Skip to main content

Responses of Living Cells to Hydrodynamic Stimuli Due to Fluid Flow

  • Chapter
  • First Online:
Visualization and Simulation of Complex Flows in Biomedical Engineering

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 12))

  • 1486 Accesses

Abstract

Cells, the basic units of our body, are constantly exposed to fluid-dynamic stimuli. Typical examples are the epithelial cells of tubular organs, including blood and lymphatic vessels and renal tubes, which are in direct contact with flowing fluid. In addition, other cell types such as smooth muscle cells, fibroblasts, articular chondrocytes, and bone cells are subjected to interstitial fluid flow, which is the movement of fluid through the extracellular matrix of tissues elicited by differences in hydrostatic pressure and deformation of tissues. Fluid-dynamic stimuli can modulate cell alignment, proliferation, differentiation, migration, and cytokine secretion. These morphological and functional responses of cells play important roles not only in the maintenance of physiological functions of tissues but also in the development and progression of disease. Many attempts have been made to understand the effect of fluid-dynamic stimuli on cells. This chapter summarizes cellular responses induced by such stimuli, mainly focusing on the effect of shear stress on vascular cells, which have been extensively investigated in vitro over the last three decades. In addition, the possible mechanisms by which cells sense shear stress are also introduced briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainslie KM, Garanich JS, Dull RO, Tarbell JM (2005) Vascular smooth muscle cell glycocalyx influences shear stress-mediated contractile response. J Appl Physiol 98(1):242–249

    Article  Google Scholar 

  • Ajubi NE, Klein-Nulend J, Nijweide PJ, Vrijheid-Lammers T, Alblas MJ, Burger EH (1996) Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes–a cytoskeleton-dependent process. Biochem Bioph Res Co 225(1):62–68

    Article  Google Scholar 

  • Albuquerque ML, Waters CM, Savla U, Schnaper HW, Flozak AS (2000) Shear stress enhances human endothelial cell wound closure in vitro. Am J Physiol Heart Circ Physiol 279(1):H293–H302

    Google Scholar 

  • Alshihabi SN, Chang YS, Frangos JA, Tarbell JM (1996) Shear stress-induced release of PGE2 and PGI2 by vascular smooth muscle cells. Biochem Bioph Res Co 224(3):808–814

    Article  Google Scholar 

  • Ando J, Nomura H, Kamiya A (1987) The effect of fluid shear stress on the migration and proliferation of cultured endothelial cells. Microvasc Res 33(1):62–70

    Article  Google Scholar 

  • Ando J, Ohtsuka A, Korenaga R, Sakuma I, Kamiya A (1993) Flow-induced calcium transients and release of endothelium-derived relaxing factor in cultured vascular endothelial cells. Front Med Biol Eng 5(1):17–21

    Google Scholar 

  • Balcells M, Fernandez Suarez M, Vazquez M, Edelman ER (2005) Cells in fluidic environments are sensitive to flow frequency. J Cell Physiol 204(1):329–335

    Google Scholar 

  • Barbee KA, Davies PF, Lal R (1994) Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy. Circ Res 74(1):163–171

    Article  Google Scholar 

  • Brooks AR, Lelkes PI, Rubanyi GM (2002) Gene expression profiling of human aortic endothelial cells exposed to disturbed flow and steady laminar flow. Physiol Genomics 9(1):27–41

    Google Scholar 

  • Cai Z, Xin J, Pollock DM, Pollock JS (2000) Shear stress-mediated NO production in inner medullary collecting duct cells. Am J Physiol Renal Physio l279(2):F270–F274

    Google Scholar 

  • Cao L, Wu A, Truskey GA (2011) Biomechanical effects of flow and coculture on human aortic and cord blood-derived endothelial cells. J Biomech 44(11):2150–2157. DOI: 10.1016/j.jbiomech.2011.05.024

    Google Scholar 

  • Caro CG, Pedly TJ, Schroter RC, Seed WA (1978) The mechanics of the circulation

    Google Scholar 

  • Chachisvilis M, Zhang YL, Frangos JA (2006) G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci U S A 103(42):15463–15468

    Article  Google Scholar 

  • Chen KD, Li YS, Kim M, Li S, Yuan S, Chien S, Shyy JY (1999) Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem 274(26):18393–18400

    Article  Google Scholar 

  • Chen T, Buckley M, Cohen I, Bonassar L, Awad HA (2012) Insights into interstitial flow, shear stress, and mass transport effects on ECM heterogeneity in bioreactor-cultivated engineered cartilage hydrogels. Biomech Model Mechanobiol 11(5):689–702

    Article  Google Scholar 

  • Chiu JJ, Chen LJ, Chang SF, Lee PL, Lee CI, Tsai MC, Lee DY, Hsieh HP, Usami S, Chien S (2005) Shear stress inhibits smooth muscle cell-induced inflammatory gene expression in endothelial cells: role of NF-kappaB. Arterioscler Thromb Vasc Biol 25(5):963–969

    Article  Google Scholar 

  • Chiu JJ, Chen LJ, Chen CN, Lee PL, Lee CI (2004) A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells. J Biomech 37(4):531–539

    Article  Google Scholar 

  • Deguchi S, Maeda K, Ohashi T, Sato M (2005) Flow-induced hardening of endothelial nucleus as an intracellular stress-bearing organelle. J Biomech 38(9):1751–1759

    Article  Google Scholar 

  • Dejana E (2004) Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5(4):261–270

    Article  Google Scholar 

  • Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103(3):177–185

    Article  Google Scholar 

  • Dolan JM, Meng H, Singh S, Paluch R, Kolega J (2011) High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment. Ann Biomed Eng 39(6):1620–1631

    Article  Google Scholar 

  • Duan Y, Gotoh N, Yan Q, Du Z, Weinstein AM, Wang T, Weinbaum S (2008) Shear-induced reorganization of renal proximal tubule cell actin cytoskeleton and apical junctional complexes. Proc Natl Acad Sci U S A 105(32):11418–11423. DOI: 10.1073/pnas.0804954105

    Google Scholar 

  • Egorova AD, van der Heiden K, Poelmann RE, Hierck BP (2012) Primary cilia as biomechanical sensors in regulating endothelial function. Differentiation 83(2):S56–S61

    Article  Google Scholar 

  • Essig M, Terzi F, Burtin M, Friedlander G (2001a) Mechanical strains induced by tubular flow affect the phenotype of proximal tubular cells. Am J Physiol Renal Physiol 281(4):F751–F762

    Google Scholar 

  • Essig M, Terzi F, Burtin M, Friedlander G (2001b) Mechanical strains induced by tubular flow affect the phenotype of proximal tubular cells. Am J Physiol Renal Physiol 281(4):F751–F762

    Google Scholar 

  • Farmakis TM, Soulis JV, Giannoglou GD, Zioupos GJ, Louridas GE (2004) Wall shear stress gradient topography in the normal left coronary arterial tree: possible implications for atherogenesis. Curr Med Res Opin 20(5):587–596

    Article  Google Scholar 

  • Flaherty JT, Pierce JE, Ferrans VJ, Patel DJ, Tucker WK, Fry DL (1972) Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events. Circ Res 30(1):23–33

    Article  Google Scholar 

  • Flores D, Liu Y, Liu W, Satlin LM, Rohatgi R (2012) Flow-induced prostaglandin E2 release regulates Na and K transport in the collecting duct. Am J Physiol Renal Physiol 303(5):F632–F638

    Article  Google Scholar 

  • Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM (2003) Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 93(10):e136–e142

    Article  Google Scholar 

  • Frangos JA, Eskin SG, McIntire LV, Ives CL (1985) Flow effects on prostacyclin production by cultured human endothelial cells. Science 227(4693):1477–1479

    Article  Google Scholar 

  • Fry DL (1968) Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res 22(2):165–197

    Article  Google Scholar 

  • Gosgnach W, Messika-Zeitoun D, Gonzalez W, Philipe M, Michel JB (2000) Shear stress induces iNOS expression in cultured smooth muscle cells: role of oxidative stress. Am J Physiol Cell Physiol 279(6):C1880–C1888

    Google Scholar 

  • Gudi SR, Clark CB, Frangos JA (1996) Fluid flow rapidly activates G proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal transduction. Circ Res 79(4):834–839

    Article  Google Scholar 

  • Helmlinger G, Geiger RV, Schreck S, Nerem RM (1991) Effects of pulsatile flow on cultured vascular endothelial cell morphology. J Biomech Eng 113(2):123–131

    Article  Google Scholar 

  • Himburg HA, Dowd SE, Friedman MH (2007) Frequency-dependent response of the vascular endothelium to pulsatile shear stress. Am J Physiol Heart Circ Physiol 293(1):H645–H653

    Article  Google Scholar 

  • Jimenez-Vergara AC, Guiza-Arguello V, Becerra-Bayona S, Munoz-Pinto DJ, McMahon RE, Morales A, Cubero-Ponce L, Hahn MS (2010) Approach for fabricating tissue engineered vascular grafts with stable endothelialization. Ann Biomed Eng 38(9):2885–2895

    Article  Google Scholar 

  • Jo H, Dull RO, Hollis TM, Tarbell JM (1991) Endothelial albumin permeability is shear dependent, time dependent, and reversible. Am J Physiol 260(6 Pt 2):H1992–H1996

    Google Scholar 

  • Johnson DL, McAllister TN, Frangos JA (1996) Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts. Am J Physiol 271(1 Pt 1):E205–E208

    Google Scholar 

  • Karuri NW, Liliensiek S, Teixeira AI, Abrams G, Campbell S, Nealey PF, Murphy CJ (2004) Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells. J Cell Sci 117(Pt 15):3153–3164

    Article  Google Scholar 

  • Kataoka N, Ujita S, Sato M (1998) Effect of flow direction on the morphological responses of cultured bovine aortic endothelial cells. Med Biol Eng Comput 36(1):122–128

    Article  Google Scholar 

  • Kaysen JH, Campbell WC, Majewski RR, Goda FO, Navar GL, Lewis FC, Goodwin TJ, Hammond TG (1999) Select de novo gene and protein expression during renal epithelial cell culture in rotating wall vessels is shear stress dependent. J Membr Biol 168(1):77–89

    Article  Google Scholar 

  • Kolega J, Gao L, Mandelbaum M, Mocco J, Siddiqui AH, Natarajan SK, Meng H (2011) Cellular and molecular responses of the basilar terminus to hemodynamics during intracranial aneurysm initiation in a rabbit model. J Vasc Res 48(5):429–442

    Article  Google Scholar 

  • Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5(3):293–302

    Article  Google Scholar 

  • Kuchan MJ, Frangos JA (1993) Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells. Am J Physiol 264(1 Pt 2):H150–H156

    Google Scholar 

  • LaMack JA, Friedman MH (2007) Individual and combined effects of shear stress magnitude and spatial gradient on endothelial cell gene expression. Am J Physiol Heart Circ Physiol 293(5):H2853–H2859

    Article  Google Scholar 

  • Langille BL, Bendeck MP, Keeley FW (1989) Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow. Am J Physiol 256(4 Pt 2):H931–H939

    Google Scholar 

  • Langille BL, O’Donnell F (1986) Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231(4736):405–407

    Article  Google Scholar 

  • le Duc Q, Shi Q, Blonk I, Sonnenberg A, Wang N, Leckband D, de Rooij J (2010) Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J Cell Biol 189(7):1107–1115

    Article  Google Scholar 

  • Lecuit T (2010) alpha-catenin mechanosensing for adherens junctions. Nat Cell Biol 12(6):522–524

    Article  Google Scholar 

  • Lee AA, Graham DA, Dela Cruz S, Ratcliffe A, Karlon WJ (2002) Fluid shear stress-induced alignment of cultured vascular smooth muscle cells. J Biomech Eng 124(1):37–43

    Google Scholar 

  • Levesque MJ, Nerem RM (1985) The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng 107(4):341–347

    Article  Google Scholar 

  • Levesque MJ, Nerem RM, Sprague EA (1990) Vascular endothelial cell proliferation in culture and the influence of flow. Biomaterials 11(9):702–707

    Article  Google Scholar 

  • Li M, Stenmark KR, Shandas R, Tan W (2009) Effects of pathological flow on pulmonary artery endothelial production of vasoactive mediators and growth factors. J Vasc Res 46(6):561–571

    Article  Google Scholar 

  • Lichtenberg A, Tudorache I, Cebotari S, Suprunov M, Tudorache G, Goerler H, Park JK, Hilfiker-Kleiner D, Ringes-Lichtenberg S, Karck M, Brandes G, Hilfiker A, Haverich A (2006) Preclinical testing of tissue-engineered heart valves re-endothelialized under simulated physiological conditions. Circulation 114(1 Suppl):I559–I565

    Google Scholar 

  • Malek A, Izumo S (1992) Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium. Am J Physiol 263(2 Pt 1):C389–C396

    Google Scholar 

  • Malek AM, Izumo S, Alper SL (1999) Modulation by pathophysiological stimuli of the shear stress-induced up-regulation of endothelial nitric oxide synthase expression in endothelial cells. Neurosurgery 45(2):334–344; discussion 344–335

    Google Scholar 

  • Mall JW, Philipp AW, Rademacher A, Paulitschke M, Buttemeyer R (2004) Re-endothelialization of punctured ePTFE graft: an in vitro study under pulsed perfusion conditions. Nephrol Dial Transplant 19(1):61–67

    Article  Google Scholar 

  • Meng H, Wang Z, Hoi Y, Gao L, Metaxa E, Swartz DD, Kolega J (2007) Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 38(6):1924–1931

    Article  Google Scholar 

  • Metaxa E, Tremmel M, Natarajan SK, Xiang J, Paluch RA, Mandelbaum M, Siddiqui AH, Kolega J, Mocco J, Meng H (2010) Characterization of critical hemodynamics contributing to aneurysmal remodeling at the basilar terminus in a rabbit model. Stroke 41(8):1774–1782

    Article  Google Scholar 

  • Mohan S, Mohan N, Sprague EA (1997) Differential activation of NF-kappa B in human aortic endothelial cells conditioned to specific flow environments. Am J Physiol 273(2 Pt 1):C572–C578

    Google Scholar 

  • Morawietz H, Talanow R, Szibor M, Rueckschloss U, Schubert A, Bartling B, Darmer D, Holtz J (2000) Regulation of the endothelin system by shear stress in human endothelial cells. J Physiol 525(Pt 3):761–770

    Article  Google Scholar 

  • Nagel T, Resnick N, Atkinson WJ, Dewey CF Jr, Gimbrone MA Jr (1994) Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J Clin Invest 94(2):885–891

    Article  Google Scholar 

  • Nagel T, Resnick N, Dewey CF Jr, Gimbrone MA Jr (1999) Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler Thromb Vasc Biol 19(8):1825–1834

    Article  Google Scholar 

  • Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117(9):1161–1171

    Article  Google Scholar 

  • Nerem RM, Levesque MJ, Cornhill JF (1981) Vascular endothelial morphology as an indicator of the pattern of blood flow. J Biomech Eng 103(3):172–176

    Article  Google Scholar 

  • Ng CP, Hinz B, Swartz MA (2005) Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J Cell Sci 118(Pt 20):4731–4739

    Article  Google Scholar 

  • Ng CP, Swartz MA (2003) Fibroblast alignment under interstitial fluid flow using a novel 3-D tissue culture model. Am J Physiol Heart Circ Physiol 284(5):H1771–H1777

    Google Scholar 

  • Osawa M, Masuda M, Kusano K, Fujiwara K (2002) Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule? J Cell Biol 158(4):773–785

    Article  Google Scholar 

  • Raimondi MT, Candiani G, Cabras M, Cioffi M, Lagana K, Moretti M, Pietrabissa R (2008) Engineered cartilage constructs subject to very low regimens of interstitial perfusion. Biorheology 45(3–4):471–478

    Google Scholar 

  • Redmond EM, Cahill PA, Sitzmann JV (1998) Flow-mediated regulation of G-protein expression in cocultured vascular smooth muscle and endothelial cells. Arterioscler Thromb Vasc Biol 18(1):75–83

    Article  Google Scholar 

  • Ren H, Wilson G (1997) The effect of a shear force on the cell shedding rate of the corneal epithelium. Acta Ophthalmol Scand 75(4):383–387

    Article  Google Scholar 

  • Rhoads DN, Eskin SG, McIntire LV (2000) Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells. Arterioscler Thromb Vasc Biol 20(2):416–421

    Article  Google Scholar 

  • Rice KM, Kakarla SK, Mupparaju SP, Paturi S, Katta A, Wu M, Harris RT, Blough ER (2010) Shear stress activates Akt during vascular smooth muscle cell reorientation. Biotechnol Appl Biochem 55(2):85–90

    Article  Google Scholar 

  • Sakamoto N, Kiuchi T, Sato M (2011) Development of an endothelial-smooth muscle cell coculture model using phenotype-controlled smooth muscle cells. Ann Biomed Eng 39(11):2750–2758

    Article  Google Scholar 

  • Sakamoto N, Ohashi T, Sato M (2006) Effect of fluid shear stress on migration of vascular smooth muscle cells in cocultured model. Ann Biomed Eng 34(3):408–415

    Article  Google Scholar 

  • Sakamoto N, Saito N, Han X, Ohashi T, Sato M (2010a) Effect of spatial gradient in fluid shear stress on morphological changes in endothelial cells in response to flow. Biochem Biophys Res Commun 395(2):264–269

    Article  Google Scholar 

  • Sakamoto N, Segawa K, Kanzaki M, Ohashi T, Sato M (2010b) Role of p120-catenin in the morphological changes of endothelial cells exposed to fluid shear stress. Biochem Biophys Res Commun 398(3):426–432

    Article  Google Scholar 

  • Sato M, Levesque MJ, Nerem RM (1987) An application of the micropipette technique to the measurement of the mechanical properties of cultured bovine aortic endothelial cells. J Biomech Eng 109(1):27–34

    Article  Google Scholar 

  • Sato M, Nagayama K, Kataoka N, Sasaki M, Hane K (2000) Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress. J Biomech 33(1):127–135

    Article  Google Scholar 

  • Schnermann J, Wahl M, Liebau G, Fischbach H (1968) Balance between tubular flow rate and net fluid reabsorption in the proximal convolution of the rat kidney. I. Dependency of reabsorptive net fluid flux upon proximal tubular surface area at spontaneous variations of filtration rate. Pflugers Archiv: European journal of physiology 304(1):90–103

    Google Scholar 

  • Schwartz EA, Leonard ML, Bizios R, Bowser SS (1997) Analysis and modeling of the primary cilium bending response to fluid shear. Am J Physiol272 (1 Pt 2):F132-138

    Google Scholar 

  • Shikata Y, Rios A, Kawkitinarong K, DePaola N, Garcia JG, Birukov KG (2005) Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cells. Exp Cell Res 304(1):40–49

    Article  Google Scholar 

  • Sterpetti AV, Cucina A, D’Angelo LS, Cardillo B, Cavallaro A (1993) Shear stress modulates the proliferation rate, protein synthesis, and mitogenic activity of arterial smooth muscle cells. Surgery 113(6):691–699

    Google Scholar 

  • Szymanski MP, Metaxa E, Meng H, Kolega J (2008) Endothelial cell layer subjected to impinging flow mimicking the apex of an arterial bifurcation. Ann Biomed Eng 36(10):1681–1689

    Article  Google Scholar 

  • Tada S, Tarbell JM (2000) Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells. Am J Physiol Heart Circ Physiol 278(5):H1589–H1597

    Google Scholar 

  • Tada S, Tarbell JM (2001) Fenestral pore size in the internal elastic lamina affects transmural flow distribution in the artery wall. Ann Biomed Eng 29(6):456–466

    Article  Google Scholar 

  • Tada S, Tarbell JM (2002) Flow through internal elastic lamina affects shear stress on smooth muscle cells (3D simulations). Am J Physiol Heart Circ Physiol 282(2):H576–H584

    Google Scholar 

  • Tarbell JM, Weinbaum S, Kamm RD (2005) Cellular fluid mechanics and mechanotransduction. Ann Biomed Eng 33(12):1719–1723

    Article  Google Scholar 

  • Tsai MC, Chen L, Zhou J, Tang Z, Hsu TF, Wang Y, Shih YT, Peng HH, Wang N, Guan Y, Chien S, Chiu JJ (2009) Shear stress induces synthetic-to-contractile phenotypic modulation in smooth muscle cells via peroxisome proliferator-activated receptor alpha/delta activations by prostacyclin released by sheared endothelial cells. Circ Res 105(5):471–480

    Article  Google Scholar 

  • Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437(7057):426–431

    Article  Google Scholar 

  • Tzima E, Kiosses WB, del Pozo MA, Schwartz MA (2003) Localized cdc42 activation, detected using a novel assay, mediates microtubule organizing center positioning in endothelial cells in response to fluid shear stress. J Biol Chem 278(33):31020–31023

    Article  Google Scholar 

  • Uematsu M, Ohara Y, Navas JP, Nishida K, Murphy TJ, Alexander RW, Nerem RM, Harrison DG (1995) Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physio l269 (6 Pt 1):C1371–C1378

    Google Scholar 

  • Vyalov S, Langille BL, Gotlieb AI (1996) Decreased blood flow rate disrupts endothelial repair in vivo. Am J Pathol 149(6):2107–2118

    Google Scholar 

  • Wang HQ, Huang LX, Qu MJ, Yan ZQ, Liu B, Shen BR, Jiang ZL (2006) Shear stress protects against endothelial regulation of vascular smooth muscle cell migration in a coculture system. Endothelium 13(3):171–180

    Article  Google Scholar 

  • Wang Y, Miao H, Li S, Chen KD, Li YS, Yuan S, Shyy JY, Chien S (2002) Interplay between integrins and FLK-1 in shear stress-induced signaling. Am J Physiol Cell Physiol 283(5):C1540–C1547

    Article  Google Scholar 

  • Wang YH, Yan ZQ, Qi YX, Cheng BB, Wang XD, Zhao D, Shen BR, Jiang ZL (2010) Normal shear stress and vascular smooth muscle cells modulate migration of endothelial cells through histone deacetylase 6 activation and tubulin acetylation. Ann Biomed Eng 38(3):729–737

    Article  Google Scholar 

  • Wang ZM, Pierson RN Jr, Heymsfield SB (1992) The five-level model: a new approach to organizing body-composition research. Am J Clin Nutr 56(1):19–28

    Google Scholar 

  • Wesolowski SA, Fries CC, Sabini AM, Sawyer PN (1965) The Significance of Turbulence in Hemic Systems and in the Distribution of the Atherosclerotic Lesion. Surgery 57:155–162

    Google Scholar 

  • Yamamoto K, Korenaga R, Kamiya A, Qi Z, Sokabe M, Ando J (2000) P2X(4) receptors mediate ATP-induced calcium influx in human vascular endothelial cells. Am J Physiol Heart Circ Physiol 279(1):H285–H292

    Google Scholar 

  • Yamamoto K, Sokabe T, Matsumoto T, Yoshimura K, Shibata M, Ohura N, Fukuda T, Sato T, Sekine K, Kato S, Isshiki M, Fujita T, Kobayashi M, Kawamura K, Masuda H, Kamiya A, Ando J (2006) Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat Med 12(1):133–137

    Article  Google Scholar 

  • Zaidel-Bar R, Kam Z, Geiger B (2005) Polarized downregulation of the paxillin-p130CAS-Rac1 pathway induced by shear flow. J Cell Sci 118(Pt 17):3997–4007

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (Nos. 20001007 and 21700457).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoya Sakamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sakamoto, N. (2014). Responses of Living Cells to Hydrodynamic Stimuli Due to Fluid Flow. In: Lima, R., Imai, Y., Ishikawa, T., Oliveira, M. (eds) Visualization and Simulation of Complex Flows in Biomedical Engineering. Lecture Notes in Computational Vision and Biomechanics, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7769-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7769-9_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7768-2

  • Online ISBN: 978-94-007-7769-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics