AGM, Ranking Theory, and the Many Ways to Cope with Examples

Part of the Outstanding Contributions to Logic book series (OCTR, volume 3)


The paper first explains how the ranking-theoretic belief change or conditionalization rules entail all of the standard AGM belief revision and contraction axioms. Those axioms have met a lot of objections and counter-examples, which thus extend to ranking theory as well. The paper argues for a paradigmatic set of cases that the counter-examples can be well accounted for with various pragmatic strategies while maintaining the axioms. So, one point of the paper is to save AGM belief revision theory as well as ranking theory. The other point, however, is to display how complex the pragmatic interaction of belief change and utterance meaning may be; it should be systematically and not only paradigmatically explored.


Ordinal conditional function Ranking theory AGM  Success postulate Preservation postulate Superexpansion postulate Intersection postulate Recovery postulate 


  1. Alchourrón, C. E., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet functions for contraction and revision. Journal of Symbolic Logic, 50, 510–530.CrossRefGoogle Scholar
  2. Cohen, L. J. (1970). The implications of induction. London: Methuen.Google Scholar
  3. Cohen, L. J. (1980). Some historical remarks on the Baconian conception of probability. Journal of the History of Ideas, 41, 219–231.CrossRefGoogle Scholar
  4. Dubois, D., & Prade, H. (1988). Possibility theory: An approach to computerized processing of uncertainty. New York: Plenum Press.CrossRefGoogle Scholar
  5. Field, H. (1978). A note on Jeffrey conditionalization. Philosophy of Science, 45, 361–367.CrossRefGoogle Scholar
  6. Fuhrmann, André. (1991). Theory contraction through base contraction. Journal of Philosophical Logic, 20, 175–203.CrossRefGoogle Scholar
  7. Fuhrmann, A., & Hansson, S. O. (1994). A survey of multiple contractions. Journal of Logic, Language, and Information, 3, 39–76.CrossRefGoogle Scholar
  8. Gärdenfors, P. (1988). Knowledge in flux. Cambridge, MA: MIT Press.Google Scholar
  9. Haas, G. (2005). Revision und Rechtfertigung. Eine Theorie der Theorieänderung, Heidelberg: Synchron Wissenschaftsverlag der Autoren.Google Scholar
  10. Hansson, S. O. (1997). Special issue on non-prioritized belief revision. Theoria, 63, 1–134.Google Scholar
  11. Hansson, S. O. (1999). Theory change and database updating. A Textbook of Belief Dynamics. Dordrecht: Kluwer.CrossRefGoogle Scholar
  12. Hild, M., & Spohn, W. (2008). The measurement of ranks and the laws of iterated contraction. Artificial Intelligence, 172, 1195–1218.CrossRefGoogle Scholar
  13. Huber, F. (2006). Ranking functions and rankings on languages. Artificial Intelligence, 170, 462–471.CrossRefGoogle Scholar
  14. Jeffrey, R. C. (1965/1983). The logic of decision (2\(^{{\rm {nd}}}\) ed.). Chicago: University of Chicago Press.Google Scholar
  15. Levi, I. (1991). The fixation of belief and its undoing. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. Levi, I. (2004). Mild contraction: Evaluating loss of information due to loss of belief. Oxford: Oxford University Press.CrossRefGoogle Scholar
  17. Makinson, D. (1997a). Screened revision. Theoria, 63, 14–23.CrossRefGoogle Scholar
  18. Makinson, D., et al. (1997b). On the force of some apparent counterexamples to recovery. In E. G. Valdés (Ed.), Normative systems in legal and moral theory (pp. 475–481). Festschrift for Carlos Alchourrón and Eugenio Bulygin, Berlin: Duncker & Humblot.Google Scholar
  19. Merin, A. (1999). Information, relevance and social decision-making: Some principles and results of decision-theoretic semantics. In L. S. Moss, J. Ginzburg, & M. De Rijke (Eds.), Logic, Language, and Computation (Vol. 2, pp. 179–221). Stanford, CA: CSLI Publications (Online at
  20. Merin, A. (2003a). Replacing horn scales by act-based relevance orderings to keep negation and numerals meaningful. Forschungsberichte der DFG-Forschergruppe Logik in der Philosophie, No. 110, University of Konstanz. (Online at
  21. Merin, A. (2003b). Presuppositions and practical reason: A study in decision-theoretic semantics. Forschungsberichte der DFG-Forschergruppe Logik in der Philosophie, No. 114, University of Konstanz. (Online at
  22. Rabinowicz, W. (1996). Stable revision, or is preservation worth preserving?. In A. Fuhrmann & H. Rott (Eds.), Logic, action, and information (pp. 101–128). de Gruyter: Essays on Logic in Philosophy and Artificial Intelligence, Berlin.Google Scholar
  23. Rescher, N. (1964). Hypothetical reasoning. Amsterdam: North-Holland.Google Scholar
  24. Rott, H. (1989). Conditionals and theory change: Revisions expansions and additions. Synthese, 81, 91–113.CrossRefGoogle Scholar
  25. Rott, H. (1999). Coherence and conservatism in the dynamics of belief Part I: Finding the right framework. Erkenntnis, 50, 387–412.CrossRefGoogle Scholar
  26. Shackle, G. L. S. (1961). Decision, order, and time in human affairs (2\(^{{\rm {nd}}}\) ed.). Cambridge: Cambridge University Press.Google Scholar
  27. Shenoy, P. P. (1991). On Spohn’s rule for revision of beliefs. International Journal of Approximate Reasoning, 5, 149–181.CrossRefGoogle Scholar
  28. Spohn, W. (1983). Eine Theorie der Kausalität, unpublished Habilitationsschrift, Universität München, pdf-version at:
  29. Spohn, W. (1988). Ordinal conditional functions. A dynamic theory of epistemic states. In W. L. Harper & B. Skyrms (Eds.), Causation in decision, belief change, and statistics (Vol. II, pp. 105–134). Dordrecht: Kluwer.Google Scholar
  30. Spohn, W. (2010). Multiple contraction revisited. In M. Suárez, M. Dorato, & M. Rédei (Eds.), EPSA epistemology and methodology of science (Vol. 1, pp. 279–288). Launch of the European Philosophy of Science Association, Dordrecht : Springer.Google Scholar
  31. Spohn, W. (2012). The laws of belief. Ranking Theory and Its Philosophical Applications, Oxford: Oxford University Press.Google Scholar
  32. Strawson, P. F. (1950). On referring. Mind, 59, 320–344.CrossRefGoogle Scholar
  33. Teller, P. (1976). Conditionalization, observation and change of preference. In W. L. Harper & C. A. Hooker (Eds.), Foundations of Probability Theory (pp. 205–259). Reidel, Dordrecht: Statistical Inference and Statistical Theories of Science.Google Scholar
  34. Zadeh, Lofti A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3–28.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of KonstanzKonstanzGermany

Personalised recommendations