Cell-Free Layer (CFL) Measurements in Complex Geometries: Contractions and Bifurcations

  • Susana Novais
  • Diana Pinho
  • David Bento
  • Elmano Pinto
  • Tomoko Yaginuma
  • Carla S. Fernandes
  • Valdemar Garcia
  • Ana I. Pereira
  • José Lima
  • Maite Mujika
  • Ricardo Dias
  • Sergio Arana
  • Rui Lima
Chapter
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 12)

Abstract

In this chapter we discuss the cell-free layer (CFL) developed adjacent to the wall of microgeometries containing complex features representative of the microcirculation, such as contractions, expansions, bifurcations and confluences. The microchannels with the different geometries were made of polydimethylsiloxane (PDMS) and we use optical techniques to evaluate the cell-free layer for red blood cells (RBCs) suspensions with different hematocrit (Hct). The images are captured using a high-speed video microscopy system and the thickness of the cell-free layer was measured using both manual and automatic image analysis techniques. The results show that in in vitro microcirculation, the hematocrit and the geometrical configuration have a major impact on the CFL thickness. In particular, the thickness of the cell-free layer increases as the fluid flows through a contraction–expansion sequence and that this increase is enhanced for lower hematocrit. In contrast, the flow rates tested in these studies did not show a clear influence on the CFL thickness.

Keywords

Automatic Method Expansion Ratio Mold Master PDMS Microchannel Sudden Contraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge the financial support provided by: PTDC/SAU-BEB/108728/2008, PTDC/SAU-BEB/105650/2008, PTDC/EME-MFE/099109/2008 and PTDC/SAU-ENB/116929/2010 from FCT (Science and Technology Foundation), COMPETE, QREN and European Union (FEDER). The authors are grateful to Mónica Oliveira for many valuable comments on this study.

References

  1. Abramoff M, Magelhaes P, Ram S (2004) Image processing with image. J Int Biophotonics 11:36–42Google Scholar
  2. Bovik A (2009) The essential guide to image processing. Elsevier, BurlingtonGoogle Scholar
  3. Caro C, Pedley T, Schroter R, Seed W (1978). The mechanics of the circulation. Oxford University Press, USAGoogle Scholar
  4. Eddins SL, Gonzalez RC, Woods RE (2002). Digital image processing using matlab. Prentice Hall, NJGoogle Scholar
  5. Faivre M, Abkarian M, Bickraj K, Stone H (2006) Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma. Biorheology 43:147Google Scholar
  6. Fedosov DA, Caswell B, Popel AS, Karniadakis G (2010) Blood flow and cell-free layer in microvessels. Microcirculation 17(8):615–628CrossRefGoogle Scholar
  7. Fujiwara H, Ishikawa T, Lima R, Matsuki N, Imai Y, Kaji H, Nishizawa M, Yamaguchi T (2009) Red blood cell motions in high-hematocrit blood flowing through a stenosed microchannel. J Biomech 42:838–843CrossRefGoogle Scholar
  8. Garcia V, Dias R, Lima R (2012). In vitro blood flow behaviour in microchannels with simple and complex geometries. In: Dr. Ganesh R.N (ed) Applied biological engineering–principles and practice, ISBN: 978-953-51-0412-4. InTech, 393–416Google Scholar
  9. Goldsmith H, Cokelet G, Gaehtgens P (1989) Robin Fahraeus: evolution of his concepts in cardiovascular physiology. Am J Physiol 257:H1005–H10015Google Scholar
  10. Hou HW, Bhagat AA, Chong AG, Mao P, Tan KS, Han J, Lim CT (2010) Deformability based cell margination–a simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip 10:2605–2613CrossRefGoogle Scholar
  11. Kim S, Kong RL, Popel AS, Intaglietta M, Jonhson PC (2006) A computer—based for determination of cell-free layer width in microcirculation. Microcirculation 13:199–207CrossRefGoogle Scholar
  12. Kim S, Kai Ong P, Yalcin O, Intaglietta M, Johnson PC (2009). The cell-free layer in microvascular blood flow. Biorheology 46(3): 181–189Google Scholar
  13. Leble V, Lima R, Dias R, Fernandes C, Ishikawa T, Imai Y, Yamaguchi T (2011) Asymmetry of red blood cell motions in a microchannel with a diverging and converging bifurcation. Biomicrofluidics 5:044120CrossRefGoogle Scholar
  14. Lima R, Wada S, Takeda M, Tsubota K, Yamaguchi T (2007) In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the hematocrit on instantaneous velocity profiles. J Biomech 40:2752–2757CrossRefGoogle Scholar
  15. Lima R, Ishikawa T, Imai Y, Takeda M, Wada S, Yamaguchi T (2008) Radial dispersion of red blood cells in blood flowing through glass capillaries: role of heamatocrit and geometry. J Biomech 44:2188–2196CrossRefGoogle Scholar
  16. Lima R, Ishikawa T, Imai Y, Takeda M, Wada S, Yamaguchi T (2009a) Measurement of individual red blood cell motions under high hematocrit conditions using a confocal micro-PTV system. Ann Biomed Eng 37:1546–1559CrossRefGoogle Scholar
  17. Lima R, Oliveira MSN, Ishikawa T, Kaji H, Tanaka S, Nishizawa M, Yamaguchi T (2009b) Axisymmetric polydimethysiloxane microchannels for in vitro hemodynamic studies. Biofabrication 1:1–7CrossRefGoogle Scholar
  18. Lima R, Fernandes C, Dias R, Ishikawa T, Imai Y, Yamaguchi T (2011). Microscale flow dynamics of red blood cells in microchannels: an experimental and numerical analysis. In: Tavares J (ed) Computational vision and medical image processing: recent trends, vol 19. Springer 297–309Google Scholar
  19. Lima R, Ishikawa T, Imai Y, Yamaguchi T (2012a). Blood flow behavior in microchannels: advances and future trends. In: Ricardo D.M, Rui L, Antonio A, Teresa M.M (eds) Single and two-phase flows on chemical and biomedical engineering. Bentham Sci 513–547Google Scholar
  20. Lima R, Ishikawa T, Imai Y, Yamaguchi T (2012b). Confocal micro-PIV/PTV measurements of the blood flow in micro-channels. In: Collins M.W, Koenig C.S (eds), Nano and micro flow systems for bioanalysis. Springer, New York, 131–152Google Scholar
  21. Maeda N (1996) Erythrocyte rheology in microcirculation. Jpn J Physiol 46:1–14CrossRefGoogle Scholar
  22. Maeda N, Suzuki Y, Tanaka J, Tateishi N (1996) Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance. Am J Physiol 271 Heart Circ Physiol 40:H2454–H2461Google Scholar
  23. MatLab (2010). The mathworks, Inc., version 7.11. Image processing toolbox version 7.1 user’s guideGoogle Scholar
  24. Meijering E, Smal I, Danuser G (2006) Tracking in molecular bioimaging. IEEE Signal Process Mag 23:46–53CrossRefGoogle Scholar
  25. Namgung B, Ong PK, Wong YH, Lim D, Chun KC, Kim S (2010) A comparative study of histogram-based thresholding of cell-free layer wisth in small blood vessels. Physiol Meas 31:N61–N70CrossRefGoogle Scholar
  26. Pinho D, Lima R, Pereira AI, Gayubo F (2012) Automatic tracking of labeled red blood cells in microchannels. Int J for Numer Methods Biomed Eng. doi: 10.1002/cnm.2526 Google Scholar
  27. Pinho D, Lima R, Pereira AI, Gayubo F (2013). Tracking red blood cells in microchannels: a comparative study between an automatic and a manual method. In Tavares JMRS, Natal Jorge RM (eds), Topics in medical image processing and computational vision, vol 8. Springer, Heidelberg. doi :10.1007/978-94-007-0726-9_9Google Scholar
  28. Pries AR, Neuhaus D, Gaehtgens P (1992) Blood viscosity in tube flow-dependence on diameter and hematocrit. Am J Physiol 263:H1770–H1778Google Scholar
  29. Shevkoplyas SS, Yoshida T, Munn LL, Bitensky MW (2005) Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device. Anal Chem 77:933–937CrossRefGoogle Scholar
  30. Sollier E, Cubizolles M, Fouillet Y, Achard JL (2010) Fast and continuous plasma extraction from whole human blood based on expanding cell-free layer devices. Biomed Microdevices 12:485–497CrossRefGoogle Scholar
  31. Suzuki Y, Tateishi N, Soutan M, Maeda N (1996) Deformation of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformability. Microcirculation 3:49–57CrossRefGoogle Scholar
  32. Tateishi N, Suzuki Y, Soutani M, Maeda N (1994) Flow dynamics of erythrocytes in microvessels of isolated rabbit mesentery: cell-free layer and flow resistance. J Biomech 27:1119–1125CrossRefGoogle Scholar
  33. Yaginuma T, Oliveira MSN, Lima R, Ishikawa T, Yamaguchi T (2011). Red blood cell deformation in flows through a PDMS hyperbolic microchannel. In: Proceedings of TechConnect World 2011—Microtech Conference and Expo, vol 2. Boston, USA, p 505Google Scholar
  34. Yaginuma T, Oliveira MSN, Lima R, Ishikawa T, Yamaguchi T (2013). Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-shaped microchannel. Biomicrofluidics 7:054110Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Susana Novais
    • 1
  • Diana Pinho
    • 1
    • 2
  • David Bento
    • 1
    • 2
  • Elmano Pinto
    • 1
    • 2
  • Tomoko Yaginuma
    • 1
  • Carla S. Fernandes
    • 1
  • Valdemar Garcia
    • 1
  • Ana I. Pereira
    • 1
    • 3
  • José Lima
    • 1
    • 4
  • Maite Mujika
    • 5
  • Ricardo Dias
    • 1
    • 2
  • Sergio Arana
    • 5
  • Rui Lima
    • 1
    • 2
  1. 1.ESTiGPolytechnic Institute of BragançaBragançaPortugal
  2. 2.CEFTFaculdade de Engenharia da Universidade do Porto (FEUP)PortoPortugal
  3. 3.Algoritmi University of MinhoBragaPortugal
  4. 4.INESCFaculdade de Engenharia da Universidade do Porto (FEUP)PortoPortugal
  5. 5.CEIT and TecnunUniversity of NavarraDonostia-San SebastiánSpain

Personalised recommendations