Flow on the Surface of the Tracheal Lumen by Ciliary Motion of Asymmetric Axonemal Structures

  • Hironori Ueno
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 12)


Recently, advances in optics and digital image processing techniques have been accompanied by an improvement in the visualization of biologically complex flow by using fluorescent particles, such as particle image velocimetry (PIV) and particle tracking velocimetry (PTV). In addition, visualization of cellular ultrastructure using cryoelectron tomography has revealed the structural arrangements of cytoskeletal complexes and macromolecules in intracellular membranes and organelles. In this chapter, we focus on cilia-generated directional flow. Many eukaryotic cells have developed cilia, an organelle present on cell surfaces that enables motion and generates fluid flow on the cell surface. The complex flow and axonemal structure in mouse airways were previously not well understood. Here, we describe the flow field generated by asymmetric ciliary motion on the surface of sparsely distributed ciliated cells in mouse tracheal epithelial cells by the μ-PIV/PTV method. Moreover, we describe the axonemal structure of respiratory cilia by using data from cryoelectron tomography and image processing.


Cilia Cryo-electron tomography Dynein Flagella Fluid flow Airway 





Periciliary liquid layer


Inner dynein arm


Micro-particle tracking velocimetry


Micro-particle image velocimetry


Cystic fibrosis


Chronic obstructive pulmonary disorder


Quantum dots


Charge-coupled device


Electron multiplier type CCD camera


Phosphate buffered saline


Outer dynein arm


Dynein regulatory complex


Intermediate chain



We would like to thank Takashi Ishikawa and Khanh Huy Buy for helpful advice of cryoelectron tomography and image processing, Takuji Ishikawa and Takami Yamaguchi for discussion of ciliary flow, and Toshiki Yagi for advice of the phylogenetic analysis. We took some cryo electron microscopic images using Tecnai G3 Polara in the Medical Institute of Bioregulation, Kyushu University. This study was supported by a Grant-in-Aid for Young Scientists (B) from the JSPS (No. 24770145) to Hironori Ueno and by a Grant-in-Aid for Scientific Research on Innovative Areas ‘‘Nanomedicine Molecular Science’’ (No. 24107504) to Hironori Ueno from Ministry of Education, Culture, Sports, Science, and Technology of Japan.


  1. Afzelius BA (1976) A human syndrome caused by immotile cilia. Science 193(4250):317–319CrossRefGoogle Scholar
  2. Bui KH, Sakakibara H, Movassagh T, Oiwa K, Ishikawa T (2008) Molecular architecture of inner dynein arms in situ in Chlamydomonas reinhardtii flagella. J Cell Biol 183(5):923–932CrossRefGoogle Scholar
  3. Bui KH, Sakakibara H, Movassagh T, Oiwa K, Ishikawa T (2009) Asymmetry of inner dynein arms and inter-doublet links in Chlamydomonas flagella. J Cell Biol 186(3):437–446CrossRefGoogle Scholar
  4. Bui KH, Yagi T, Yamamoto R, Kamiya R, Ishikawa T (2012) Polarity and asymmetry in the arrangement of dynein and related structures in the Chlamydomonas axoneme. J Cell Biol 198(5):913–925CrossRefGoogle Scholar
  5. Daviskas E, Anderson SD, Young IH (2007) Inhaled mannitol changes the sputum properties in asthmatics with mucus hypersecretion. Respirology 12(5):683–691CrossRefGoogle Scholar
  6. Dirksen ER, Satir P (1972) Ciliary activity in the mouse oviduct as studied by transmission and scanning electron microscopy. Tissue Cell 4(3):389–403CrossRefGoogle Scholar
  7. Drescher K, Goldstein RE, Michel N, Polin M, Tuval I (2010) Direct measurement of the flow field around swimming microorganisms. Phys Rev Lett 105(16):168101CrossRefGoogle Scholar
  8. Fliegauf M, Olbrich H, Horvath J, Wildhaber JH, Zariwala MA, Kennedy M, Knowles MR, Omran H (2005) Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am J Respir Crit Care Med 171(12):1343–1349CrossRefGoogle Scholar
  9. Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadj M, Leith A (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116(1):190–199CrossRefGoogle Scholar
  10. Goldstein RE, Polin M, Tuval I (2011) Emergence of synchronized beating during the regrowth of eukaryotic flagella. Phys Rev Lett 107(14):148103CrossRefGoogle Scholar
  11. Guasto JS, Johnson KA, Gollub JP (2010) Oscillatory flows induced by microorganisms swimming in two dimensions. Phys Rev Lett 105(16):168102CrossRefGoogle Scholar
  12. Gueron S, Levit-Gurevich K (1999) Energetic considerations of ciliary beating and the advantage of metachronal coordination. Proc Natl Acad Sci U S A 96(22):12240–12245CrossRefMATHGoogle Scholar
  13. Guirao B, Joanny JF (2007) Spontaneous creation of macroscopic flow and metachronal waves in an array of cilia. Biophys J 92(6):1900–1917CrossRefGoogle Scholar
  14. Guirao B, Meunier A, Mortaud S, Aguilar A, Corsi JM, Strehl L, Hirota Y, Desoeuvre A, Boutin C, Han YG, Mirzadeh Z, Cremer H, Montcouquiol M, Sawamoto K, Spassky N (2010) Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia. Nat Cell Biol 12(4):341–350CrossRefGoogle Scholar
  15. Halbert SA, Becker DR, Szal SE (1989) Ovum transport in the rat oviductal ampulla in the absence of muscle contractility. Biol Reprod 40(6):1131–1136CrossRefGoogle Scholar
  16. Harold J, Hoops IN, David LK (2005) Cytoplasmic bridges in volvox and its relatives. In: Baluska F, Volkmann D, Barlow PW (eds) Cell-Cell channels., Georgetown, p 1–20Google Scholar
  17. Heuser T, Raytchev M, Krell J, Porter ME, Nicastro D (2009) The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J Cell Biol 187(6):921–933CrossRefGoogle Scholar
  18. Heymann JB (2001) Bsoft: image and molecular processing in electron microscopy. J Struct Biol 133(2–3):156–169CrossRefGoogle Scholar
  19. Hirokawa N, Tanaka Y, Okada Y, Takeda S (2006) Nodal flow and the generation of left-right asymmetry. Cell 125(1):33–45CrossRefGoogle Scholar
  20. Hirota Y, Meunier A, Huang S, Shimozawa T, Yamada O, Kida YS, Inoue M, Ito T, Kato H, Sakaguchi M, Sunabori T, Nakaya MA, Nonaka S, Ogura T, Higuchi H, Okano H, Spassky N, Sawamoto K (2010) Planar polarity of multiciliated ependymal cells involves the anterior migration of basal bodies regulated by non-muscle myosin II. Development 137(18):3037–3046CrossRefGoogle Scholar
  21. Hoops HJ, Witman GB (1983) Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella. J Cell Biol 97(3):902–908CrossRefGoogle Scholar
  22. Hornef N, Olbrich H, Horvath J, Zariwala MA, Fliegauf M, Loges NT, Wildhaber J, Noone PG, Kennedy M, Antonarakis SE, Blouin JL, Bartoloni L, Nusslein T, Ahrens P, Griese M, Kuhl H, Sudbrak R, Knowles MR, Reinhardt R, Omran H (2006) DNAH5 mutations are a common cause of primary ciliary dyskinesia with outer dynein arm defects. Am J Respir Crit Care Med 174(2):120–126CrossRefGoogle Scholar
  23. Ikegami K, Sato S, Nakamura K, Ostrowski LE, Setou M (2010) Tubulin polyglutamylation is essential for airway ciliary function through the regulation of beating asymmetry. Proc Natl Acad Sci U S A 107(23):10490–10495CrossRefGoogle Scholar
  24. Ishikawa T, Hota M (2006) Interaction of two swimming Paramecia. J Exp Biol 209(Pt 22):4452–4463CrossRefGoogle Scholar
  25. Ishikawa T, Sakakibara H, Oiwa K (2007) The architecture of outer dynein arms in situ. J Mol Biol 368(5):1249–1258CrossRefGoogle Scholar
  26. Jonassen JA, San Agustin J, Follit JA, Pazour GJ (2008) Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. J Cell Biol 183(3):377–384CrossRefMATHGoogle Scholar
  27. Kagami O, Takada S, Kamiya R (1990) Microtubule translocation caused by three subspecies of inner-arm dynein from Chlamydomonas flagella. FEBS Lett 264(2):179–182CrossRefGoogle Scholar
  28. Kubo T, Yagi T, Kamiya R (2012) Tubulin polyglutamylation regulates flagellar motility by controlling a specific inner-arm dynein that interacts with the dynein regulatory complex. Cytoskeleton 179(2):222–228Google Scholar
  29. Kuhn C 3rd, Engleman W (1978) The structure of the tips of mammalian respiratory cilia. Cell Tissue Res 186(3):491–498CrossRefGoogle Scholar
  30. Kunimoto K, Yamazaki Y, Nishida T, Shinohara K, Ishikawa H, Hasegawa T, Okanoue T, Hamada H, Noda T, Tamura A, Tsukita S, Tsukita S (2012) Coordinated ciliary beating requires Odf2-mediated polarization of basal bodies via basal feet. Cell 148(1–2):189–200CrossRefGoogle Scholar
  31. Lai SK, Wang YY, Wirtz D, Hanes J (2009) Micro- and macrorheology of mucus. Adv Drug Deliv Rev 61(2):86–100CrossRefGoogle Scholar
  32. Lechtreck KF, Sanderson MJ, Witman GB (2009) High-speed digital imaging of ependymal cilia in the murine brain. Methods Cell Biol 91:255–264CrossRefGoogle Scholar
  33. Lucas AM, Douglas LC (1934) Principles underlying ciliary activity in the respiratory tract II. A comparison of nasal clearance in man, monkey and other mammals. Arch Otolaryngol 20(4):518–541CrossRefGoogle Scholar
  34. MAST, SO (1907) Light reaction in lower organisms: II. Volvox globator. J Comp Neurol Psychol 17(2): 99–180Google Scholar
  35. Mastronarde DN (1997) Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struct Biol 120(3):343–352CrossRefGoogle Scholar
  36. Nicastro D, McIntosh JR, Baumeister W (2005) 3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography. Proc Natl Acad Sci U S A 102(44):15889–15894CrossRefGoogle Scholar
  37. Niedermayer T, Eckhardt B, Lenz P (2008) Synchronization, phase locking, and metachronal wave formation in ciliary chains. Chaos 18(3):037128MathSciNetCrossRefGoogle Scholar
  38. Nigg EA, Raff JW (2009) Centrioles, centrosomes, and cilia in health and disease. Cell 139(4):663–678CrossRefGoogle Scholar
  39. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95(6):829–837CrossRefGoogle Scholar
  40. Okada Y, Nonaka S, Tanaka Y, Saijoh Y, Hamada H, Hirokawa N (1999) Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol Cell 4(4):459–468CrossRefGoogle Scholar
  41. Olbrich H, Horvath J, Fekete A, Loges NT, Storm van’s Gravesande K, Blum A, Hormann K, Omran H (2006) Axonemal localization of the dynein component DNAH5 is not altered in secondary ciliary dyskinesia. Pediatr Res 59(3): 418–422Google Scholar
  42. Pazour GJ, Agrin N, Walker BL, Witman GB (2006) Identification of predicted human outer dynein arm genes: candidates for primary ciliary dyskinesia genes. J Med Genet 43(1):62–73CrossRefGoogle Scholar
  43. Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151(3):709–718CrossRefGoogle Scholar
  44. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612CrossRefGoogle Scholar
  45. Ringo DL (1967) Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol 33(3):543–571CrossRefGoogle Scholar
  46. Ruffer U, Nultsch W (1985) High-speed cinematographic analysis of the movement of Chlamydomonas. Cell Motil Cytoskelet 5(3):251–263CrossRefGoogle Scholar
  47. Sanderson MJ, Sleigh MA (1981) Ciliary activity of cultured rabbit tracheal epithelium: beat pattern and metachrony. J Cell Sci 47:331–347Google Scholar
  48. Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia-Verdugo JM, Marin O, Rubenstein JL, Tessier-Lavigne M, Okano H, Alvarez-Buylla A (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311(5761):629–632CrossRefGoogle Scholar
  49. Sugino K, Naitoh Y (1982) Simulated cross-bridge patterns corresponding to ciliary beating in Paramecium. Nature 295(5850):609–611CrossRefGoogle Scholar
  50. Ueki N, Matsunaga S, Inouye I, Hallmann A (2010) How 5000 independent rowers coordinate their strokes in order to row into the sunlight: phototaxis in the multicellular green alga Volvox. BMC Biol 8:103CrossRefGoogle Scholar
  51. Ueno H, Ishikawa T, Bui KH, Gonda K, Ishikawa T, Yamaguchi T (2012) Mouse respiratory cilia with the asymmetric axonemal structure on sparsely distributed ciliary cells can generate overall directional flow. Nanomedicine 8(7):1081–1087CrossRefGoogle Scholar
  52. Vilfan A, Julicher F (2006) Hydrodynamic flow patterns and synchronization of beating cilia. Phys Rev Lett 96(5):058102CrossRefGoogle Scholar
  53. Wloga D, Frankel J (2012) From molecules to morphology: cellular organization of Tetrahymena thermophila. Methods Cell Biol 109:83–140CrossRefGoogle Scholar
  54. Yagi T (2009) Bioinformatic approaches to dynein heavy chain classification. Methods Cell Biol 92:1–9MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Molecular Function and Life SciencesAichi University of EducationKariyaJapan

Personalised recommendations