6th ed. Sunderland: Sinauer Associates; 2000.Google Scholar
  56. 56.
    Hall BK. The neural crest as a fourth germ layer and vertebrates as quadroblastic not triploblastic. Evol Dev. 2000;2:3–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Moore KL. The developing human. 2nd ed. Philadelphia: Saunders; 1977.Google Scholar
  58. 58.
    Moore KL. The developing human: clinically oriented embryology. 4th ed. Philadelphia: Saunders; 1988.Google Scholar
  59. 59.
    Moore KL. Before we are born. Basic embryology and birth defects. Philadelphia: Saunders; 1983.Google Scholar
  60. 60.
    Usher R, Shephard M, Lind J. The blood volume of the newborn infant and placental transfusion. Acta Paediatr. 1963;52:497–512.PubMedCrossRefGoogle Scholar
  61. 61.
    Jansson T, Powell TL. Human placental transport in altered fetal growth: does the placenta function as a nutrient sensor? A review. Placenta. 2006;27:S91.PubMedCrossRefGoogle Scholar
  62. 62.
    Sipes SL, Weiner CP, Wenstrom KD, et al. The association between fetal karyotype and mean corpuscular volume. Am J Obstet Gynecol. 1991;165:1371–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Pearson HA. Recent advances in hematology. J Pediatr. 1966;69:466–79.PubMedCrossRefGoogle Scholar
  64. 64.
    Weiner CP, Sipes SL, Wenstrom K. The effect of fetal age upon normal fetal laboratory values and venous pressure. Obstet Gynecol. 1992;79:713–18.PubMedGoogle Scholar
  65. 65.
    Fryer AA, Jones P, Strange R, et al. Plasma protein levels in normal human fetuses: 13 to 41 weeks’ gestation. Br J Obstet Gynaecol. 1993;100:850–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Foley ME, Isherwood DM, McNicol GP. Viscosity, hematocrit, fibrinogen and plasma proteins in maternal and cord blood. Br J Obstet Gynaecol. 1978;85:500–4.PubMedCrossRefGoogle Scholar
  67. 67.
    Koldovsky O, Heringova A, Jirsova V, et al. Transport of glucose against a concentration gradient in everted sacs of jejunum and ileum of human fetuses. Gastroenterology. 1965;48:185–7.PubMedGoogle Scholar
  68. 68.
    Miller AJ. Deglutition. Physiol Rev. 1982;62:129–84.PubMedGoogle Scholar
  69. 69.
    Pritchard JA. Fetal swallowing and amniotic fluid volume. Obstet Gynecol. 1966;28:606–10.PubMedGoogle Scholar
  70. 70.
    Lebenthal E, Lee PC. Review article. Interactions of determinants of the ontogeny of the gastrointestinal tract: a unified concept. Pediatr Res. 1983;1:19–24.CrossRefGoogle Scholar
  71. 71.
    Bashore RA, Smith F, Schenker S. Placental transfer and disposition of bilirubin in the pregnant monkey. Am J Obstet Gynecol. 1969;103:950–8.PubMedGoogle Scholar
  72. 72.
    Adam PAJ, Teramo K, Raiha N, et al. Human fetal insulin metabolism early in gestation: response to acute elevation of the fetal glucose concentration and placental transfer of human insulin-I-131. Diabetes. 1969;18:409–16.PubMedCrossRefGoogle Scholar
  73. 73.
    Obenshain SS, Adam PAJ, King KC, et al. Human fetal insulin response to sustained maternal hyperglycemia. N Engl J Med. 1970;283:566–70.PubMedCrossRefGoogle Scholar
  74. 74.
    Werlin SL. Exocrine pancreas. In: Polin RA, Fox WW, editors. Fetal and neonatal physiology. Philadelphia: Saunders; 1992. p. 1047.Google Scholar
  75. 75.
    Davis MM, Hodes ME, Munsick RA, et al. Pancreatic amylase expression in human pancreatic development. Hybridoma. 1986;5:137–45.PubMedCrossRefGoogle Scholar
  76. 76.
    Saxén L, Sariola H. Early organogenesis of the kidney. Pediatr Nephrol. 1987;1:385–92.PubMedCrossRefGoogle Scholar
  77. 77.
    Geelhoed JJ, Verburg BO, Nauta J, et al. Tracking and determinants of kidney size from fetal life until the age of 2 years: the Generation R Study. Am J Kidney. 2009;53(2):248–58.CrossRefGoogle Scholar
  78. 78.
    Smith FG, Nakamura KT, Segar JL et al. In: Polin RA, Fox WW, editors. Fetal and neonatal physiology, vol 2, Chap. 114. Philadelphia: Saunders; 1992. p. 1187.Google Scholar
  79. 79.
    Wladimiroff JW, Campbell S. Fetal urine-production rates in normal and complicated pregnancy. Lancet. 1974;1:151–4.PubMedCrossRefGoogle Scholar
  80. 80.
    Chard T, Hudson CN, Edwards CRW, et al. Release of oxytocin and vasopressin by the human foetus during labour. Nature. 1971;234:352–4.PubMedCrossRefGoogle Scholar
  81. 81.
    Polin RA, Husain MK, James LS, et al. High vasopressin concentrations in human umbilical cord blood—lack of correlation with stress. J Perinat Med. 1977;5:114–19.PubMedCrossRefGoogle Scholar
  82. 82.
    Ballabio M, Nicolini U, Jowett T, et al. Maturation of thyroid function in normal human foetuses. Clin Endocrinol. 1989;31:565–71.CrossRefGoogle Scholar
  83. 83.
    Thorpe-Beeston JG, Nicolaides KH, Felton CV, et al. Maturation of the secretion of thyroid hormone and thyroid-stimulating hormone in the fetus. N Engl J Med. 1991;324:532–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Wenstrom KD, Weiner CP, Williamson RA, et al. Prenatal diagnosis of fetal hyperthyroidism using funipuncture. Obstet Gynecol. 1990;76:513–17.PubMedGoogle Scholar
  85. 85.
    Vulsma T, Gons MH, De Vijlder JJ. Maternal-fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect or thyroid agenesis. N Engl J Med. 1989;321:13–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Koff AK. Development of the vagina in the human fetus. Contrib Embryol. 1933;24:59–91.PubMedGoogle Scholar
  87. 87.
    Konishi I, Fujii S, Okamura H, et al. Development of interstitial cells and ovigerous cords in the human fetal ovary: an ultrastructural study. J Anat. 1986;148:121–35.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Bozzetti P, Ferrari MM, Marconi AM, et al. The relationship of maternal and fetal glucose concentrations in the human from midgestation until term. Metabolism. 1988;37:358–63.PubMedCrossRefGoogle Scholar
  89. 89.
    Hauguel-de Mouzon S, Lepercq J, Catalano P. The known and unknown of leptin in pregnancy. Am J Obstet Gynecol. 2006;193(6):1537–45.CrossRefGoogle Scholar
  90. 90.
    Grisaru-Granovsy S, Samueloff A, Elstein D. The role of leptin in fetal growth: a short review from conception to delivery. Eur J Obstet Gynecol Reprod Biol. 2008;136(2):146–50.CrossRefGoogle Scholar
  91. 91.
    Kimura RE. Lipid metabolism in the fetal-placental unit. In: Cowett RM, editor. Principles of perinatal-neonatal metabolism. New York: Springer; 1991. p. 291.Google Scholar
  92. 92.
    Lemons JA. Fetal placental nitrogen metabolism. Semin Perinatol. 1979;3:177–90.PubMedGoogle Scholar
  93. 93.
    Morriss FH Jr, Boyd RDH, Manhendren D. Placental transport. In: Knobil E, Neill J, editors. The physiology of reproduction, vol II. New York: Raven; 1994. p. 813.Google Scholar
  94. 94.
    Fowden AL, Ward JW, Wooding FP, et al. Programming placental nutrient transport capacity. J Physiol. 2006;572(1):5–15.PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Jansson T, Powell TL. IFPA 2005 Award in Placentology Lecture. Human placental transport in altered fetal growth: does the placenta function as a nutrient sensor? – a review. Placenta. 2006;27:S91–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Gitlin D, Kumate J, Morales C, et al. The turnover of amniotic fluid protein in the human conceptus. Am J Obstet Gynecol. 1972;113:632–45.PubMedGoogle Scholar
  97. 97.
    Abbas SK, Pickard DW, Illingworth D, et al. Measurement of PTH-rP protein in extracts of fetal parathyroid glands and placental membranes. J Endocrinol. 1990;124:319–25.PubMedCrossRefGoogle Scholar
  98. 98.
    Hellman P, Ridefelt P, Juhlin C, et al. Parathyroid-like regulation of parathyroid hormone related protein release and cytoplasmic calcium in cytotrophoblast cells of human placenta. Arch Biochem Biophys. 1992;293:174–80.PubMedCrossRefGoogle Scholar
  99. 99.
    Gilbert WM, Brace RA. Amniotic fluid volume and normal flows to and from the amniotic cavity. Semin Perinatol. 1993;17:150–7.PubMedGoogle Scholar
  100. 100.
    Brace RA, Wolf EJ. Normal amniotic fluid volume changes throughout pregnancy. Am Obstet Gynecol. 1989;161:382–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ai-Xia Liu
    • 1
    • 2
  • Xin-Mei Liu
    • 1
    • 2
  • Yan-Ling Zhang
    • 1
    • 2
  • He-Feng Huang
    • 1
    • 2
  • Chen-Ming Xu
    • 1
    • 2
  1. 1.The Key Laboratory of Reproductive GeneticsZhejiang University, Ministry of EducationHangzhouPeople’s Republic of China
  2. 2.Department of Reproductive EndocrinologyWomen’s Hospital, School of Medicine, Zhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations